1932

Abstract

Virtual reality (VR) is becoming an increasingly important way to investigate sensory processing. The converse is also true: in order to build good VR technologies, one needs an intimate understanding of how our brain processes sensory information. One of the key advantages of studying perception with VR is that it allows an experimenter to probe perceptual processing in a more naturalistic way than has been possible previously. In VR, one is able to actively explore and interact with the environment, just as one would do in real life. In this article, we review the history of VR displays, including the philosophical origins of VR, before discussing some key challenges involved in generating good VR and how a sense of presence in a virtual environment can be measured. We discuss the importance of multisensory VR and evaluate the experimental tension that exists between artifice and realism when investigating sensory processing.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-091718-014942
2019-09-15
2024-04-12
Loading full text...

Full text loading...

/deliver/fulltext/vision/5/1/annurev-vision-091718-014942.html?itemId=/content/journals/10.1146/annurev-vision-091718-014942&mimeType=html&fmt=ahah

Literature Cited

  1. Adams WJ, Graf EW, Ernst MO 2004. Experience can change the ‘light-from-above’ prior. Nat. Neurosci. 7:1057–58
    [Google Scholar]
  2. Adams WJ, Kerrigan IS, Graf EW 2016. Touch influences perceived gloss. Sci. Rep. 6:21866
    [Google Scholar]
  3. Akeley K, Watt SJ, Girshick AR, Banks MS 2004. A stereo display prototype with multiple focal distances. ACM Trans. Graph. 23:804–13
    [Google Scholar]
  4. Banks MS, Hoffman DM, Kim J, Wetzstein G 2016. 3D displays. Annu. Rev. Vis. Sci. 2:397–435
    [Google Scholar]
  5. Barfield W, Zeltzer D, Sheridan T, Slater M 1995. Presence and performance within virtual environments. Virtual Environments and Advanced Interface Design W Barfield, TA Furness III 473–513 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  6. Battaglia PW, Hamrick JB, Tenenbaum JB 2013. Simulation as an engine of physical scene understanding. PNAS 110:18327–32
    [Google Scholar]
  7. Berger CC, Gonzalez-Franco M, Tajadura-Jimenez A, Florencio D, Zhang ZY 2018. Generic HRTFs may be good enough in virtual reality. Improving source localization through cross-modal plasticity. Front. Neurosci. 12:21
    [Google Scholar]
  8. Berkeley G. 1709. An Essay Towards a New Theory of Vision Cirencester, UK: Echo Libr.
  9. Berniker M, Kording K. 2008. Estimating the sources of motor errors for adaptation and generalization. Nat. Neurosci. 11:1454–61
    [Google Scholar]
  10. Botvinick M, Cohen J. 1998. Rubber hands ‘feel’ touch that eyes see. Nature 391:756
    [Google Scholar]
  11. Bowers JS, Davis CJ. 2012. Bayesian just-so stories in psychology and neuroscience. Psychol. Bull. 138:389–414
    [Google Scholar]
  12. Bruswik E. 1956. Perception and the Representative Design of Psychological Experiments Berkeley: Univ. Calif. Press
  13. Burge J, Fowlkes CC, Banks MS 2010. Natural-scene statistics predict how the figure-ground cue of convexity affects human depth perception. J. Neurosci. 30:7269–80
    [Google Scholar]
  14. Burge J, Geisler WS. 2011. Optimal defocus estimation in individual natural images. PNAS 108:16849–54
    [Google Scholar]
  15. Burge J, Geisler WS. 2014. Optimal disparity estimation in natural stereo images. J. Vis. 14:21
    [Google Scholar]
  16. Burge J, Geisler WS. 2015. Optimal speed estimation in natural image movies predicts human performance. Nat. Commun. 6:7900
    [Google Scholar]
  17. Burge J, McCann BC, Geisler WS 2016. Estimating 3D tilt from local image cues in natural scenes. J. Vis. 16:132
    [Google Scholar]
  18. Clark A. 1997. Being There: Putting Brain, Body and World Together Again Cambridge, MA: MIT Press
  19. Clark A. 2013. Whatever next? Predictive brains, situated agents, and the future of cognitive science. Behav. Brain Sci. 36:181–204
    [Google Scholar]
  20. Cutting JE, Vishton PM. 1995. Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. Perception of Space and Motion W Epstein, S Rogers San Diego, CA: Academic
    [Google Scholar]
  21. Dam G, Kording K, Wei KL 2013. Credit assignment during movement reinforcement learning. PLOS ONE 8:e55352
    [Google Scholar]
  22. David SV, Vinje WE, Gallant JL 2004. Natural stimulus statistics alter the receptive field structure of V1 neurons. J. Neurosci. 24:6991–7006
    [Google Scholar]
  23. Davison A, Reid I, Molton N, Stasse O 2007. MonoSLAM: real-time single camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 29:1052–67
    [Google Scholar]
  24. Descartes R. 1641. Meditations on First Philosophy: With Selections from the Objections and Replies Cambridge, UK: Cambridge Univ. Press
  25. Di Luca M. 2010. New method to measure end-to-end delay of virtual reality. Presence Teleoper. Virtual Environ. 19:569–84
    [Google Scholar]
  26. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33
    [Google Scholar]
  27. Fleming RW. 2014. Visual perception of materials and their properties. Vis. Res. 94:62–75
    [Google Scholar]
  28. Fleming RW, Torralba A, Adelson EH 2004. Specular reflections and the perception of shape. J. Vis. 4:9798–820
    [Google Scholar]
  29. Gepshtein S, Burge J, Ernst MO, Banks MS 2005. The combination of vision and touch depends on spatial proximity. J. Vis. 5:111013–23
    [Google Scholar]
  30. Gilson SJ, Fitzgibbon AW, Glennerster A 2011. An automated calibration method for non-see-through head mounted displays. J. Neurosci. Methods 199:328–35
    [Google Scholar]
  31. Gilson SJ, Glennerster A. 2012. High fidelity immersive virtual reality. Virtual Reality: Human Computer Interaction, ed. T Xinxing41–58 Rijeka, Croatia: InTech
    [Google Scholar]
  32. Girshick AR, Akeley K, Watt SJ, Banks MS 2004. Improved stereoscopic performance with consistent vergence and accommodative cues in a novel 3-D display. Perception 33:42
    [Google Scholar]
  33. Glasser A, Campbell MC. 1998. Presbyopia and the optical changes in the human crystalline lens with age. Vis. Res. 38:209–29
    [Google Scholar]
  34. Glennerster A, Gilson S. 2017. Measuring end-to-end latency of a virtual reality system objectively and psychophysically. J. Vis. 17:10355
    [Google Scholar]
  35. Glennerster A, Tcheang L, Gilson SJ, Fitzgibbon AW, Parker AJ 2006. Humans ignore motion and stereo cues in favor of a fictional stable world. Curr. Biol. 16:428–32
    [Google Scholar]
  36. Haijiang Q, Saunders JA, Stone RW, Backus BT 2006. Demonstration of cue recruitment: change in visual appearance by means of Pavlovian conditioning. PNAS 103:483–88
    [Google Scholar]
  37. Hamrick J, Battaglia P, Tenenbaum J 2011. Internal physics models guide probabilistic judgments about object dynamics. Proceedings of the 33rd Annual Conference of the Cognitive Science Society, Boston, Massachusetts, July 20–23 L Carlson, TF Shipley, C Hoelscher 1546–50 Austin, TX: Cogn. Sci. Soc. Inc.
    [Google Scholar]
  38. Hansard M, Horaud R. 2008. Cyclopean geometry of binocular vision. J. Opt. Soc. Am. A 25:2357–69
    [Google Scholar]
  39. Hariri S, Mustafa NA, Karunanayaka K, Cheok AD 2016. Electrical stimulation of olfactory receptors for digitizing smell. Proceedings of the 2016 Workshop on Multimodal Virtual and Augmented Reality, Tokyo, Japan, November 16 art. 4 New York: ACM
    [Google Scholar]
  40. Harris JM. 2004. Binocular vision: moving closer to reality. Philos. Trans. R. Soc. A 362:2721–39
    [Google Scholar]
  41. Hartley R, Zisserman A. 2000. Multiple View Geometry in Computer Vision Cambridge, UK: Cambridge Univ. Press
  42. Held RT, Cooper EA, Banks MS 2012. Blur and disparity are complementary cues to depth. Curr. Biol. 22:426–31
    [Google Scholar]
  43. Helmholtz H. 1925. Helmholtz's Treatise on Physiological Optics, Vol. 3 London: Thoemmes
  44. Hershenson MH. 1999. Visual Space Perception: A Primer Cambridge, MA: MIT Press
  45. Hibbard PB. 2008. Binocular energy responses to natural images. Vis. Res. 48:1427–39
    [Google Scholar]
  46. Hillis JM, Ernst MO, Banks MS, Landy MS 2002. Combining sensory information: mandatory fusion within, but not between, senses. Science 298:1627–30
    [Google Scholar]
  47. Hoffman DM, Girshick AR, Akeley K, Banks MS 2008. Vergence-accommodation conflicts hinder visual performance and cause visual fatigue. J. Vis. 8:333
    [Google Scholar]
  48. Howard IP, Rogers BJ. 2002. Seeing in Depth: Depth Perception, Vol. 2 Toronto: I Porteous
  49. Hunter DW, Hibbard PB. 2015. Distribution of independent components of binocular natural images. J. Vis. 15:136
    [Google Scholar]
  50. Ischer M, Baron N, Mermoud C, Cayeux I, Porcherot C, Sander D, Delplanque S 2014. How incorporation of scents could enhance immersive virtual experiences. Front. Psychol. 5:736
    [Google Scholar]
  51. Julesz B. 1971. Foundations of Cyclopean Perception Chicago, IL: Chicago Univ. Press
  52. Kajiya JT. 1986. The rendering equation. SIGGRAPH ‘86 Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, ed. DC Evans, RJ Athay143–50 New York: ACM
    [Google Scholar]
  53. Kanbara M, Okuma T, Takemura H, Yokoya N 2000. A stereoscopic video see-through augmented reality system based on real-time vision-based registration Paper presented at IEEE Virtual Reality 2000, New Brunswick, NJ, Mar 18–22
  54. Kawabe T, Maruya K, Fleming RW, Nishida S 2015. Seeing liquids from visual motion. Vis. Res. 109:125–38
    [Google Scholar]
  55. Keast RS, Costanzo A. 2015. Is fat the sixth taste primary? Evidence and implications. Flavour 4:51–7
    [Google Scholar]
  56. Kerrigan IS, Adams WJ. 2013. Learning different light prior distributions for different contexts. Cognition 127:99–104
    [Google Scholar]
  57. Kim J, Kane D, Banks MS 2014. The rate of change of vergence-accommodation conflict affects visual discomfort. Vis. Res. 105:159–65
    [Google Scholar]
  58. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press
  59. Koenderink JJ. 1999. Virtual psychophysics. Perception 28:669–74
    [Google Scholar]
  60. Koenderink JJ, Vandoorn AJ. 1987. Facts on optic flow. Biol. Cybern. 56:247–54
    [Google Scholar]
  61. Kording KP, Beierholm U, Ma WJ, Quartz S, Tenenbaum JB, Shams L 2007. Causal inference in multisensory perception. PLOS ONE 2:e943
    [Google Scholar]
  62. Koulieris G, Bui B, Banks MS, Drettakis G 2017. Accommodation and comfort in head-mounted displays. ACM Trans. Graph. 36:87
    [Google Scholar]
  63. Landy MS, Maloney LT, Johnston EB, Young M 1995. Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35:389–412
    [Google Scholar]
  64. Lee S, Hua H. 2013. A robust camera-based method for optical distortion calibration of head-mounted displays. J. Display Technol. 11:845–53
    [Google Scholar]
  65. Lenggenhager B, Tadi T, Metzinger T, Blanke O 2007. Video ergo sum: manipulating bodily self-consciousness. Science 317:1096–99
    [Google Scholar]
  66. Love GD, Hoffman DM, Hands PJ, Gao J, Kirby AK, Banks MS 2009. High-speed switchable lens enables the development of a volumetric stereoscopic display. Opt. Express 17:15716–25
    [Google Scholar]
  67. Maloney LT, Landy MS. 1989. A statistical framework for robust fusion of depth information. Proceedings of SPIE Vol. 1199 Visual Communications and Image Processing IV ed. WA Pearlman https://doi.org/10.1117/12.970125
    [Crossref] [Google Scholar]
  68. Mamassian P, Landy MS, Maloney LT 2002. Bayesian modelling of visual perception. Probabilistic Models of the Brain: Perception and Neural Function RPN Rao, BA Olshausen, MS Lewicki 13–36 Cambridge, MA: MIT Press
    [Google Scholar]
  69. Maravita A, Iriki A. 2004. Tools for the body (schema). Trends Cogn. Sci. 8:79–86
    [Google Scholar]
  70. McDougle SD, Boggess MJ, Crossley MJ, Parvin D, Ivry RB, Taylor JA 2016. Credit assignment in movement-dependent reinforcement learning. PNAS 113:6797–802
    [Google Scholar]
  71. McKnight S, Melder N, Barrow AL, Harwin WS, Wann JP 2004. Psychophysical size discrimination using multi-fingered haptic interfaces Paper presented at the Eurohaptics Conference, Munich, June 5–7
  72. McKnight S, Melder N, Barrow AL, Harwin WS, Wann JP 2005. Perceptual cues for orientation in a two finger haptic grasp task. First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Syststems. World Haptics Conference, Pisa, Italy, March 18–20549–50 New York: IEEE
    [Google Scholar]
  73. Meehan M, Insko B, Whitton M, Brooks FP Jr 2002. Physiological measures of presence in stressful virtual environments. ACM Trans. Graph. 21:645–52
    [Google Scholar]
  74. Meng X, Du R, Zwicker M, Varshney A 2018. Kernal foveated rendering. Proc. ACM Comput. Graph. Interact. Tech. 1:5
    [Google Scholar]
  75. Minsky M. 1980. Telepresence. Omni June 45–51
    [Google Scholar]
  76. Mon-Williams M, Wann JP, Rushton S 1993. Binocular vision in a virtual world: visual deficits following the wearing of a head-mounted display. Ophthalmic Physiol. Opt. 13:387–91
    [Google Scholar]
  77. Muryy AA, Welchman AE, Blake A, Fleming RW 2013. Specular reflections and the estimation of shape from binocular disparity. PNAS 110:2413–18
    [Google Scholar]
  78. Narain R, Albert RA, Bulbul A, Ward GJ, Banks MS, O'Brien JF 2015. Optimal presentation of imagery with focus cues on multi-plane displays. ACM Trans. Graph. 28:588
    [Google Scholar]
  79. Nityananda V, Bissianna G, Tarawneh G, Read J 2016. Small or far away? Size and distance perception in the praying mantis. Philos. Trans. R. Soc. B 371:20150262
    [Google Scholar]
  80. Nityananda V, Tarawneh G, Henriksen S, Umeton D, Simmons A, Read JCA 2018. A novel form of stereo vision in the praying mantis. Curr. Biol. 28:588–93.e4
    [Google Scholar]
  81. Padmanaban N, Konrad R, Stramer T, Cooper EA, Wetzsteina A 2017. Optimizing virtual reality for all users through gaze-contingent and adaptive focus displays. PNAS 114:2183–88
    [Google Scholar]
  82. Palmisano S, Gillam B, Govan DG, Allison RS, Harris JM 2010. Stereoscopic perception of real depths at large distances. J. Vis. 10:619
    [Google Scholar]
  83. Parise CV, Ernst MO. 2016. Correlation detection as a general mechanism for multisensory integration. Nat. Commun. 7:11543
    [Google Scholar]
  84. Parise CV, Spence C, Ernst MO 2012. When correlation implies causation in multisensory integration. Curr. Biol. 22:46–49
    [Google Scholar]
  85. Paulun VC, Kawabe T, Nishida S, Fleming RW 2015. Seeing liquids from static snapshots. Vis. Res. 115:Pt. B163–74
    [Google Scholar]
  86. Pharr M, Humphreys GK, Jakob W 2016. Physically Based Rendering: From Theory to Implementation San Francisco, CA: Morgan Kaufman. , 3rd ed..
  87. Pickup LC, Fitzgibbon AW, Glennerster A 2013. Modelling human visual navigation using multi-view scene reconstruction. Biol. Cybern. 107:4449–64
    [Google Scholar]
  88. Pralong D. 1996. The role of individualized headphone calibration for the generation of high fidelity virtual auditory space. J. Acoust. Soc. Am. 100:3785–93
    [Google Scholar]
  89. Ranasinghe N, Cheok A, Nakatsu R, Do EYL 2013. Simulating the sensation of taste for immersive experiences. Proceedings of the 2013 ACM International Workshop on Immersive Media Experiences, Barcelona, Spain, October 2229–34 New York: ACM
    [Google Scholar]
  90. Read JCA, Phillipson GP, Glennerster A 2009. Latitude and longitude vertical disparities. J. Vis. 9:1311
    [Google Scholar]
  91. Regan C. 1995. An investigation into nausea and other side-effects of head-coupled immersive virtual reality. Virtual Real 1:17–31
    [Google Scholar]
  92. Robinett W, Rolland JP. 1992. A computational model for the stereoscopic optics of a head-mounted display. Presence Teleoper. Virtual Environ. 1:45–62
    [Google Scholar]
  93. Rosas P, Wagemans J, Ernst MO, Wichmann FA 2005. Texture and haptic cues in slant discrimination: reliability-based cue weighting without statistically optimal cue combination. J. Opt. Soc. Am. A 22:801–9
    [Google Scholar]
  94. Rust NC, Movshon JA. 2005. In praise of artifice. Nat. Neurosci. 8:1647–50
    [Google Scholar]
  95. Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M 2013. Integration of visual motion and locomotion in mouse visual cortex. Nat. Neurosci. 16:1864–69
    [Google Scholar]
  96. Scarfe P, Glennerster A. 2015. Using high-fidelity virtual reality to study perception in freely moving observers. J. Vis. 15:93
    [Google Scholar]
  97. Scarfe P, Hibbard PB. 2006. Disparity-defined objects moving in depth do not elicit three-dimensional shape constancy. Vis. Res. 46:1599–610
    [Google Scholar]
  98. Schrater PR, Kersten D. 2000. How optimal depth cue integration depends on the task. Int. J. Comput. Vis. 40:73–91
    [Google Scholar]
  99. Schubert T, Friedmann F, Regenbrecht H 2001. The experience of presence: factor analytic insights. Presence Teleoper. Virtual Environ. 10:266–81
    [Google Scholar]
  100. Shapiro L. 2011. Embodied Cognition Abingdon, Oxon: Routledge
  101. Sharp T, Keskin C, Robertson D, Taylor J, Shotton J, Kim D, Izadi S 2015. Accurate, robust, and flexible real-time hand tracking. Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems, Seoul, April 18–233633–42 New York: ACM
    [Google Scholar]
  102. Sheridan TB. 1992. Defining our terms. Presence Teleoper. Virtual Environ. 1:272–74
    [Google Scholar]
  103. Slater M. 1999. Measuring presence: a response to the Witmer and Singer presence questionnaire. Presence Teleoper. Virtual Environ. 8:560–65
    [Google Scholar]
  104. Sommer MA, Wurtz RH. 2002. A pathway in primate brain for internal monitoring of movements. Science 296:1480–82
    [Google Scholar]
  105. Spence C, Obrist M, Velasco C, Ranasinghe N 2017. Digitizing the chemical senses: possibilities & pitfalls. Int. J. Hum. Comput. Stud. 107:62–74
    [Google Scholar]
  106. Steed A. 2008. A simple method for estimating the latency of interactive, real-time graphics simulations. Proceedings of the 2008 ACM Symposium on Virtual Reality Software and Technology, Bordeaux, France, October 27–29123–29 New York: ACM
    [Google Scholar]
  107. Sutherland IE. 1968. A head-mounted three-dimensional display. Proceedings of American Federations of Information Processing Societies (AFIPS) 1968, Fall Joint Computer Conference, Part I, San Francisco, California, December 9–11757–64 New York: ACM
    [Google Scholar]
  108. Svarverud E, Gilson S, Glennerster A 2012. A demonstration of ‘broken’ visual space. PLOS ONE 7:e33782
    [Google Scholar]
  109. Svarverud E, Gilson SJ, Glennerster A 2010. Cue combination for 3D location judgements. J. Vis. 10:15
    [Google Scholar]
  110. Trommershauser J, Körding KP, Landy MS 2011. Sensory Cue Integration Oxford, UK: Oxford Univ. Press
  111. Turing AM. 1951. Computing machinery and intelligence. Mind 59:433–60
    [Google Scholar]
  112. van Assen JJ, Barla P, Fleming RW 2018. Visual features in the perception of liquids. Curr. Biol. 28:452–58.e4
    [Google Scholar]
  113. van Assen JJ, Fleming RW 2016. Influence of optical material properties on the perception of liquids. J. Vis. 16:1512
    [Google Scholar]
  114. van Dam LC, Stephans JR 2018. Effects of prolonged exposure to feedback delay on the qualitative subjective experience of virtual reality. PLOS ONE 13:e0205145
    [Google Scholar]
  115. Vinje WE, Gallant JL. 2000. Sparse coding and decorrelation in primary visual cortex during natural vision. Science 287:1273–76
    [Google Scholar]
  116. Vishwanath D. 2012. The utility of defocus blur in binocular depth perception. iPerception 3:541–46
    [Google Scholar]
  117. Wallis G, Tichon J, Mildred T 2007. Speed perception as an objective measure of presence in virtual environments Paper presented at the SimTecT Conference, 4–7 June, Brisbane, Queensland
  118. Wann J, Mon-Williams M. 1996. What does virtual reality NEED? Human factors issues in the design of three-dimensional computer environments. Int. J. Hum. Comput. Stud. 44:829–47
    [Google Scholar]
  119. Warren WH. 2019. Non-Euclidean navigation. J. Exp. Biol. 222:jeb187971
    [Google Scholar]
  120. Warren WH, Rothman DB, Schnapp BH, Ericson JD 2017. Wormholes in virtual space: from cognitive maps to cognitive graphs. Cognition 166:152–63
    [Google Scholar]
  121. Watt SJ, Akeley K, Ernst MO, Banks MS 2005a. Focus cues affect perceived depth. J. Vis. 5:10834–62
    [Google Scholar]
  122. Watt SJ, Akeley K, Girshick AR, Banks MS 2005b. Achieving near-correct focus cues in a 3-D display using multiple image planes. Proc. SPIE 5666:393–401
    [Google Scholar]
  123. Weichert F, Bachmann D, Rudak B, Fisseler D 2013. Analysis of the accuracy and robustness of the leap motion controller. Sensors 13:6380–93
    [Google Scholar]
  124. Wexler M, Panerai F, Lamouret I, Droulez J 2001. Self-motion and the perception of stationary objects. Nature 409:85–88
    [Google Scholar]
  125. Wexler M, van Boxtel JJ 2005. Depth perception by the active observer. Trends Cogn. Sci. 9:431–38
    [Google Scholar]
  126. Wheatstone C. 1838. On some remarkable, and hitherto unobserved phenomena of binocular vision. Philos. Trans. R. Soc. Lond. 128:371–94
    [Google Scholar]
  127. Witmer BG, Singer MJ. 1998. Measuring presence in virtual environments: a presence questionnaire. Presence Teleoper. Virtual Environ. 7:225–40
    [Google Scholar]
  128. Wolpert DM, Flanagan JR. 2001. Motor prediction. Curr. Biol. 11:R729–32
    [Google Scholar]
  129. Wolpert DM, Landy MS. 2012. Motor control is decision-making. Curr. Opin. Neurobiol. 22:996–1003
    [Google Scholar]
/content/journals/10.1146/annurev-vision-091718-014942
Loading
/content/journals/10.1146/annurev-vision-091718-014942
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error