1932

Abstract

The scientific study of reading has a rich history that spans disciplines from vision science to linguistics, psychology, cognitive neuroscience, neurology, and education. The study of reading can elucidate important general mechanisms in spatial vision, attentional control, object recognition, and perceptual learning, as well as the principles of plasticity and cortical topography. However, literacy also prompts the development of specific neural circuits to process a unique and artificial stimulus. In this review, we describe the sequence of operations that transforms visual features into language, how the key neural circuits are sculpted by experience during development, and what goes awry in children for whom learning to read is a struggle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-093019-113509
2021-09-15
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/vision/7/1/annurev-vision-093019-113509.html?itemId=/content/journals/10.1146/annurev-vision-093019-113509&mimeType=html&fmt=ahah

Literature Cited

  1. Adelman JS, Marquis SJ, Sabatos-DeVito MG. 2010. Letters in words are read simultaneously, not in left-to-right sequence. Psychol. Sci. 21:121799–801
    [Google Scholar]
  2. Almabruk AAA, Paterson KB, McGowan V, Jordan TR. 2011. Evaluating effects of divided hemispheric processing on word recognition in foveal and extrafoveal displays: the evidence from Arabic. PLOS ONE 6:4e18131
    [Google Scholar]
  3. Amano K, Wandell BA, Dumoulin SO. 2009. Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J. Neurophysiol. 102:52704–18
    [Google Scholar]
  4. Arcaro MJ, Livingstone MS 2017. A hierarchical, retinotopic proto-organization of the primate visual system at birth. eLife 6:e26196
    [Google Scholar]
  5. Arcaro MJ, McMains SA, Singer BD, Kastner S. 2009. Retinotopic organization of human ventral visual cortex. J. Neurosci. 29:3410638–52
    [Google Scholar]
  6. Arcaro MJ, Schade PF, Livingstone MS. 2019. Universal mechanisms and the development of the face network: What you see is what you get. Annu. Rev. Vis. Sci. 5:341–72
    [Google Scholar]
  7. Arcaro MJ, Schade PF, Vincent JL, Ponce CR, Livingstone MS. 2017. Seeing faces is necessary for face-domain formation. Nat. Neurosci. 20:101404–12
    [Google Scholar]
  8. Balota DA, Yap MJ, Cortese MJ 2006. Visual word recognition: the journey from features to meaning (a travel update. Handbook of Psycholinguistics M Traxler, M Gernsbacher 285–375 Amsterdam: Elsevier, 2nd ed..
    [Google Scholar]
  9. Bao P, She L, Mcgill M, Tsao DY. 2020. A map of object space in primate inferotemporal cortex. Nature 583:103–8
    [Google Scholar]
  10. Barquero LA, Davis N, Cutting LE. 2014. Neuroimaging of reading intervention: a systematic review and activation likelihood estimate meta-analysis. PLOS ONE 9:1e83668
    [Google Scholar]
  11. Bedny M. 2017. Evidence from blindness for a cognitively pluripotent cortex. Trends Cogn. Sci. 21:9637–48
    [Google Scholar]
  12. Behrmann M, Plaut DC. 2020. Hemispheric organization for visual object recognition: a theoretical account and empirical evidence. Perception 49:4373–404
    [Google Scholar]
  13. Benson NC, Jamison KW, Arcaro MJ, Vu AT, Glasser MF et al. 2018. The Human Connectome Project 7 Tesla retinotopy dataset: description and population receptive field analysis. J. Vis. 18:1323
    [Google Scholar]
  14. Bentin S, Mouchetant-Rostaing Y, Giard MH, Echallier JF, Pernier J. 1999. ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. J. Cogn. Neurosci. 11:3235–60
    [Google Scholar]
  15. Bernard J-B, Castet E 2019. The optimal use of non-optimal letter information in foveal and parafoveal word recognition. Vis. Res. 155:44–61
    [Google Scholar]
  16. Boets B, Op de Beeck HP, Vandermosten M, Scott SK, Gillebert CR et al. 2013. Intact but less accessible phonetic representations in adults with dyslexia. Science 342:61631251–54
    [Google Scholar]
  17. Bouma H. 1970. Interaction effects in parafoveal letter recognition. Nature 226:5241177–78
    [Google Scholar]
  18. Bouma H. 1973. Visual interference in the parafoveal recognition of initial and final letters of words. Vis. Res. 13:4767–82
    [Google Scholar]
  19. Brefczynski JA, DeYoe EA. 1999. A physiological correlate of the “spotlight” of visual attention. Nat. Neurosci. 2:4370–74
    [Google Scholar]
  20. Brewer AA, Liu J, Wade AR, Wandell BA. 2005. Visual field maps and stimulus selectivity in human ventral occipital cortex. Nat. Neurosci. 8:81102–9
    [Google Scholar]
  21. Brysbaert M, Vitu F, Schroyens W. 1996. The right visual field advantage and the optimal viewing position effect: on the relation between foveal and parafoveal word recognition. Neuropsychology 10:3385–95
    [Google Scholar]
  22. Bub DN, Arguin M, Lecours AR. 1993. Jules Dejerine and his interpretation of pure alexia. Brain Lang 45:4531–59
    [Google Scholar]
  23. Bub DN, Lewine J. 1988. Different modes of word recognition in the left and right visual fields. Brain Lang 33:1161–88
    [Google Scholar]
  24. Cai Q, Paulignan Y, Brysbaert M, Ibarrola D, Nazir TA. 2010. The left ventral occipito-temporal response to words depends on language lateralization but not on visual familiarity. Cereb. Cortex 20:51153–63
    [Google Scholar]
  25. Carreiras M, Armstrong BC, Perea M, Frost R. 2014. The what, when, where, and how of visual word recognition. Trends Cogn. Sci. 18:290–98
    [Google Scholar]
  26. Castet E, Descamps M, Denis-Noël A, Colé P. 2017. Letter and symbol identification: no evidence for letter-specific crowding mechanisms. J. Vis. 17:112
    [Google Scholar]
  27. Catani M, Mesulam M. 2008. The arcuate fasciculus and the disconnection theme in language and aphasia: history and current state. Cortex 44:8953–61
    [Google Scholar]
  28. Cattell JM. 1886. The time it takes to see and name objects. Mind 11:4163–65
    [Google Scholar]
  29. Catts HW, McIlraith A, Bridges MS, Nielsen DC. 2017. Viewing a phonological deficit within a multifactorial model of dyslexia. Read. Writ. 30:3613–29
    [Google Scholar]
  30. Centanni TM, Norton ES, Ozernov-Palchik O, Park A, Beach SD et al. 2019. Disrupted left fusiform response to print in beginning kindergartners is associated with subsequent reading. NeuroImage Clin 22:101715
    [Google Scholar]
  31. Chen Y, Seidemann E. 2012. Attentional modulations related to spatial gating but not to allocation of limited resources in primate V1. Neuron 74:3557–66
    [Google Scholar]
  32. Chung ST, Mansfield JS, Legge GE. 1998. Psychophysics of reading. XVIII. The effect of print size on reading speed in normal peripheral vision. Vis. Res. 38:192949–62
    [Google Scholar]
  33. Cohen L, Dehaene S, Naccache L, Lehericy S, Dehaene-Lambertz G et al. 2000. The visual word form area: spatial and temporal characterization of an initial stage of reading in normal subjects and posterior split-brain patients. Brain 123:2291–307
    [Google Scholar]
  34. Cohen L, Lehericy S, Chochon F, Lemer C, Rivaud S, Dehaene S. 2002. Language-specific tuning of visual cortex? Functional properties of the Visual Word Form Area. Brain 125:Pt. 51054–69
    [Google Scholar]
  35. Cornelissen PL, Kringelbach ML, Ellis AW, Whitney C, Holliday IE, Hansen PC. 2009. Activation of the left inferior frontal gyrus in the first 200 ms of reading: evidence from magnetoencephalography (MEG). PLOS ONE 4:4e5359
    [Google Scholar]
  36. Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage 9:2179–94
    [Google Scholar]
  37. Deen B, Richardson H, Dilks DD, Takahashi A, Keil B et al. 2017. Organization of high-level visual cortex in human infants. Nat. Commun. 8:13995
    [Google Scholar]
  38. Dehaene S, Cohen L. 2007. Cultural recycling of cortical maps. Neuron 56:2384–98
    [Google Scholar]
  39. Dehaene S, Cohen L. 2011. The unique role of the visual word form area in reading. Trends Cogn. Sci. 15:6254–62
    [Google Scholar]
  40. Dehaene S, Cohen L, Sigman M, Vinckier F. 2005. The neural code for written words: a proposal. Trends Cogn. Sci. 9:7335–41
    [Google Scholar]
  41. Dehaene S, Pegado F, Braga LW, Ventura P, Nunes Filho G et al. 2011. How learning to read changes the cortical networks for vision and language. Science 330:60091359–64
    [Google Scholar]
  42. Dehaene-Lambertz G, Monzalvo K, Dehaene S. 2018. The emergence of the visual word form: longitudinal evolution of category-specific ventral visual areas during reading acquisition. PLOS Biol 16:3e2004103
    [Google Scholar]
  43. Déjerine J. 1891. Sur un cas de cécité verbale avec agraphie suivi d'autopsie. Mém. Soc. Biol. 3:197–201
    [Google Scholar]
  44. Demb JB, Boynton GM, Best M, Heeger DJ. 1998. Psychophysical evidence for a magnocellular pathway deficit in dyslexia. Vis. Res. 38:111555–59
    [Google Scholar]
  45. Downing PE, Jiang Y, Shuman M, Kanwisher N. 2001. A cortical area selective for visual processing of the human body. Science 293:55392470–73
    [Google Scholar]
  46. Dumoulin SO, Wandell BA. 2008. Population receptive field estimates in human visual cortex. NeuroImage 39:2647–60
    [Google Scholar]
  47. Duncan RO, Boynton GM. 2003. Cortical magnification within human primary visual cortex correlates with acuity thresholds. Neuron 38:4659–71
    [Google Scholar]
  48. Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. 1996. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature 382:658666–69
    [Google Scholar]
  49. Eggert GH. 1977. Wernicke's Works on Aphasia: A Sourcebook and Review Berlin: de Gruyter
    [Google Scholar]
  50. Ehlers H. 1936. The movements of the eyes during reading. Acta Ophthalmol 14:56–63
    [Google Scholar]
  51. Ellis A. 2004. Length, formats, neighbours, hemispheres, and the processing of words presented laterally or at fixation. Brain Lang 88:3355–66
    [Google Scholar]
  52. Engbert R, Nuthmann A, Richter EM, Kliegl R. 2005. SWIFT: a dynamical model of saccade generation during reading. Psychol. Rev. 112:4777–813
    [Google Scholar]
  53. Epstein R, Harris A, Stanley D, Kanwisher N. 1999. The parahippocampal place area: recognition, navigation, or encoding?. Neuron 23:1115–25
    [Google Scholar]
  54. Epstein R, Kanwisher N. 1998. A cortical representation of the local visual environment. Nature 392:598–601
    [Google Scholar]
  55. Erdmann B, Dodge R. 1898. Psychologische Untersuchungen über das Lesen, auf Experimenteller Grundlage Halle, Ger: Max Niemeyer
    [Google Scholar]
  56. Felleman DJ, Van Essen DC. 1991. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1:11–47
    [Google Scholar]
  57. Fontenot DJ. 1973. Visual field differences in the recognition of verbal and nonverbal stimuli in man. J. Comp. Physiol. Psychol. 85:3564–69
    [Google Scholar]
  58. Franceschini S, Gori S, Ruffino M, Pedrolli K, Facoetti A. 2012. A causal link between visual spatial attention and reading acquisition. Curr. Biol. 22:9814–19
    [Google Scholar]
  59. Frey A, Bosse M-L. 2018. Perceptual span, visual span, and visual attention span: three potential ways to quantify limits on visual processing during reading. Vis. Cogn. 26:6412–29
    [Google Scholar]
  60. Frömer R, Dimigen O, Niefind F, Krause N, Kliegl R, Sommer W. 2015. Are individual differences in reading speed related to extrafoveal visual acuity and crowding?. PLOS ONE 10:3e0121986
    [Google Scholar]
  61. Gaillard R, Naccache L, Pinel P, Clemenceau S, Volle E et al. 2006. Direct intracranial, fMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron 50:2191–204
    [Google Scholar]
  62. Gallant JL, Braun J, Van Essen DC. 1993. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. Science 259:5091100–3
    [Google Scholar]
  63. Gandhi SP, Heeger DJ, Boynton GM. 1999. Spatial attention affects brain activity in human primary visual cortex. PNAS 96:63314–19
    [Google Scholar]
  64. Gerrits R, Van der Haegen L, Brysbaert M, Vingerhoets G. 2019. Laterality for recognizing written words and faces in the fusiform gyrus covaries with language dominance. Cortex 117:196–204
    [Google Scholar]
  65. Glezer LS, Eden G, Jiang X, Luetje M, Napoliello E et al. 2016. Uncovering phonological and orthographic selectivity across the reading network using fMRI-RA. NeuroImage 138:248–56
    [Google Scholar]
  66. Glezer LS, Jiang X, Luetje MM, Napoliello EM, Kim J et al. 2019. An fMRI-adaptation study of phonological and orthographic selectivity to written words in adults with poor reading skills. Brain Lang 191:1–8
    [Google Scholar]
  67. Glezer LS, Jiang X, Riesenhuber M. 2009. Evidence for highly selective neuronal tuning to whole words in the “visual word form area. .” Neuron 62:2199–204
    [Google Scholar]
  68. Glezer LS, Kim J, Rule J, Jiang X, Riesenhuber M. 2015. Adding words to the brain's visual dictionary: novel word learning selectively sharpens orthographic representations in the VWFA. J. Neurosci. 35:124965–72
    [Google Scholar]
  69. Glezer LS, Riesenhuber M. 2013. Individual variability in location impacts orthographic selectivity in the “visual word form area. .” J. Neurosci. 33:2711221–26
    [Google Scholar]
  70. Goebel R. 2012. Position coding in the visual word form area. PNAS 109:249226–27
    [Google Scholar]
  71. Gomez J, Natu V, Jeska B, Barnett M, Grill-Spector K. 2018. Development differentially sculpts receptive fields across early and high-level human visual cortex. Nat. Commun. 9:1788
    [Google Scholar]
  72. Goswami U. 2015. Sensory theories of developmental dyslexia: three challenges for research. Nat. Rev. Neurosci. 16:143–54
    [Google Scholar]
  73. Grainger J, Dufau S, Ziegler JC. 2016. A vision of reading. Trends Cogn. Sci. 20:3171–79
    [Google Scholar]
  74. Grainger J, Rey A, Dufau S 2008. Letter perception: from pixels to pandemonium. Trends Cogn. Sci. 12:10381–87
    [Google Scholar]
  75. Grainger J, Tydgat I, Isselé J. 2010. Crowding affects letters and symbols differently. J. Exp. Psychol. Hum. Percept. Perform. 36:3673–88
    [Google Scholar]
  76. Grill-Spector K, Weiner KS. 2014. The functional architecture of the ventral temporal cortex and its role in categorization. Nat. Rev. Neurosci. 15:8536–48
    [Google Scholar]
  77. Grill-Spector K, Weiner KS, Kay K, Gomez J. 2017. The functional neuroanatomy of human face perception. Annu. Rev. Vis. Sci. 3:167–96
    [Google Scholar]
  78. Gross CG, Bender DB, Rocha-Miranda CE. 1969. Visual receptive fields of neurons in inferotemporal cortex of the monkey. Science 166:39101303–6
    [Google Scholar]
  79. Gross CG, Rocha-Miranda CE, Bender DB. 1972. Visual properties of neurons in inferotemporal cortex of the macaque. J. Neurophysiol. 35:196–111
    [Google Scholar]
  80. Grotheer M, Yeatman J, Grill-Spector K. 2020. White matter fascicles and cortical microstructure predict reading-related responses in human ventral temporal cortex. NeuroImage 227:117669
    [Google Scholar]
  81. Hannagan T, Grainger J. 2013. The lazy visual word form area: computational insights into location-sensitivity. PLOS Comput. Biol. 9:10e1003250
    [Google Scholar]
  82. Harvey BM, Dumoulin SO. 2011. The relationship between cortical magnification factor and population receptive field size in human visual cortex: constancies in cortical architecture. J. Neurosci. 31:3813604–12
    [Google Scholar]
  83. Hasson U, Levy I, Behrmann M, Hendler T, Malach R. 2002. Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34:3479–90
    [Google Scholar]
  84. He D, Wang Y, Fang F. 2019. The critical role of V2 population receptive fields in visual orientation crowding. Curr. Biol. 29:132229–36.e3
    [Google Scholar]
  85. He Y, Legge GE, Yu D 2013. Sensory and cognitive influences on the training-related improvement of reading speed in peripheral vision. J. Vis. 13:714
    [Google Scholar]
  86. He Y, Scholz JM, Gage R, Kallie CS, Liu T, Legge GE. 2015. Comparing the visual spans for faces and letters. J. Vis. 15:87
    [Google Scholar]
  87. Hering E. 1879. Über Muskelgerausche des Auges Vienna: Gerold
    [Google Scholar]
  88. Heron W. 1957. Perception as a function of retinal locus and attention. Am. J. Psychol. 70:138–48
    [Google Scholar]
  89. Hervais-Adelman A, Kumar U, Mishra RK, Tripathi VN, Guleria A et al. 2019. Learning to read recycles visual cortical networks without destruction. Sci. Adv. 5:9eaax0262
    [Google Scholar]
  90. Hines D. 1978. Visual information processing in the left and right hemispheres. Neuropsychologia 16:5593–600
    [Google Scholar]
  91. Hirshorn EA, Li Y, Ward MJ, Richardson RM, Fiez JA, Ghuman AS 2016. Decoding and disrupting left midfusiform gyrus activity during word reading. PNAS 113:298162–67
    [Google Scholar]
  92. Huber E, Donnelly PM, Rokem A, Yeatman JD. 2018. Rapid and widespread white matter plasticity during an intensive reading intervention. Nat. Commun. 9:12260
    [Google Scholar]
  93. Huettig F, Kolinsky R, Lachmann T. 2018. The culturally co-opted brain: how literacy affects the human mind. Null 33:3275–77
    [Google Scholar]
  94. Huey EB. 1900. On the psychology and physiology of reading. I. Am. J. Psychol. 11:3283–302
    [Google Scholar]
  95. Huey EB. 1908. The Psychology and Pedagogy of Reading New York: Macmillan
    [Google Scholar]
  96. Huk AC, Dougherty RF, Heeger DJ. 2002. Retinotopy and functional subdivision of human areas MT and MST. J. Neurosci. 22:167195–205
    [Google Scholar]
  97. Hunter ZR, Brysbaert M, Knecht S. 2007. Foveal word reading requires interhemispheric communication. J. Cogn. Neurosci. 19:81373–87
    [Google Scholar]
  98. Inhoff AW, Liu W. 1998. The perceptual span and oculomotor activity during the reading of Chinese sentences. J. Exp. Psychol. Hum. Percept. Perform. 24:120–34
    [Google Scholar]
  99. James KH, James TW, Jobard G, Wong ACN, Gauthier I. 2005. Letter processing in the visual system: different activation patterns for single letters and strings. Cogn. Affect. Behav. Neurosci. 5:4452–66
    [Google Scholar]
  100. Javal E. 1990. Essay on the physiology of reading. Ophthalmic Physiol. Opt. 10:4381–84
    [Google Scholar]
  101. Joo SJ, Donnelly PM, Yeatman JD. 2017. The causal relationship between dyslexia and motion perception reconsidered. Sci. Rep. 7:14185
    [Google Scholar]
  102. Joo SJ, Tavabi K, Caffarra S, Yeatman JD. 2021. Automaticity in the reading circuitry. Brain Lang 215:104906
    [Google Scholar]
  103. Joo SJ, White AL, Strodtman DJ, Yeatman JD. 2018. Optimizing text for an individual's visual system: the contribution of visual crowding to reading difficulties. Cortex 103:291–301
    [Google Scholar]
  104. Jordan TR, Almabruk AAA, Gadalla EA, McGowan VA, White SJ et al. 2014. Reading direction and the central perceptual span: evidence from Arabic and English. Psychon. Bull. Rev. 21:2505–11
    [Google Scholar]
  105. Jordan TR, Thomas SM, Scott-Brown KC. 1999. The illusory-letters phenomenon: an illustration of graphemic restoration in visual word recognition. Perception 28:1413–16
    [Google Scholar]
  106. Kanwisher N. 2010. Functional specificity in the human brain: a window into the functional architecture of the mind. PNAS 107:2511163–70
    [Google Scholar]
  107. Kanwisher N, McDermott J, Chun MM. 1997. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 17:114302–11
    [Google Scholar]
  108. Kay KN, Weiner KS, Grill-Spector K. 2015. Attention reduces spatial uncertainty in human ventral temporal cortex. Curr. Biol. 25:5595–600
    [Google Scholar]
  109. Kay KN, Winawer J, Mezer A, Wandell BA. 2013a. Compressive spatial summation in human visual cortex. J. Neurophysiol. 110:2481–94
    [Google Scholar]
  110. Kay KN, Winawer J, Rokem A, Mezer A, Wandell BA. 2013b. A two-stage cascade model of BOLD responses in human visual cortex. PLOS Comput. Biol. 9:5e1003079
    [Google Scholar]
  111. Kay KN, Yeatman JD 2017. Bottom-up and top-down computations in word- and face-selective cortex. eLife 6:e22341
    [Google Scholar]
  112. Kim JS, Kanjlia S, Merabet LB, Bedny M. 2017. Development of the visual word form area requires visual experience: evidence from blind Braille readers. J. Neurosci. 37:4711495–504
    [Google Scholar]
  113. Kliegl R, Grabner E, Rolfs M, Engbert R. 2004. Length, frequency, and predictability effects of words on eye movements in reading. Eur. J. Cogn. Psychol. 16:1–2262–84
    [Google Scholar]
  114. Kolster H, Peeters R, Orban GA. 2010. The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J. Neurosci. 30:299801–20
    [Google Scholar]
  115. Konkle T, Oliva A. 2012. A real-world size organization of object responses in occipitotemporal cortex. Neuron 74:61114–24
    [Google Scholar]
  116. Kubota EC, Joo SJ, Huber E, Yeatman JD. 2019. Word selectivity in high-level visual cortex and reading skill. Dev. Cogn. Neurosci. 36:100593
    [Google Scholar]
  117. Kwon M, Legge GE, Dubbels BR. 2007. Developmental changes in the visual span for reading. Vis. Res. 47:222889–900
    [Google Scholar]
  118. Kwon M, Liu R 2019. Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field. PNAS 116:93827–36
    [Google Scholar]
  119. Lamare M. 1892. Des mouvements des yeux dans la lecture. Bull. Mém. Soc. Fr. Ophthalmol. 10:354–64
    [Google Scholar]
  120. Langer N, Peysakhovich B, Zuk J, Drottar M, Sliva DD et al. 2015. White matter alterations in infants at risk for developmental dyslexia. Cereb. Cortex 27:21027–36
    [Google Scholar]
  121. Latham K, Whitaker D. 1996. A comparison of word recognition and reading performance in foveal and peripheral vision. Vis. Res. 36:172665–74
    [Google Scholar]
  122. Le R, Witthoft N, Ben-Shachar M, Wandell B. 2017. The field of view available to the ventral occipito-temporal reading circuitry. J. Vis. 17:46
    [Google Scholar]
  123. Leehey SC, Cahn A. 1979. Lateral asymmetries in the recognition of words, familiar faces and unfamiliar faces. Neuropsychologia 17:6619–28
    [Google Scholar]
  124. Legge GE, Cheung S-H, Yu D, Chung STL, Lee H-W, Owens DP 2007. The case for the visual span as a sensory bottleneck in reading. J. Vis. 7:29
    [Google Scholar]
  125. Legge GE, Mansfield JS, Chung ST. 2001. Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision. Vis. Res. 41:6725–43
    [Google Scholar]
  126. Lerma-Usabiaga G, Carreiras M, Paz-Alonso PM 2018. Converging evidence for functional and structural segregation within the left ventral occipitotemporal cortex in reading. PNAS 115:82E9981–90
    [Google Scholar]
  127. Lescroart MD, Gallant JL. 2019. Human scene-selective areas represent 3D configurations of surfaces. Neuron 101:1178–92.e7
    [Google Scholar]
  128. Levi DM. 2008. Crowding—an essential bottleneck for object recognition: a mini-review. Vis. Res. 48:5635–54
    [Google Scholar]
  129. Levi DM, Klein SA, Aitsebaomo AP. 1985. Vernier acuity, crowding and cortical magnification. Vis. Res. 25:7963–77
    [Google Scholar]
  130. Levy I, Hasson U, Avidan G, Hendler T, Malach R. 2001. Center-periphery organization of human object areas. Nat. Neurosci. 4:5533–39
    [Google Scholar]
  131. Liu R, Patel BN, Kwon M. 2017. Age-related changes in crowding and reading speed. Sci. Rep. 7:8271
    [Google Scholar]
  132. Livingstone MS, Rosen GD, Drislane FW, Galaburda AM 1991. Physiological and anatomical evidence for a magnocellular defect in developmental dyslexia. PNAS 88:187943–47
    [Google Scholar]
  133. Livingstone MS, Vincent JL, Arcaro MJ, Srihasam K, Schade PF, Savage T. 2017. Development of the macaque face-patch system. Nat. Commun. 8:14897
    [Google Scholar]
  134. Lovegrove WJ, Bowling A, Badcock D, Blackwood M. 1980. Specific reading disability: differences in contrast sensitivity as a function of spatial frequency. Science 210:24439–40
    [Google Scholar]
  135. Mackey WE, Winawer J, Curtis CE 2017. Visual field map clusters in human frontoparietal cortex. eLife 6:e22974
    [Google Scholar]
  136. Mackworth NH. 1965. Visual noise causes tunnel vision. Psychonom. Sci. 3:67–68
    [Google Scholar]
  137. Malach R, Levy I, Hasson U. 2002. The topography of high-order human object areas. Trends Cogn. Sci. 6:4176–84
    [Google Scholar]
  138. Manassi M, Whitney D. 2018. Multi-level crowding and the paradox of object recognition in clutter. Curr. Biol. 28:3R127–33
    [Google Scholar]
  139. Marinkovic K, Dhond RP, Dale AM, Glessner M, Carr V, Halgren E. 2003. Spatiotemporal dynamics of modality-specific and supramodal word processing. Neuron 38:3487–97
    [Google Scholar]
  140. Martelli M, Di Filippo G, Spinelli D, Zoccolotti P. 2009. Crowding, reading, and developmental dyslexia. J. Vis. 9:414
    [Google Scholar]
  141. McCandliss BD, Cohen L, Dehaene S. 2003. The visual word form area: expertise for reading in the fusiform gyrus. Trends Cogn. Sci. 7:7293–99
    [Google Scholar]
  142. McClelland JL, Rumelhart DE. 1981. An interactive activation model of context effects in letter perception: I. An account of basic findings. Psychol. Rev. 88:5375–407
    [Google Scholar]
  143. McConkie GW, Rayner K. 1975. The span of the effective stimulus during a fixation in reading. Percept. Psychophys. 17:578–86
    [Google Scholar]
  144. McKone E, Crookes K, Jeffery L, Dilks DD 2012. A critical review of the development of face recognition: Experience is less important than previously believed. Cogn. Neuropsychol. 29:1–2174–212
    [Google Scholar]
  145. Mirault J, Snell J, Grainger J. 2018. You that read wrong again! A transposed-word effect in grammaticality judgments. Psychol. Sci. 29:121922–29
    [Google Scholar]
  146. Mishkin M, Forgays DG. 1952. Word recognition as a function of retinal locus. J. Exp. Psychol. 43:143–48
    [Google Scholar]
  147. Mullin PA, Egeth HE. 1989. Capacity limitations in visual word processing. J. Exp. Psychol. Hum. Percept. Perform. 15:1111–23
    [Google Scholar]
  148. Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF. 2013. The fine structure of shape tuning in area V4. Neuron 78:61102–15
    [Google Scholar]
  149. Nasr S, Liu N, Devaney KJ, Yue X, Rajimehr R et al. 2011. Scene-selective cortical regions in human and nonhuman primates. J. Neurosci. 31:3913771–85
    [Google Scholar]
  150. Nazir TA, O'Regan JK, Jacobs AM. 1991. On words and their letters. Bull. Psychon. Soc. 29:171–74
    [Google Scholar]
  151. Nobre AC, Allison T, McCarthy G 1994. Word recognition in the human inferior temporal lobe. Nature 372:6503260–63
    [Google Scholar]
  152. Nordt M, Gomez J, Natu V, Rezai AA, Finzi D et al. 2020. Cortical recycling in high-level visual cortex during childhood development. bioRxiv 209783. https://doi.org/10.1101/2020.07.18.209783
    [Crossref]
  153. O'Brien G, Yeatman J. 2021. Bridging sensory and language theories of dyslexia: toward a multifactorial model. Dev. Sci. 24:3e13039
    [Google Scholar]
  154. Op de Beeck HP, Pillet I, Ritchie JB 2019. Factors determining where category-selective areas emerge in visual cortex. Trends Cogn. Sci. 23:9784–97
    [Google Scholar]
  155. Orbach J. 1952. Retinal locus as a factor in the recognition of visually perceived words. Am. J. Psychol. 65:4555–62
    [Google Scholar]
  156. O'Regan JK, Jacobs AM. 1992. Optimal viewing position effect in word recognition: a challenge to current theory. J. Exp. Psychol. Hum. Percept. Perform. 18:1185–97
    [Google Scholar]
  157. O'Regan JK, Lévy-Schoen A, Jacobs AM. 1983. The effect of visibility on eye-movement parameters in reading. Percept. Psychophys. 34:5457–64
    [Google Scholar]
  158. Ossowski A, Behrmann M. 2015. Left hemisphere specialization for word reading potentially causes, rather than results from, a left lateralized bias for high spatial frequency visual information. Cortex 72:27–39
    [Google Scholar]
  159. Parvizi J, Jacques C, Foster BL, Witthoft N, Rangarajan V et al. 2012. Electrical stimulation of human fusiform face-selective regions distorts face perception. J. Neurosci. 32:4314915–20
    [Google Scholar]
  160. Pasupathy A, Popovkina DV, Kim T. 2020. Visual functions of primate area V4. Annu. Rev. Vis. Sci. 6:363–85
    [Google Scholar]
  161. Peelen MV, Downing PE. 2005. Selectivity for the human body in the fusiform gyrus. J. Neurophysiol. 93:603–8
    [Google Scholar]
  162. Pelli DG. 2008. Crowding: a cortical constraint on object recognition. Curr. Opin. Neurobiol. 18:4445–51
    [Google Scholar]
  163. Pelli DG, Farell B, Moore DC. 2003. The remarkable inefficiency of word recognition. Nature 423:6941752–56
    [Google Scholar]
  164. Pelli DG, Tillman KA. 2008. The uncrowded window of object recognition. Nat. Neurosci. 11:101129–35
    [Google Scholar]
  165. Pelli DG, Tillman KA, Freeman J, Su M, Berger TD, Majaj NJ. 2007. Crowding and eccentricity determine reading rate. J. Vis. 7:220
    [Google Scholar]
  166. Pennington BF. 2006. From single to multiple deficit models of developmental disorders. Cognition 101:2385–413
    [Google Scholar]
  167. Pennington BF, Santerre-Lemmon L, Rosenberg J, MacDonald B, Boada R et al. 2012. Individual prediction of dyslexia by single versus multiple deficit models. J. Abnorm. Psychol. 121:1212–24
    [Google Scholar]
  168. Pestilli F, Carrasco M, Heeger DJ, Gardner JL. 2011. Attentional enhancement via selection and pooling of early sensory responses in human visual cortex. Neuron 72:5832–46
    [Google Scholar]
  169. Pflugshaupt T, Gutbrod K, Wurtz P, von Wartburg R, Nyffeler T et al. 2009. About the role of visual field defects in pure alexia. Brain 132:Pt. 71907–17
    [Google Scholar]
  170. Pollatsek A, Bolozky S, Well AD, Rayner K. 1981. Asymmetries in the perceptual span for Israeli readers. Brain Lang 14:1174–80
    [Google Scholar]
  171. Price CJ, Devlin JT. 2003. The myth of the visual word form area. NeuroImage 19:3473–81
    [Google Scholar]
  172. Price CJ, Devlin JT. 2011. The interactive account of ventral occipitotemporal contributions to reading. Trends Cogn. Sci. 15:6246–53
    [Google Scholar]
  173. Pugh KR, Landi N, Preston JL, Mencl WE, Austin AC et al. 2013. The relationship between phonological and auditory processing and brain organization in beginning readers. Brain Lang 125:2173–83
    [Google Scholar]
  174. Radach R, Kennedy A. 2013. Eye movements in reading: some theoretical context. Q. J. Exp. Psychol. 66:3429–52
    [Google Scholar]
  175. Rauschecker AM, Bowen RF, Parvizi J, Wandell BA 2012. Position sensitivity in the visual word form area. PNAS 109:24E1568–77
    [Google Scholar]
  176. Rayner K. 1998. Eye movements in reading and information processing: 20 years of research. Psychol. Bull. 124:3372–422
    [Google Scholar]
  177. Rayner K, Schotter ER, Masson MEJ, Potter MC, Treiman R. 2016. So much to read, so little time: How do we read, and can speed reading help?. Psychol. Sci. Public Interest 17:14–34
    [Google Scholar]
  178. Reich L, Szwed M, Cohen L, Amedi A. 2011. A ventral visual stream reading center independent of visual experience. Curr. Biol. 21:5363–68
    [Google Scholar]
  179. Reicher GM. 1969. Perceptual recognition as a function of meaningfulness of stimulus material. J. Exp. Psychol. 81:2275–80
    [Google Scholar]
  180. Reichle ED, Pollatsek A, Rayner K. 2006. E-Z Reader: a cognitive-control, serial-attention model of eye-movement behavior during reading. Cogn. Syst. Res. 7:14–22
    [Google Scholar]
  181. Reilly RG, Radach R. 2006. Some empirical tests of an interactive activation model of eye movement control in reading. Cogn. Syst. Res. 7:134–55
    [Google Scholar]
  182. Richlan F, Kronbichler M, Wimmer H. 2011. Meta-analyzing brain dysfunctions in dyslexic children and adults. NeuroImage 56:31735–42
    [Google Scholar]
  183. Riesenhuber M, Glezer LS. 2017. Evidence for rapid localist plasticity in the ventral visual stream: the example of words. Lang. Cogn. Neurosci. 32:3286–94
    [Google Scholar]
  184. Riesenhuber M, Poggio T. 1999. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2:111019–25
    [Google Scholar]
  185. Risse S. 2014. Effects of visual span on reading speed and parafoveal processing in eye movements during sentence reading. J. Vis. 14:811
    [Google Scholar]
  186. Rolfs M, Carrasco M. 2012. Rapid simultaneous enhancement of visual sensitivity and perceived contrast during saccade preparation. J. Neurosci. 32:4013744–52a
    [Google Scholar]
  187. Rueckl JG, Paz-Alonso PM, Molfese PJ, Kuo W-J, Bick A et al. 2015. Universal brain signature of proficient reading: evidence from four contrasting languages. PNAS 112:5015510–15
    [Google Scholar]
  188. Salmelin R, Helenius P, Service E. 2000. Neurophysiology of fluent and impaired reading: a magnetoencephalographic approach. J. Clin. Neurophysiol. 17:2163–74
    [Google Scholar]
  189. Saygin ZM, Osher DE, Norton ES, Youssoufian DA, Beach SD et al. 2016. Connectivity precedes function in the development of the visual word form area. Nat. Neurosci. 19:91250–55
    [Google Scholar]
  190. Scaltritti M, Balota DA. 2013. Are all letters really processed equally and in parallel? Further evidence of a robust first letter advantage. Acta Psychol 144:2397–410
    [Google Scholar]
  191. Schotter ER, Angele B, Rayner K 2012. Parafoveal processing in reading. Atten. Percept. Psychophys. 74:15–35
    [Google Scholar]
  192. Seidenberg MS, McClelland JL. 1989. A distributed, developmental model of word recognition and naming. Psychol. Rev. 96:4523–68
    [Google Scholar]
  193. Sereno SC, Rayner K. 2003. Measuring word recognition in reading: eye movements and event-related potentials. Trends Cogn. Sci. 7:11489–93
    [Google Scholar]
  194. Sergent J. 1982. The cerebral balance of power: confrontation or cooperation?. J. Exp. Psychol. Hum. Percept. Perform. 8:2253–72
    [Google Scholar]
  195. Shepherdson P, Miller J. 2014. Redundancy gain in semantic categorisation. Acta Psychol 148:96–106
    [Google Scholar]
  196. Siéroff E, Haehnel-Benoliel N. 2015. Environmental script affects lateral asymmetry of word recognition: a study of French-Hebrew bilinguals tested in Israel and in France. Laterality 20:4389–417
    [Google Scholar]
  197. Silson EH, Chan AW-Y, Reynolds RC, Kravitz DJ, Baker CI. 2015. A retinotopic basis for the division of high-level scene processing between lateral and ventral human occipitotemporal cortex. J. Neurosci. 35:3411921–35
    [Google Scholar]
  198. Silver MA, Kastner S. 2009. Topographic maps in human frontal and parietal cortex. Trends Cogn. Sci. 13:11488–95
    [Google Scholar]
  199. Silver MA, Ress D, Heeger DJ. 2005. Topographic maps of visual spatial attention in human parietal cortex. J. Neurophysiol. 94:21358–71
    [Google Scholar]
  200. Snell J, Declerck M, Grainger J. 2018a. Parallel semantic processing in reading revisited: effects of translation equivalents in bilingual readers. Lang. Cogn. Neurosci. 33:5563–74
    [Google Scholar]
  201. Snell J, Grainger J. 2017. The sentence superiority effect revisited. Cognition 168:217–21
    [Google Scholar]
  202. Snell J, Grainger J. 2019a. Consciousness is not key in the serial-versus-parallel debate. Trends Cogn. Sci. 23:10814–15
    [Google Scholar]
  203. Snell J, Grainger J. 2019b. Readers are parallel processors. Trends Cogn. Sci. 23:7537–46
    [Google Scholar]
  204. Snell J, Meeter M, Grainger J. 2017. Evidence for simultaneous syntactic processing of multiple words during reading. PLOS ONE 12:3e0173720
    [Google Scholar]
  205. Snell J, van Leipsig S, Grainger J, Meeter M. 2018b. OB1-reader: a model of word recognition and eye movements in text reading. Psychol. Rev. 125:6969–84
    [Google Scholar]
  206. Snowling M. 1998. Dyslexia as a phonological deficit: evidence and implications. Child Psychol. Psychiatry Rev. 3:14–11
    [Google Scholar]
  207. Song C, Schwarzkopf DS, Kanai R, Rees G. 2015. Neural population tuning links visual cortical anatomy to human visual perception. Neuron 85:3641–56
    [Google Scholar]
  208. Squire LR 2009. The History of Neuroscience in Autobiography, Vol. 6 Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  209. Srihasam K, Vincent JL, Livingstone MS. 2014. Novel domain formation reveals proto-architecture in inferotemporal cortex. Nat. Neurosci. 17:121776–83
    [Google Scholar]
  210. Stein J. 2001. The magnocellular theory of developmental dyslexia. Dyslexia 7:112–36
    [Google Scholar]
  211. Strasburger H. 2020. Seven myths on crowding and peripheral vision. i-Perception 11:32041669520913052
    [Google Scholar]
  212. Strother L, Coros AM, Vilis T. 2015. Visual cortical representation of whole words and hemifield-split word parts. J. Cogn. Neurosci. 28:3194–98
    [Google Scholar]
  213. Strother L, Zhou Z, Coros AK, Vilis T. 2017. An fMRI study of visual hemifield integration and cerebral lateralization. Neuropsychologia 100:35–43
    [Google Scholar]
  214. Tadros K, Dupuis-Roy N, Fiset D, Arguin M, Gosselin F. 2013. Reading laterally: the cerebral hemispheric use of spatial frequencies in visual word recognition. J. Vis. 13:14
    [Google Scholar]
  215. Takemura H, Rokem A, Winawer J, Yeatman JD, Wandell BA, Pestilli F. 2016. A major human white matter pathway between dorsal and ventral visual cortex. Cereb. Cortex 26:52205–14
    [Google Scholar]
  216. Talcott JB, Witton C, Hebb GS, Stoodley CJ, Westwood EA et al. 2002. On the relationship between dynamic visual and auditory processing and literacy skills; results from a large primary-school study. Dyslexia 8:4204–25
    [Google Scholar]
  217. Tarr MJ, Cheng YD. 2003. Learning to see faces and objects. Trends Cogn. Sci. 7:123–30
    [Google Scholar]
  218. Tarr MJ, Gauthier I. 2000. FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise. Nat. Neurosci. 3:8764–69
    [Google Scholar]
  219. Thesen T, McDonald CR, Carlson C, Doyle W, Cash S et al. 2012. Sequential then interactive processing of letters and words in the left fusiform gyrus. Nat. Commun. 3:1284
    [Google Scholar]
  220. Toet A, Levi DM. 1992. The two-dimensional shape of spatial interaction zones in the parafovea. Vis. Res. 32:71349–57
    [Google Scholar]
  221. Tsao DY, Freiwald WA, Tootell RBH, Livingstone MS. 2006. A cortical region consisting entirely of face-selective cells. Science 311:5761670–74
    [Google Scholar]
  222. Tydgat I, Grainger J. 2009. Serial position effects in the identification of letters, digits, and symbols. J. Exp. Psychol. Hum. Percept. Perform. 35:2480–98
    [Google Scholar]
  223. Van der Haegen L, Cai Q, Brysbaert M. 2012. Colateralization of Broca's area and the visual word form area in left-handers: fMRI evidence. Brain Lang 122:3171–78
    [Google Scholar]
  224. Van der Haegen L, Cai Q, Seurinck R, Brysbaert M. 2011. Further fMRI validation of the visual half field technique as an indicator of language laterality: a large-group analysis. Neuropsychologia 49:102879–88
    [Google Scholar]
  225. Van der Haegen L, Cai Q, Stevens MA, Brysbaert M. 2013. Interhemispheric communication influences reading behavior. J. Cogn. Neurosci. 25:91442–52
    [Google Scholar]
  226. Vandermosten M, Vanderauwera J, Theys C, De Vos A, Vanvooren S et al. 2015. A DTI tractography study in pre-readers at risk for dyslexia. Dev. Cogn. Neurosci. 14:8–15
    [Google Scholar]
  227. Vellutino FR, Fletcher JM, Snowling MJ, Scanlon DM. 2004. Specific reading disability (dyslexia): What have we learned in the past four decades?. J. Child Psychol. Psychiatry 45:12–40
    [Google Scholar]
  228. Vidyasagar TR, Pammer K. 2010. Dyslexia: a deficit in visuo-spatial attention, not in phonological processing. Trends Cogn. Sci. 14:257–63
    [Google Scholar]
  229. Vinckier F, Dehaene S, Jobert A, Dubus JP, Sigman M, Cohen L. 2007. Hierarchical coding of letter strings in the ventral stream: dissecting the inner organization of the visual word-form system. Neuron 55:1143–56
    [Google Scholar]
  230. Wade NJ, Tatler BW. 2008. Did Javal measure eye movements during reading?. J. Eye Mov. Res. 2:55
    [Google Scholar]
  231. Wagner RK, Torgesen JK. 1987. The nature of phonological processing and its causal role in the acquisition of reading skills. Psychol. Bull. 101:2192–212
    [Google Scholar]
  232. Wandell BA. 1995. Foundations of Vision Sunderland, MA: Sinauer Assoc.
    [Google Scholar]
  233. Wandell BA, Dumoulin SO, Brewer AA. 2007. Visual field maps in human cortex. Neuron 56:2366–83
    [Google Scholar]
  234. Wandell BA, Rauschecker AM, Yeatman JD. 2012. Learning to see words. Annu. Rev. Psychol. 63:31–53
    [Google Scholar]
  235. Wandell BA, Winawer J. 2010. Imaging retinotopic maps in the human brain. Vis. Res. 51:7718–37
    [Google Scholar]
  236. Wandell BA, Winawer J. 2015. Computational neuroimaging and population receptive fields. Trends Cogn. Sci. 19:6349–57
    [Google Scholar]
  237. Wandell BA, Yeatman JD. 2013. Biological development of reading circuits. Curr. Opin. Neurobiol. 23:2261–68
    [Google Scholar]
  238. Weiner KS, Barnett MA, Lorenz S, Caspers J, Stigliani A et al. 2017a. The cytoarchitecture of domain-specific regions in human high-level visual cortex. Cereb. Cortex 27:1146–61
    [Google Scholar]
  239. Weiner KS, Barnett MA, Witthoft N, Golarai G, Stigliani A et al. 2018. Defining the most probable location of the parahippocampal place area using cortex-based alignment and cross-validation. NeuroImage 170:373–84
    [Google Scholar]
  240. Weiner KS, Grill-Spector K. 2010. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. NeuroImage 52:41559–73
    [Google Scholar]
  241. Weiner KS, Grill-Spector K. 2011. Not one extrastriate body area: using anatomical landmarks, hMT+, and visual field maps to parcellate limb-selective activations in human lateral occipitotemporal cortex. NeuroImage 56:42183–99
    [Google Scholar]
  242. Weiner KS, Grill-Spector K. 2012. The improbable simplicity of the fusiform face area. Trends Cogn. Sci. 16:5251–54
    [Google Scholar]
  243. Weiner KS, Yeatman JD, Wandell BA. 2017b. The posterior arcuate fasciculus and the vertical occipital fasciculus. Cortex 97:274–76
    [Google Scholar]
  244. Wen Y, Snell J, Grainger J. 2019. Parallel, cascaded, interactive processing of words during sentence reading. Cognition 189:221–26
    [Google Scholar]
  245. Wernicke C. 1881. Lehrbuch der Gehirnkrankheiten für Aezerte und Studirende Kassel: Verl. Theodor Fischer
    [Google Scholar]
  246. Wernicke C. 1906. Grundriss der Psychiatrie in klinischen Vorlesungen Leipzig: Thieme
    [Google Scholar]
  247. Wheat KL, Cornelissen PL, Sack AT, Schuhmann T, Goebel R, Blomert L. 2013. Charting the functional relevance of Broca's area for visual word recognition and picture naming in Dutch using fMRI-guided TMS. Brain Lang 125:2223–30
    [Google Scholar]
  248. Wheeler DD. 1970. Processes in word recognition. Cogn. Psychol. 1:159–85
    [Google Scholar]
  249. White AL, Boynton GM, Yeatman JD. 2019a. The link between reading ability and visual spatial attention across development. Cortex 121:44–59
    [Google Scholar]
  250. White AL, Boynton GM, Yeatman JD. 2019b. You can't recognize two words simultaneously. Trends Cogn. Sci. 23:10812–14
    [Google Scholar]
  251. White AL, Palmer J, Boynton GM. 2018. Evidence of serial processing in visual word recognition. Psychol. Sci. 29:71062–71
    [Google Scholar]
  252. White AL, Palmer J, Boynton GM. 2020. Visual word recognition: evidence for a serial bottleneck in lexical access. Atten. Percept. Psychophys. 82:42000–17
    [Google Scholar]
  253. White AL, Palmer J, Boynton GM, Yeatman JD 2019c. Parallel spatial channels converge at a bottleneck in anterior word-selective cortex. PNAS 116:2010087–96
    [Google Scholar]
  254. White AL, Runeson E, Palmer J, Ernst ZR, Boynton GM. 2017. Evidence for unlimited capacity processing of simple features in visual cortex. J. Vis. 17:619
    [Google Scholar]
  255. Whitney C. 2001. How the brain encodes the order of letters in a printed word: the SERIOL model and selective literature review. Psychonom. Bull. Rev. 8:221–43
    [Google Scholar]
  256. Whitney C. 2008. Supporting the serial in the SERIOL model. Lang. Cogn. Process. 23:6824–65
    [Google Scholar]
  257. Whitney C, Lavidor M. 2004. Why word length only matters in the left visual field. Neuropsychologia 42:121680–88
    [Google Scholar]
  258. Winawer J, Horiguchi H, Sayres RA, Amano K, Wandell BA. 2010. Mapping hV4 and ventral occipital cortex: the venous eclipse. J. Vis. 10:51
    [Google Scholar]
  259. Wolf M, Bowers PG. 1999. The double-deficit hypothesis for the developmental dyslexias. J. Educ. Psychol. 91:3415–38
    [Google Scholar]
  260. Wong AC-N, Jobard G, James KH, James TW, Gauthier I. 2009. Expertise with characters in alphabetic and nonalphabetic writing systems engage overlapping occipito-temporal areas. Cogn. Neuropsychol. 26:1111–27
    [Google Scholar]
  261. Woodhead ZVJ, Barnes GR, Penny W, Moran R, Teki S et al. 2014. Reading front to back: MEG evidence for early feedback effects during word recognition. Cereb. Cortex 24:3817–25
    [Google Scholar]
  262. Woolnough O, Donos C, Rollo PS, Forseth KJ, Lakretz Y et al. 2021. Spatiotemporal dynamics of orthographic and lexical processing in the ventral visual pathway. Nat. Hum. Behav. 5:389–98
    [Google Scholar]
  263. Yeatman JD, Dougherty RF, Ben-Shachar M, Wandell BA 2012. Development of white matter and reading skills. PNAS 109:44E3045–53
    [Google Scholar]
  264. Yeatman JD, Rauschecker AM, Wandell BA. 2013. Anatomy of the visual word form area: adjacent cortical circuits and long-range white matter connections. Brain Lang 125:2146–55
    [Google Scholar]
  265. Yeatman JD, Weiner KS, Pestilli F, Rokem A, Mezer A, Wandell BA 2014. The vertical occipital fasciculus: a century of controversy resolved by in vivo measurements. PNAS 111:48E5214–23
    [Google Scholar]
  266. Yeh F-C, Panesar S, Fernandes D, Meola A, Yoshino M et al. 2018. Population-averaged atlas of the macroscale human structural connectome and its network topology. NeuroImage 178:57–68
    [Google Scholar]
  267. Yu D, Cheung S-H, Legge GE, Chung STL. 2007. Effect of letter spacing on visual span and reading speed. J. Vis. 7:22
    [Google Scholar]
  268. Yu D, Legge GE, Wagoner G, Chung STL. 2018. Training peripheral vision to read: boosting the speed of letter processing. Vis. Res. 152:51–60
    [Google Scholar]
  269. Zeki S. 2016. Multiple asynchronous stimulus- and task-dependent hierarchies (STDH) within the visual brain's parallel processing systems. Eur. J. Neurosci. 44:82515–27
    [Google Scholar]
/content/journals/10.1146/annurev-vision-093019-113509
Loading
/content/journals/10.1146/annurev-vision-093019-113509
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error