1932

Abstract

The study of biological optics would be complicated enough if light only came in a single wavelength. However, altering the wavelength (or distribution of wavelengths) of light has multiple effects on optics, including on diffraction, scattering (of various sorts), transmission through and reflection by various media, fluorescence, and waveguiding properties, among others. In this review, we consider just one wavelength-dependent optical effect: longitudinal chromatic aberration (LCA). All vertebrate eyes that have been tested have significant LCA, with shorter (bluer) wavelengths of light focusing closer to the front of the eye than longer (redder) wavelengths. We consider the role of LCA in the visual system in terms of both how it could degrade visual acuity and how biological systems make use of it.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-101222-052228
2024-09-18
2024-12-04
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-101222-052228.html?itemId=/content/journals/10.1146/annurev-vision-101222-052228&mimeType=html&fmt=ahah

Literature Cited

  1. Aggarwala KR, Kruger ES, Mathews S, Kruger PB. 1995.. Spectral bandwidth and ocular accommodation. . J. Opt. Soc. Am. A 12:(3):45055
    [Crossref] [Google Scholar]
  2. Artal P, Manzanera S, Piers P, Weeber H. 2010.. Visual effect of the combined correction of spherical and longitudinal chromatic aberrations. . Opt. Express 18:(2):163748
    [Crossref] [Google Scholar]
  3. Atchison DA, Jones CE, Schmid KL, Pritchard N, Pope JM, et al. 2004.. Eye shape in emmetropia and myopia. . Investig. Ophthalmol. Vis. Sci. 45:(10):338086
    [Crossref] [Google Scholar]
  4. Atchison DA, Smith G. 2005.. Chromatic dispersions of the ocular media of human eyes. . J. Opt. Soc. Am. A 22:(1):2937
    [Crossref] [Google Scholar]
  5. Bobier WR, Campbell MC, Hinch M. 1992.. The influence of chromatic aberration on the static accommodative response. . Vis. Res. 32:(5):82332
    [Crossref] [Google Scholar]
  6. Burge J, Geisler WS. 2011.. Optimal defocus estimation in individual natural images. . PNAS 108:(40):1684954
    [Crossref] [Google Scholar]
  7. Burge J, Geisler WS. 2012.. Optimal defocus estimates from individual images for autofocusing a digital camera. . In Digital Photography VIII: Proceedings of IS&T/SPIE Electronic Imaging, Burlingame, CA, Jan. 22–26, pp. 12435. Bellingham, WA:: SPIE
    [Google Scholar]
  8. Campbell FW, Gubisch RW. 1967.. The effect of chromatic aberration on visual acuity. . J. Physiol. 192:(2):34558
    [Crossref] [Google Scholar]
  9. Charman W, Tucker J. 1978.. Accommodation and color. . J. Opt. Soc. Am. 68:(4):45971
    [Crossref] [Google Scholar]
  10. Chen L, Kruger PB, Hofer H, Singer B, Williams DR. 2006.. Accommodation with higher-order monochromatic aberrations corrected with adaptive optics. . J. Opt. Soc. Am. A 23:(1):18
    [Crossref] [Google Scholar]
  11. Cholewiak SA, Love GD, Banks MS. 2018.. Creating correct blur and its effect on accommodation. . J. Vis. 18:(9):1
    [Crossref] [Google Scholar]
  12. Cholewiak SA, Love GD, Srinivasan PP, Ng R, Banks MS. 2017.. Chromablur: Rendering chromatic eye aberration improves accommodation and realism. . ACM Trans. Graph. 36:(6):210
    [Crossref] [Google Scholar]
  13. Dolgin E. 2015.. The myopia boom. . Nature 519:(7543):27678
    [Crossref] [Google Scholar]
  14. Douglas R, Jeffery G. 2014.. The spectral transmission of ocular media suggests ultraviolet sensitivity is widespread among mammals. . Proc. R. Soc. B 281:(1780):20132995
    [Crossref] [Google Scholar]
  15. Einthoven W. 1885.. Stereoscopie durch Farbendifferenz. . Graefe's Arch. Ophthalmol. 31:(3):21138
    [Crossref] [Google Scholar]
  16. Eykhoff P. 1972.. System parameter and state estimation. Rep. , Tech. Hogeschool Eindhoven, Eindhoven, Neth.:
    [Google Scholar]
  17. Fernandez-Alonso M, Finch A, Love GD, Read JC. 2023.. Accommodation and wavelength: the effect of longitudinal chromatic aberration on the stimulus-response curve. . bioRxiv 2023.06.20.545755. https://doi.org/10.1101/2023.06.20.545755
  18. Gawne TJ, Grytz R, Norton TT. 2021.. How chromatic cues can guide human eye growth to achieve good focus. . J. Vis. 21:(5):11
    [Crossref] [Google Scholar]
  19. Gawne TJ, Norton TT. 2020.. An opponent dual-detector spectral drive model of emmetropization. . Vis. Res. 173::720
    [Crossref] [Google Scholar]
  20. Gawne TJ, She Z, Norton TT. 2022.. Chromatically simulated myopic blur counteracts a myopiagenic environment. . Exp. Eye Res. 222::109187
    [Crossref] [Google Scholar]
  21. Gawne TJ, Ward AH, Norton TT. 2018.. Juvenile tree shrews do not maintain emmetropia in narrow-band blue light. . Optom. Vis. Sci. 95:(10):91120
    [Crossref] [Google Scholar]
  22. Graef K, Schaeffel F. 2012.. Control of accommodation by longitudinal chromatic aberration and blue cones. . J. Vis. 12:(1):14
    [Crossref] [Google Scholar]
  23. Hartridge H. 1947.. The visual perception of fine detail. . Philos. Trans. R. Soc. Lond. B 232:(592):519671
    [Crossref] [Google Scholar]
  24. Held RT, Cooper EA, O'Brien JF, Banks MS. 2010.. Using blur to affect perceived distance and size. . ACM Trans. Graph. 29:(2):19
    [Crossref] [Google Scholar]
  25. Jacobs GH. 2009.. Evolution of colour vision in mammals. . Philos. Trans. R. Soc. Lond. B 364:(1531):295767
    [Crossref] [Google Scholar]
  26. Jaeken B, Lundström L, Artal P. 2011.. Peripheral aberrations in the human eye for different wavelengths: off-axis chromatic aberration. . J. Opt. Soc. Am. A 28:(9):187179
    [Crossref] [Google Scholar]
  27. Jung SK, Lee JH, Kakizaki H, Jee D. 2012.. Prevalence of myopia and its association with body stature and educational level in 19-year-old male conscripts in Seoul, South Korea. . Investig. Ophthalmol. Vis. Sci. 53:(9):557983
    [Crossref] [Google Scholar]
  28. Kishto B. 1965.. The colour stereoscopic effect. . Vis. Res. 5:(6–7):31329
    [Crossref] [Google Scholar]
  29. Kotulak JC, Morse SE, Billock VA. 1995.. Red-green opponent channel mediation of control of human ocular accommodation. . J. Physiol. 482:(3):697703
    [Crossref] [Google Scholar]
  30. Kruger PB, Aggarwala KR, Bean S, Mathews S. 1997.. Accommodation to stationary and moving targets. . Optom. Vis. Sci. 74:(7):50510
    [Crossref] [Google Scholar]
  31. Kruger PB, Mathews S, Aggarwala KR, Sanchez N. 1993.. Chromatic aberration and ocular focus: Fincham revisited. . Vis. Res. 33:(10):1397411
    [Crossref] [Google Scholar]
  32. Kruger PB, Mathews S, Aggarwala KR, Yager D, Kruger ES. 1995.. Accommodation responds to changing contrast of long, middle and short spectral-waveband components of the retinal image. . Vis. Res. 35:(17):241529
    [Crossref] [Google Scholar]
  33. Lind O, Kelber A. 2009.. Avian colour vision: effects of variation in receptor sensitivity and noise data on model predictions as compared to behavioural results. . Vis. Res. 49:(15):193947
    [Crossref] [Google Scholar]
  34. Loskutova E, Nolan J, Howard A, Beatty S. 2013.. Macular pigment and its contribution to vision. . Nutrients 5:(6):196269
    [Crossref] [Google Scholar]
  35. Lucas RJ, Peirson SN, Berson DM, Brown TM, Cooper HM, et al. 2014.. Measuring and using light in the melanopsin age. . Trends Neurosci. 37:(1):19
    [Crossref] [Google Scholar]
  36. Luckiesh M, Moss FK. 1933.. Visual acuity and sodium-vapor light. . J. Franklin Inst. 215:(4):40110
    [Crossref] [Google Scholar]
  37. Mandelman T, Sivak J. 1983.. Longitudinal chromatic aberration of the vertebrate eye. . Vis. Res. 23:(12):155559
    [Crossref] [Google Scholar]
  38. Nikonov SS, Kholodenko R, Lem J, Pugh EN Jr. 2006.. Physiological features of the S- and M-cone photoreceptors of wild-type mice from single-cell recordings. . J. Gen. Physiol. 127:(4):35974
    [Crossref] [Google Scholar]
  39. Norton TT, Khanal S, Gawne TJ. 2021.. Tree shrews do not maintain emmetropia in initially-focused narrow-band cyan light. . Exp. Eye Res. 206::108525
    [Crossref] [Google Scholar]
  40. Osorio D, Vorobyev M, Jones CD. 1999.. Colour vision of domestic chicks. . J. Exp. Biol. 202:(21):295159
    [Crossref] [Google Scholar]
  41. Petry HM, Harosi FI. 1990.. Visual pigments of the tree shrew (Tupaia belangeri) and greater galago (Galago crassicaudatus): a microspectrophotometric investigation. . Vis. Res. 30:(6):83951
    [Crossref] [Google Scholar]
  42. Rohrer B, Schaeffel F, Zrenner E. 1992.. Longitudinal chromatic aberration and emmetropization: results from the chicken eye. . J. Physiol. 449:(1):36376
    [Crossref] [Google Scholar]
  43. Roorda A, Cholewiak SA, Bhargava S, Ivzan NH, LaRocca F, et al. 2023.. The visual benefits of correcting longitudinal and transverse chromatic aberration. . J. Vis. 23:(2):3
    [Crossref] [Google Scholar]
  44. Sankaridurg P, Tahhan N, Kandel H, Naduvilath T, Zou H, et al. 2021.. IMI impact of myopia. . Investig. Ophthalmol. Vis. Sci. 62:(5):2
    [Crossref] [Google Scholar]
  45. Schaeffel F, Howland HC. 1991.. Properties of the feedback loops controlling eye growth and refractive state in the chicken. . Vis. Res. 31:(4):71734
    [Crossref] [Google Scholar]
  46. Seidemann A, Schaeffel F. 2002.. Effects of longitudinal chromatic aberration on accommodation and emmetropization. . Vis. Res. 42:(21):240917
    [Crossref] [Google Scholar]
  47. Simonet P, Campbell MC. 1990.. Effect of illuminance on the directions of chromostereopsis and transverse chromatic aberration observed with natural pupils. . Ophthalmic Physiol. Opt. 10:(3):27179
    [Crossref] [Google Scholar]
  48. Smithline LM. 1974.. Accommodative response to blur. . J. Opt. Soc. Am. 64:(11):151216
    [Crossref] [Google Scholar]
  49. Sprague WW, Cooper EA, Reissier S, Yellapragada B, Banks MS. 2016.. The natural statistics of blur. . J. Vis. 16:(10):23
    [Crossref] [Google Scholar]
  50. Stone D, Mathews S, Kruger PB. 1993.. Accommodation and chromatic aberration: effect of spatial frequency. . Ophthalmic Physiol. Opt. 13:(3):24452
    [Crossref] [Google Scholar]
  51. Sundet JM. 1978.. Effects of colour on perceived depth: review of experiments and evaluation of theories. . Scand. J. Psychol. 19:(1):13343
    [Crossref] [Google Scholar]
  52. Thibos LN, Bradley A, Liu T, López-Gil N. 2013.. Spherical aberration and the sign of defocus. . Optom. Vis. Sci. 90:(11):128491
    [Crossref] [Google Scholar]
  53. Thibos LN, Bradley A, Still D, Zhang X, Howarth P. 1990.. Theory and measurement of ocular chromatic aberration. . Vis. Res. 30:(1):3349
    [Crossref] [Google Scholar]
  54. Thibos LN, Ye M, Zhang X, Bradley A. 1992.. The chromatic eye: a new reduced-eye model of ocular chromatic aberration in humans. . Appl. Opt. 31:(19):3594600
    [Crossref] [Google Scholar]
  55. Thomson L, Wright WD. 1947.. The colour sensitivity of the retina within the central fovea of man. . J. Physiol. 105:(4):31631
    [Crossref] [Google Scholar]
  56. Troilo D, Smith EL, Nickla DL, Ashby R, Tkatchenko AV, et al. 2019.. IMI—report on experimental models of emmetropization and myopia. . Investig. Ophthalmol. Vis. Sci. 60:(3):M3188
    [Crossref] [Google Scholar]
  57. Viets K, Eldred KC, Johnston RJ. 2016.. Mechanisms of photoreceptor patterning in vertebrates and invertebrates. . Trends Genet. 32:(10):63859
    [Crossref] [Google Scholar]
  58. Wald G. 1967.. Blue-blindness in the normal fovea. . J. Opt. Soc. Am. 57:(11):1289301
    [Crossref] [Google Scholar]
  59. Wang J, Candy TR, Teel DF, Jacobs RJ. 2008.. Longitudinal chromatic aberration of the human infant eye. . J. Opt. Soc. Am. A 25:(9):226370
    [Crossref] [Google Scholar]
  60. Whitehead AJ, Mares JA, Danis RP. 2006.. Macular pigment: a review of current knowledge. . Arch. Ophthalmol. 124:(7):103845
    [Crossref] [Google Scholar]
  61. Wilby D, Roberts NW. 2017.. Optical influence of oil droplets on cone photoreceptor sensitivity. . J. Exp. Biol. 220:(11):19972004
    [Google Scholar]
  62. Wildsoet CF, Howland HC, Falconer S, Dick K. 1993.. Chromatic aberration and accommodation: their role in emmetropization in the chick. . Vis. Res. 33:(12):1593603
    [Crossref] [Google Scholar]
  63. Wilson BJ, Decker KE, Roorda A. 2002.. Monochromatic aberrations provide an odd-error cue to focus direction. . J. Opt. Soc. Am. A 19:(5):83339
    [Crossref] [Google Scholar]
  64. Ye M, Bradley A, Thibos L, Zhang X. 1991.. Interocular differences in transverse chromatic aberration determine chromostereopsis for small pupils. . Vis. Res. 31:(10):178796
    [Crossref] [Google Scholar]
  65. Yoon GY, Williams DR. 2002.. Visual performance after correcting the monochromatic and chromatic aberrations of the eye. . J. Opt. Soc. Am. A 19:(2):26675
    [Crossref] [Google Scholar]
  66. Zannoli M, Love GD, Narain R, Banks MS. 2016.. Blur and the perception of depth at occlusions. . J. Vis. 16:(6):17
    [Crossref] [Google Scholar]
  67. Zheleznyak L. 2023.. Peripheral optical anisotropy in refractive error groups. . Ophthalmic Physiol. Opt. 43:(3):43544
    [Crossref] [Google Scholar]
  68. Zhu X. 2013.. Temporal integration of visual signals in lens compensation (a review). . Exp. Eye Res. 114::6976
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-101222-052228
Loading
/content/journals/10.1146/annurev-vision-101222-052228
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error