1932

Abstract

Animals live in visually complex environments. As a result, visual systems have evolved mechanisms that simplify visual processing and allow animals to focus on the information that is most relevant to adaptive decision making. This review explores two key mechanisms that animals use to efficiently process visual information: categorization and specialization. Categorization occurs when an animal's perceptual system sorts continuously varying stimuli into a set of discrete categories. Specialization occurs when particular classes of stimuli are processed using distinct cognitive operations that are not used for other classes of stimuli. We also describe a nonadaptive consequence of simplifying heuristics: visual illusions, where visual perception consistently misleads the viewer about the state of the external world or objects within it. We take an explicitly comparative approach by exploring similarities and differences in visual cognition across human and nonhuman taxa. Considering areas of convergence and divergence across taxa provides insight into the evolution and function of visual systems and associated perceptual strategies.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-100923-015932
2024-09-18
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-100923-015932.html?itemId=/content/journals/10.1146/annurev-vision-100923-015932&mimeType=html&fmt=ahah

Literature Cited

  1. Adams WJ, Graf EW, Anderson M. 2019.. Disruptive coloration and binocular disparity: breaking camouflage. . Proc. R. Soc. B 286:(1896):20182045
    [Crossref] [Google Scholar]
  2. Agrillo C, Miletto Petrazzini ME, Bisazza A. 2016.. Brightness illusion in the guppy (Poecilia reticulata). . J. Comp. Psychol. 130:(1):5561
    [Crossref] [Google Scholar]
  3. Avargues-Weber A, Portelli G, Benard J, Dyer A, Giurfa M. 2010.. Configural processing enables discrimination and categorization of face-like stimuli in honeybees. . J. Exp. Biol. 213:(4):593601
    [Crossref] [Google Scholar]
  4. Behrmann M, Avidan G. 2022.. Face perception: computational insights from phylogeny. . Trends Cogn. Sci. 26:(4):35063
    [Crossref] [Google Scholar]
  5. Benard J, Stach S, Giurfa M. 2006.. Categorization of visual stimuli in the honeybee Apis mellifera. . Anim. Cogn. 9:(4):25770
    [Crossref] [Google Scholar]
  6. Berlin B, Kay P. 1969.. Basic Color Terms: Their University and Evolution. Berkeley, CA:: Univ. Calif. Press
    [Google Scholar]
  7. Blough DS. 1961.. The shape of some wavelength generalization gradients. . J. Exp. Anal. Behav. 4:(1):3140
    [Crossref] [Google Scholar]
  8. Blount JD, Metcalfe NB, Birkhead TR, Surai PF. 2003.. Carotenoid modulation of immune function and sexual attractiveness in zebra finches. . Science 300:(5616):12527
    [Crossref] [Google Scholar]
  9. Boggan AL, Bartlett JC, Krawczyk DC. 2012.. Chess masters show a hallmark of face processing with chess. . J. Exp. Psychol. Gen. 141:(1):3742
    [Crossref] [Google Scholar]
  10. Bornstein MH. 1987.. Perceptual categories in vision and audition. . See Harnad 1987 , pp. 287300
  11. Brecht KF, Wagener L, Ostojić L, Clayton NS, Nieder A. 2017.. Comparing the face inversion effect in crows and humans. . J. Comp. Physiol. A 203:(12):101727
    [Crossref] [Google Scholar]
  12. Bülthoff I, Newell F. 2000.. Investigating categorical perception of gender with 3-D morphs of familiar faces. . Perception 29::57
    [Crossref] [Google Scholar]
  13. Burke D, Sulikowski D. 2013.. The evolution of holistic processing of faces. . Front. Psychol. 4::11
    [Crossref] [Google Scholar]
  14. Byosiere S-E, Feng LC, Woodhead JK, Rutter NJ, Chouinard PA, et al. 2017.. Visual perception in domestic dogs: susceptibility to the Ebbinghaus-Titchener and Delboeuf illusions. . Anim. Cogn. 20:(3):43548
    [Crossref] [Google Scholar]
  15. Calder AJ, Young AW, Keane J, Dean M. 2000.. Configural information in facial expression perception. . J. Exp. Psychol. Hum. Percept. Perform. 26:(2):52751
    [Crossref] [Google Scholar]
  16. Callander S, Hayes CL, Jennions MD, Backwell PRY. 2013.. Experimental evidence that immediate neighbors affect male attractiveness. . Behav. Ecol. 24:(3):73033
    [Crossref] [Google Scholar]
  17. Carey S, Diamond R. 1977.. From piecemeal to configurational representation of faces. . Science 195:(4275):31214
    [Crossref] [Google Scholar]
  18. Carter O, Van Swinderen B, Leopold DA, Collin SP, Maier A. 2020.. Perceptual rivalry across animal species. . J Comp. Neurol. 528:(17):312333
    [Crossref] [Google Scholar]
  19. Caves EM, Brandley NC, Johnsen S. 2018a.. Visual acuity and the evolution of signals. . Trends Ecol. Evol. 33:(5):35872
    [Crossref] [Google Scholar]
  20. Caves EM, Green PA, Zipple MN, Bharath D, Peters S, et al. 2021.. Comparison of categorical color perception in two Estrildid finches. . Am. Nat. 197:(2):190202
    [Crossref] [Google Scholar]
  21. Caves EM, Green PA, Zipple MN, Peters S, Johnsen S, Nowicki S. 2018b.. Categorical perception of colour signals in a songbird. . Nature 560:(7718):36567
    [Crossref] [Google Scholar]
  22. Cloutier J, Macrae CN. 2007.. Who or what are you? Facial orientation and person construal. . Eur. J. Soc. Psychol. 37:(6):1298309
    [Crossref] [Google Scholar]
  23. Collins SA, Ten Cate C. 1996.. Does beak colour affect female preference in zebra finches?. Anim. Behav. 52:(1):10512
    [Crossref] [Google Scholar]
  24. Davidoff J, Davies I, Roberson D. 1999.. Colour categories in a stone-age tribe. . Nature 398:(6724):2034
    [Crossref] [Google Scholar]
  25. Davies NB. 2000.. Cuckoos, Cowbirds, and Other Cheats. London:: T & AD Poyser
    [Google Scholar]
  26. de Haan M, Pascalis O, Johnson MH. 2002.. Specialization of neural mechanisms underlying face recognition in human infants. . J. Cogn. Neurosci. 14:(2):199209
    [Crossref] [Google Scholar]
  27. Diamond R, Carey S. 1986.. Why faces are and are not special: an effect of expertise. . J. Exp. Psychol. Gen. 115:(2):10717
    [Crossref] [Google Scholar]
  28. DiCarlo JJ, Zoccolan D, Rust NC. 2012.. How does the brain solve visual object recognition?. Neuron 73:(3):41534
    [Crossref] [Google Scholar]
  29. Dyer AG, Neumeyer C, Chittka L. 2005.. Honeybee (Apis mellifera) vision can discriminate between and recognise images of human faces. . J. Exp. Biol. 208:(24):470914
    [Crossref] [Google Scholar]
  30. Eagleman DM. 2001.. Visual illusions and neurobiology. . Nat. Rev. Neurosci. 2:(12):92026
    [Crossref] [Google Scholar]
  31. Endler JA. 1991.. Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. . Vis. Res. 31:(3):587608
    [Crossref] [Google Scholar]
  32. Endler JA, Endler LC, Doerr NR. 2010.. Great bowerbirds create theaters with forced perspective when seen by their audience. . Curr. Biol. 20:(18):167984
    [Crossref] [Google Scholar]
  33. Endler JA, Thery M. 1996.. Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. . Am. Nat. 148:(3):42152
    [Crossref] [Google Scholar]
  34. Fiorentini C, Viviani P. 2009.. Perceiving facial expressions. . Vis. Cogn. 17:(3):373411
    [Crossref] [Google Scholar]
  35. Gasparini C, Serena G, Pilastro A. 2013.. Do unattractive friends make you look better? Context-dependent male mating preferences in the guppy. . Proc. R. Soc. B 280:(1756):20123072
    [Crossref] [Google Scholar]
  36. Gauthier I, Bukach C. 2007.. Should we reject the expertise hypothesis?. Cognition 103:(2):32230
    [Crossref] [Google Scholar]
  37. Gauthier I, Skudlarski P, Gore JC, Anderson AW. 2000.. Expertise for cars and birds recruits brain areas involved in face recognition. . Nat. Neurosci. 3:(2):19197
    [Crossref] [Google Scholar]
  38. Gauthier I, Tarr MJ, Anderson AW, Skudlarski P, Gore JC. 1999.. Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. . Nat. Neurosci. 2:(6):56873
    [Crossref] [Google Scholar]
  39. Gibson JJ. 2014.. The Ecological Approach to Visual Perception: Classic Edition. East Sussex, UK:: Psychol. Press
    [Google Scholar]
  40. Goldstone RL, Hendrickson AT. 2010.. Categorical perception. . Wiley Interdiscip. Rev. Cogn. Sci. 1:(1):6978
    [Crossref] [Google Scholar]
  41. Green PA, Brandley NC, Nowicki S. 2020.. Categorical perception in animal communication and decision-making. . Behav. Ecol. 31:(4):85967
    [Crossref] [Google Scholar]
  42. Hanley D, Grim T, Igic B, Samaš P, Lopez AV, et al. 2017.. Egg discrimination along a gradient of natural variation in eggshell coloration. . Proc. R. Soc. B 284::20162592
    [Crossref] [Google Scholar]
  43. Harnad SR. 1987.. Categorical Perception: The Groundwork of Cognition. Cambridge, UK:: Univ. Cambridge Press
    [Google Scholar]
  44. Hart NS, Partridge JC, Bennett ATD, Cuthill IC. 2000.. Visual pigments, cone oil droplets and ocular media in four species of estrildid finch. . J. Comp. Physiol. A 186:(7–8):68194
    [Crossref] [Google Scholar]
  45. Heindl M, Winkler H. 2003.. Vertical lek placement of forest-dwelling manakin species (Aves, Pipridae) is associated with vertical gradients of ambient light. . Biol. J. Linnean Soc. 80:(4):64758
    [Crossref] [Google Scholar]
  46. Horridge GA, Zhang S-W, O'Carroll D. 2022.. Insect perception of illusory contours. . Philos. Trans. Biol. Sci. 337:(1279):5964
    [Google Scholar]
  47. Howard SR, Dyer AG, Garcia JE, Giurfa M, Reser DH, et al. 2021a.. Naïve and experienced honeybee foragers learn normally configured flowers more easily than non-configured or highly contrasted flowers. . Front. Ecol. Evol. 9::662336
    [Crossref] [Google Scholar]
  48. Howard SR, Prendergast K, Symonds MRE, Shrestha M, Dyer AG. 2021b.. Spontaneous choices for insect-pollinated flower shapes by wild non-eusocial halictid bees. . J. Exp. Biol. 224:(16):jeb242457
    [Crossref] [Google Scholar]
  49. Huang X, MacEvoy SP, Paradiso MA. 2002.. Perception of brightness and brightness illusions in the macaque monkey. . J. Neurosci. 22:(21):961825
    [Crossref] [Google Scholar]
  50. Itti L, Koch C. 2000.. A saliency-based search mechanism for overt and covert shifts of visual attention. . Vis. Res. 40:(10–12):1489506
    [Crossref] [Google Scholar]
  51. Jablonski PG. 1999.. A rare predator exploits prey escape behavior: the role of tail-fanning and plumage contrast in foraging of the painted redstart (Myioborus pictus). . Behav. Ecol. 10:(1):714
    [Crossref] [Google Scholar]
  52. Jones CD, Osorio D, Baddeley RJ. 2001.. Colour categorization by domestic chicks. . Proc. R. Soc. B 268:(1481):207784
    [Crossref] [Google Scholar]
  53. Kanwisher N. 2000.. Domain specificity in face perception. . Nat. Neurosci. 3:(8):75963
    [Crossref] [Google Scholar]
  54. Kanwisher N, McDermott J, Chun MM. 1997.. The fusiform face area: a module in human extrastriate cortex specialized for face perception. . J. Neurosci. 17:(11):430211
    [Crossref] [Google Scholar]
  55. Kawasaka K, Hotta T, Kohda M. 2019.. Does a cichlid fish process face holistically? Evidence of the face inversion effect. . Anim. Cogn. 22:(2):15362
    [Crossref] [Google Scholar]
  56. Kelley LA, Endler JA. 2012a.. Illusions promote mating success in great bowerbirds. . Science 335:(6066):33538
    [Crossref] [Google Scholar]
  57. Kelley LA, Endler JA. 2012b.. Male great bowerbirds create forced perspective illusions with consistently different individual quality. . PNAS 109:(51):2098085
    [Crossref] [Google Scholar]
  58. Kelley LA, Kelley JL. 2014.. Animal visual illusion and confusion: the importance of a perceptual perspective. . Behav. Ecol. 25:(3):45063
    [Crossref] [Google Scholar]
  59. Kendrick KM, da Costa AP, Leigh AE, Hinton MR, Peirce JW. 2001.. Sheep don't forget a face. . Nature 414:(6860):16566
    [Crossref] [Google Scholar]
  60. Kinoshita M, Takahashi Y, Arikawa K. 2012.. Simultaneous brightness contrast of foraging Papilio butterflies. . Proc. R. Soc. B 279:(1735):191118
    [Crossref] [Google Scholar]
  61. Konar Y, Bennett PJ, Sekuler AB. 2010.. Holistic processing is not correlated with face-identification accuracy. . Psychol. Sci. 21:(1):3843
    [Crossref] [Google Scholar]
  62. Lahti DC, Johnson NA, Ajie BC, Otto SP, Hendry AP, et al. 2009.. Relaxed selection in the wild. . Trends Ecol. Evol. 24:(9):48796
    [Crossref] [Google Scholar]
  63. Lehrner M, Horridge A, Zhang SW, Gadagkar R. 1995.. Shape vision in bees: innate preference for flower-like patterns. . Philos. Trans. R. Soc. Lond. B 347:(1320):12337
    [Crossref] [Google Scholar]
  64. Leopold DA, Rhodes G. 2010.. A comparative view of face perception. . J. Comp. Psychol. 124:(3):23351
    [Crossref] [Google Scholar]
  65. Lev-Ari T, Beeri H, Gutfreund Y. 2022.. The ecological view of selective attention. . Front. Integr. Neurosci. 16::856207
    [Crossref] [Google Scholar]
  66. Levin DT, Beale JM. 2000.. Categorical perception occurs in newly learned faces, other-race faces, and inverted faces. . Percept. Psychophys. 62:(2):386401
    [Crossref] [Google Scholar]
  67. Liberman AM, Harris KS, Hoffman HS, Griffith BC. 1957.. The discrimination of speech sounds within and across phoneme boundaries. . J. Exp. Psychol. 54:(5):35868
    [Crossref] [Google Scholar]
  68. Logothetis NK, Sheinberg DL. 1996.. Visual object recognition. . Annu. Rev. Neurosci. 19::577621
    [Crossref] [Google Scholar]
  69. Maurer D, Le Grand R, Mondloch CJ. 2002.. The many faces of configural processing. . Trends Cogn. Sci. 6:(6):25560
    [Crossref] [Google Scholar]
  70. Maximov VV. 2000.. Environmental factors which may have led to the appearance of colour vision. . Philos. Trans. R. Soc. Lond. B 355:(1401):123942
    [Crossref] [Google Scholar]
  71. McKone E, Kanwisher N, Duchaine BC. 2007.. Can generic expertise explain special processing for faces?. Trends Cogn. Sci. 11:(1):815
    [Crossref] [Google Scholar]
  72. Minini L, Jeffery KJ. 2006.. Do rats use shape to solve “shape discriminations”?. Learn. Mem. 13:(3):28797
    [Crossref] [Google Scholar]
  73. Murayama T. 2012.. Relative size discrimination and perception of the Ebbinghaus illusion in a bottlenose dolphin (Tursiops truncatus). . Aquat. Mamm. 38:(4):33342
    [Crossref] [Google Scholar]
  74. Nakamura N, Watanabe S, Fujita K. 2008.. Pigeons perceive the Ebbinghaus-Titchener circles as an assimilation illusion. . J. Exp. Psychol. Anim. Behav. Process. 34:(3):37587
    [Crossref] [Google Scholar]
  75. Nilsson D-E. 2021.. The diversity of eyes and vision. . Annu. Rev. Vis. Sci. 7::1941
    [Crossref] [Google Scholar]
  76. Okuyama-Uchimura F, Komai S. 2016.. Mouse ability to perceive subjective contours. . Perception 45:(3):31527
    [Crossref] [Google Scholar]
  77. Pardo-Sanchez J, Tibbetts EA. 2022.. Social experience drives the development of holistic face processing in paper wasps. . Anim. Cogn. 26:(2):46576
    [Crossref] [Google Scholar]
  78. Parker AN, Wallis GM, Obergrussberger R, Siebeck UE. 2020.. Categorical face perception in fish: how a fish brain warps reality to dissociate “same” from “different. .” J. Comp. Neurol. 528:(17):291928
    [Crossref] [Google Scholar]
  79. Parr LA. 2011.. The evolution of face processing in primates. . Philos. Trans. R. Soc. B 366:(1571):176477
    [Crossref] [Google Scholar]
  80. Parr LA, Winslow JT, Hopkins WD, de Waal F. 2000.. Recognizing facial cues: individual discrimination by chimpanzees (Pan troglodytes) and rhesus monkeys (Macaca mulatta). . J. Comp. Psychol. 114:(1):4760
    [Crossref] [Google Scholar]
  81. Parron C, Fagot J. 2007.. Comparison of grouping abilities in humans (Homo sapiens) and baboons (Papio papio) with the Ebbinghaus illusion. . J. Comp. Psychol. 121:(4):40511
    [Crossref] [Google Scholar]
  82. Pascalis O, Scott LS, Kelly DJ, Shannon RW, Nicholson E, et al. 2005.. Plasticity of face processing in infancy. . PNAS 102:(14):5297300
    [Crossref] [Google Scholar]
  83. Peirce JW, Leigh AE, Kendrick KM. 2000.. Configurational coding, familiarity and the right hemisphere advantage for face recognition in sheep. . Neuropsychologia 38:(4):47583
    [Crossref] [Google Scholar]
  84. Peterhans E, Von Der Heydt R. 1991.. Subjective contours—bridging the gap between psychophysics and physiology. . Trends Neurosci. 14:(3):11219
    [Crossref] [Google Scholar]
  85. Pigliucci M. 2005.. Evolution of phenotypic plasticity: Where are we going now?. Trends Ecol. Evol. 20:(9):48186
    [Crossref] [Google Scholar]
  86. Purves D, Lotto RB. 2011.. Why We See What We Do Redux: A Wholly Empirical Theory of Vision. Sunderland, MA:: Sinauer Assoc.
    [Google Scholar]
  87. Racca A, Amadei E, Ligout S, Guo K, Meints K, Mills D. 2010.. Discrimination of human and dog faces and inversion responses in domestic dogs (Canis familiaris). . Anim. Cogn. 13:(3):52533
    [Crossref] [Google Scholar]
  88. Richler JJ, Gauthier I. 2014.. A meta-analysis and review of holistic face processing. . Psychol. Bull. 140:(5):1281302
    [Crossref] [Google Scholar]
  89. Roberson D, Davies I, Davidoff J. 2000.. Color categories are not universal: replications and new evidence from a stone-age culture. . J. Exp. Psychol. Gen. 129::36998
    [Crossref] [Google Scholar]
  90. Rodd FH, Hughes KA, Grether GF, Baril CT. 2002.. A possible non-sexual origin of mate preference: Are male guppies mimicking fruit?. Proc. R. Soc. B 269:(1490):47581
    [Crossref] [Google Scholar]
  91. Rosa Salva O, Rugani R, Cavazzana A, Regolin L, Vallortigara G. 2013.. Perception of the Ebbinghaus illusion in four-day-old domestic chicks (Gallus gallus). . Anim Cogn. 16:(6):895906
    [Crossref] [Google Scholar]
  92. Rossion B, Taubert J. 2019.. What can we learn about human individual face recognition from experimental studies in monkeys?. Vis. Res. 157::14258
    [Crossref] [Google Scholar]
  93. Sandell JH, Gross CG, Bornstein MH. 1979.. Color categories in macaques. . J. Comp. Physiol. Psychol. 93:(4):62635
    [Crossref] [Google Scholar]
  94. Santacà M, Bisazza A, Agrillo C. 2022.. Guppies (Poecilia reticulata) are deceived by visual illusions during obstacle negotiation. . Biol. Lett. 18:(2):20210548
    [Crossref] [Google Scholar]
  95. Sheehan MJ, Tibbetts EA. 2009.. Evolution of identity signals: frequency-dependent benefits of distinctive phenotypes used for individual recognition. . Evolution 63:(12):310613
    [Crossref] [Google Scholar]
  96. Sheehan MJ, Tibbetts EA. 2011.. Specialized face learning is associated with individual recognition in paper wasps. . Science 334:(6060):127275
    [Crossref] [Google Scholar]
  97. Shepard RN, Cooper LA. 1992.. Representation of colors in the blind, color-blind, and normally sighted. . Psychol. Sci. 3:(2):97104
    [Crossref] [Google Scholar]
  98. Shettleworth SJ. 2009.. Cognition, Evolution, and Behavior. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  99. Simpson EE, Marshall NJ, Cheney KL. 2016.. Coral reef fish perceive lightness illusions. . Sci. Rep. 6::35335
    [Crossref] [Google Scholar]
  100. Sinha P, Crucilla S, Gandhi T, Rose D, Singh A, et al. 2020.. Mechanisms underlying simultaneous brightness contrast: early and innate. . Vis. Res. 173::4149
    [Crossref] [Google Scholar]
  101. Siuda-Krzywicka K, Boros M, Bartolomeo P, Witzel C. 2019.. The biological bases of colour categorisation: from goldfish to the human brain. . Cortex 118::82106
    [Crossref] [Google Scholar]
  102. Smith GE, Chouinard PA, Byosiere S-E. 2021.. If I fits I sits: a citizen science investigation into illusory contour susceptibility in domestic cats (Felis silvestris catus). . Appl. Anim. Behav. Sci. 240::105338
    [Crossref] [Google Scholar]
  103. Sterling P, Laughlin S. 2015.. Principles of Neural Design. Cambridge, MA:: MIT Press
    [Google Scholar]
  104. Sugita Y. 2008.. Face perception in monkeys reared with no exposure to faces. . PNAS 105:(1):39498
    [Crossref] [Google Scholar]
  105. Tanaka JW, Farah MJ. 1993.. Parts and wholes in face recognition. . Q. J. Exp. Psychol. 46:(2):22545
    [Crossref] [Google Scholar]
  106. Tibbetts EA. 2002.. Visual signals of individual identity in the wasp Polistes fuscatus. . Proc. R. Soc. B 269:(1499):142328
    [Crossref] [Google Scholar]
  107. Tibbetts EA, Dale J. 2007.. Individual recognition: It is good to be different. . Trends Ecol. Evol. 22:(10):52937
    [Crossref] [Google Scholar]
  108. Tibbetts EA, Den Uyl J, Dwortz M, McLean C. 2019a.. The development and evolution of specialized face learning in paper wasps. . Anim. Behav. 147::17
    [Crossref] [Google Scholar]
  109. Tibbetts EA, Desjardins E, Kou N, Wellman L. 2019b.. Social isolation prevents the development of individual face recognition in paper wasps. . Anim. Behav. 152::7177
    [Crossref] [Google Scholar]
  110. Tibbetts EA, Pardo-Sanchez J, Ramirez-Matias J, Avarguès-Weber A. 2021.. Individual recognition is associated with holistic face processing in Polistes paper wasps in a species-specific way. . Proc. R. Soc. B 2881943::20203010
    [Crossref] [Google Scholar]
  111. Tinbergen N. 1963.. On aims and methods of ethology. . Z. Tierpsychol. 20:(4):41033
    [Crossref] [Google Scholar]
  112. Troscianko T, Benton CP, Lovell PG, Tolhurst DJ, Pizlo Z. 2009.. Camouflage and visual perception. . Philos. Trans. R. Soc. B 364:(1516):44961
    [Crossref] [Google Scholar]
  113. Truppa V, Sovrano VA, Spinozzi G, Bisazza A. 2010.. Processing of visual hierarchical stimuli by fish (Xenotoca eiseni). . Behav. Brain Res. 207:(1):5160
    [Crossref] [Google Scholar]
  114. Vogelsang MD, Palmeri TJ, Busey TA. 2017.. Holistic processing of fingerprints by expert forensic examiners. . Cogn. Res. 2:(1):15
    [Crossref] [Google Scholar]
  115. von Frisch K. 1964.. Bees: Their Vision, Chemical Senses, and Language. Ithaca, NY:: Cornell Univ. Press
    [Google Scholar]
  116. Von Helversen O. 1972.. Zur spektralen Unterschiedsempfindlichkeit der Honigbiene. . J. Comp. Physiol. 80:(4):43972
    [Crossref] [Google Scholar]
  117. Vorobyev M, Osorio D. 1998.. Receptor noise as a determinant of colour thresholds. . Proc. R. Soc. B 265:(1394):35158
    [Crossref] [Google Scholar]
  118. Wang M-Y, Takeuchi H. 2017.. Individual recognition and the “face inversion effect” in medaka fish (Oryzias latipes). . eLife 6::e24728
    [Crossref] [Google Scholar]
  119. Wehner R. 1987.. “Matched filters”—neural models of the external world. . J. Comp. Physiol. A 161:(4):51131
    [Crossref] [Google Scholar]
  120. West-Eberhard MJ. 2003.. Developmental Plasticity and Evolution. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  121. Wright AA. 1972.. Psychometric and psychophysical hue discrimination functions for the pigeon. . Vis. Res. 12:(9):144764
    [Crossref] [Google Scholar]
  122. Wright AA, Cumming WW. 1971.. Color-naming functions for the pigeon. . J. Exp. Anal. Behav. 15:(1):717
    [Crossref] [Google Scholar]
  123. Wyzisk K, Neumeyer C. 2007.. Perception of illusory surfaces and contours in goldfish. . Vis. Neurosci. 24:(3):29198
    [Crossref] [Google Scholar]
  124. Yin RK. 1969.. Looking at upside-down faces. . J. Exp. Psychol. 81:(1):14145
    [Crossref] [Google Scholar]
  125. Zipple MN, Caves EM, Green PA, Peters S, Johnsen S, Nowicki S. 2019.. Categorical colour perception occurs in both signalling and non-signalling colour ranges in a songbird. . Proc. R. Soc. B 286::1903
    [Crossref] [Google Scholar]
  126. Zylinski S, Darmaillacq A-S, Shashar N. 2012.. Visual interpolation for contour completion by the European cuttlefish (Sepia officinalis) and its use in dynamic camouflage. . Proc. R. Soc. B 279:(1737):238690
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-100923-015932
Loading
/content/journals/10.1146/annurev-vision-100923-015932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error