1932

Abstract

Geographic atrophy (GA), the non-neovascular advanced form of age-related macular degeneration, remains an important disease area in which treatment needs are currently unmet. Recent clinical trials using drugs that target the complement pathway have shown modest yet consistent reductions in GA expansion but without commensurate changes in measures of visual function. In this review, we summarize information from the wide range of studies describing the characteristics of GA morphology and enumerate the factors influencing the growth rates of lesions and the directionality of expansion. In addition, we review the relationship between GA growth and the various measures of vision that reflect changes in function. We consider the reasons for the discordance between the anatomical and functional endpoints in current use and discuss methods to align these key outcomes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-101922-045110
2024-09-18
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-101922-045110.html?itemId=/content/journals/10.1146/annurev-vision-101922-045110&mimeType=html&fmt=ahah

Literature Cited

  1. Abdillahi H, Enzmann V, Wittwer VV, Wolf S, Wolf-Schnurrbusch UE. 2014.. Vitreoretinal interface changes in geographic atrophy. . Ophthalmology 121:(9):173439
    [Crossref] [Google Scholar]
  2. Adhi M, Lau M, Liang MC, Waheed NK, Duker JS. 2014.. Analysis of the thickness and vascular layers of the choroid in eyes with geographic atrophy using spectral-domain optical coherence tomography. . Retina 34:(2):30612
    [Crossref] [Google Scholar]
  3. Agrón E, Domalpally A, Cukras CA, Clemons TE, Chen Q, et al. 2023.. Reticular pseudodrusen status, ARMS2/HTRA1 genotype, and geographic atrophy enlargement: Age-Related Eye Disease Study 2 report 32. . Ophthalmology 130:(5):488500
    [Crossref] [Google Scholar]
  4. Agrón E, Mares J, Chew EY, Keenan TDL. 2022.. Adherence to a Mediterranean diet and geographic atrophy enlargement rate: Age-Related Eye Disease Study 2 report 29. . Ophthalmol. Retina 6:(9):76270
    [Crossref] [Google Scholar]
  5. Ahluwalia A, Shen LL, Bao Y, Sun M, Young BK, et al. 2023.. The influence of the topographic location of geographic atrophy on vision-related quality of life in nonexudative age-related macular degeneration. . Graefes Arch. Clin. Exp. Ophthalmol. 261:(3):699708
    [Crossref] [Google Scholar]
  6. Allingham MJ, Nie Q, Lad EM, Izatt DJ, Mettu PS, et al. 2016.. Semiautomatic segmentation of rim area focal hyperautofluorescence predicts progression of geographic atrophy due to dry age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 57:(4):228389
    [Crossref] [Google Scholar]
  7. Bernard JB, Chung STL. 2018.. Visual acuity is not the best at the preferred retinal locus in people with macular disease. . Optom. Vis. Sci. 95:(9):82936
    [Crossref] [Google Scholar]
  8. Biarnés M, Arias L, Alonso J, Garcia M, Hijano M, et al. 2015.. Increased fundus autofluorescence and progression of geographic atrophy secondary to age-related macular degeneration: the GAIN Study. . Am. J. Ophthalmol. 160:(2):34553.e5
    [Crossref] [Google Scholar]
  9. Capuano V, Miere A, Querques L, Sacconi R, Carnevali A, et al. 2017.. Treatment-naïve quiescent choroidal neovascularization in geographic atrophy secondary to nonexudative age-related macular degeneration. . Am. J. Ophthalmol. 182::4555
    [Crossref] [Google Scholar]
  10. Carnevali A, Cicinelli MV, Capuano V, Corvi F, Mazzaferro A, et al. 2016.. Optical coherence tomography angiography: a useful tool for diagnosis of treatment-naïve quiescent choroidal neovascularization. . Am. J. Ophthalmol. 169::18998
    [Crossref] [Google Scholar]
  11. Chakravarthy U, Bailey CC, Johnston RL, McKibbin M, Khan RS, et al. 2018.. Characterizing disease burden and progression of geographic atrophy secondary to age-related macular degeneration. . Ophthalmology 125:(6):84249
    [Crossref] [Google Scholar]
  12. Christenbury JG, Phasukkijwatana N, Gilani F, Freund KB, Sadda S, Sarraf D. 2018.. Progression of macular atrophy in eyes with type 1 neovascularization and age-related macular degeneration receiving long-term intravitreal anti-vascular endothelial growth factor therapy: an optical coherence tomographic angiography analysis. . Retina 38:(7):127688
    [Crossref] [Google Scholar]
  13. Dansingani KK, Freund KB. 2015.. Optical coherence tomography angiography reveals mature, tangled vascular networks in eyes with neovascular age-related macular degeneration showing resistance to geographic atrophy. . Ophthalmic Surg. Lasers Imaging Retina 46:(9):90712
    [Crossref] [Google Scholar]
  14. Danzig CJ, Kaiser P, Lally D, Jaffe GJ, Khanani AM, et al. 2023.. Treatment response to avacincaptad pegol by baseline patient characteristics: a prespecified subgroup analysis of the phase 3 GATHER2 study. . Investig. Ophthalmol. Vis. Sci. 64:(8):984
    [Google Scholar]
  15. Domalpally A, Danis RP, White J, Narkar A, Clemons T, et al. 2013.. Circularity index as a risk factor for progression of geographic atrophy. . Ophthalmology 120:(12):266671
    [Crossref] [Google Scholar]
  16. Feuer WJ, Yehoshua Z, Gregori G, Penha FM, Chew EY, et al. 2013.. Square root transformation of geographic atrophy area measurements to eliminate dependence of growth rates on baseline lesion measurements: a reanalysis of Age-Related Eye Disease Study report no. 26. . JAMA Ophthalmol. 131:(1):11011
    [Crossref] [Google Scholar]
  17. Fleckenstein M, Keenan TDL, Guymer RH, Chakravarthy U, Schmitz-Valckenberg S, et al. 2021.. Age-related macular degeneration. . Nat. Rev. Dis. Primers 7:(1):31
    [Crossref] [Google Scholar]
  18. Fleckenstein M, Mitchell P, Freund KB, Sadda S, Holz FG, et al. 2018.. The progression of geographic atrophy secondary to age-related macular degeneration. . Ophthalmology 125:(3):36990
    [Crossref] [Google Scholar]
  19. Fleckenstein M, Schmitz-Valckenberg S, Adrion C, Visvalingam S, Göbel AP, et al. 2011a.. Progression of age-related geographic atrophy: role of the fellow eye. . Investig. Ophthalmol. Vis. Sci. 52:(9):655257
    [Crossref] [Google Scholar]
  20. Fleckenstein M, Schmitz-Valckenberg S, Martens C, Kosanetzky S, Brinkmann CK, et al. 2011b.. Fundus autofluorescence and spectral-domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. . Investig. Ophthalmol. Vis. Sci. 52:(6):376166
    [Crossref] [Google Scholar]
  21. Forshaw TRJ, Kjaer TW, Andréasson S, Sørensen TL. 2021.. Full-field electroretinography in age-related macular degeneration: an overall retinal response. . Acta. Ophthalmol. 99:(2):e25359
    [Crossref] [Google Scholar]
  22. Forshaw TRJ, Subhi Y, Andréasson S, Sørensen TL. 2022.. Full-field electroretinography changes associated with age-related macular degeneration: a systematic review with meta-analyses. . Ophthalmologica 245:(3):195203
    [Crossref] [Google Scholar]
  23. Giocanti-Auregan A, Tadayoni R, Fajnkuchen F, Dourmad P, Magazzeni S, Cohen SY. 2015.. Predictive value of outer retina en face OCT imaging for geographic atrophy progression. . Investig. Ophthalmol. Vis. Sci. 56:(13):832530
    [Crossref] [Google Scholar]
  24. Grassmann F, Fleckenstein M, Chew EY, Strunz T, Schmitz-Valckenberg S, et al. 2015.. Clinical and genetic factors associated with progression of geographic atrophy lesions in age-related macular degeneration. . PLOS ONE 10:(5):e0126636
    [Crossref] [Google Scholar]
  25. Greferath U, Guymer RH, Vessey KA, Brassington K, Fletcher EL. 2016.. Correlation of histologic features with in vivo imaging of reticular pseudodrusen. . Ophthalmology 123:(6):132031
    [Crossref] [Google Scholar]
  26. Grossniklaus HE, Green WR. 2004.. Choroidal neovascularization. . Am. J. Ophthalmol. 137:(3):496503
    [Crossref] [Google Scholar]
  27. Heier JS, Lad EM, Holz FG, Rosenfeld PJ, Guymer RH, et al. 2023.. Pegcetacoplan for the treatment of geographic atrophy secondary to age-related macular degeneration (OAKS and DERBY): two multicentre, randomised, double-masked, sham-controlled, phase 3 trials. . Lancet 402:(10411):143448
    [Crossref] [Google Scholar]
  28. Heier JS, Pieramici D, Chakravarthy U, Patel SS, Gupta S, et al. 2020.. Visual function decline resulting from geographic atrophy: results from the Chroma and Spectri phase 3 trials. . Ophthalmol. Retina 4:(7):67388
    [Crossref] [Google Scholar]
  29. Heiferman MJ, Fawzi AA. 2019.. Progression of subclinical choroidal neovascularization in age-related macular degeneration. . PLOS ONE 14:(6):e0217805
    [Crossref] [Google Scholar]
  30. Holekamp N, Wykoff CC, Schmitz-Valckenberg S, Monés J, Souied EH, et al. 2020.. Natural history of geographic atrophy secondary to age-related macular degeneration: results from the prospective Proxima A and B clinical trials. . Ophthalmology 127:(6):76983
    [Crossref] [Google Scholar]
  31. Holz FG, Bindewald-Wittich A, Fleckenstein M, Dreyhaupt J, Scholl HP, et al. 2007.. Progression of geographic atrophy and impact of fundus autofluorescence patterns in age-related macular degeneration. . Am. J. Ophthalmol. 143:(3):46372
    [Crossref] [Google Scholar]
  32. Hwang CK, Agrón E, Domalpally A, Cukras CA, Wong WT, et al. 2021.. Progression of geographic atrophy with subsequent exudative neovascular disease in age-related macular degeneration: AREDS2 report 24. . Ophthalmol. Retina 5:(2):10817
    [Crossref] [Google Scholar]
  33. Jaffe GJ, Westby K, Csaky KG, Monés J, Pearlman JA, et al. 2021.. C5 inhibitor avacincaptad pegol for geographic atrophy due to age-related macular degeneration: a randomized pivotal phase 2/3 trial. . Ophthalmology 128:(4):57686
    [Crossref] [Google Scholar]
  34. Kader M. 2017.. Electrophysiological study of age-related macular degeneration. . New Front. Ophthalmol. 23:(2):7279
    [Google Scholar]
  35. Keenan TD, Agrón E, Mares J, Clemons TE, van Asten F, et al. 2020.. Adherence to the Mediterranean diet and progression to late age-related macular degeneration in the Age-Related Eye Disease Studies 1 and 2. . Ophthalmology 127:(11):151528
    [Crossref] [Google Scholar]
  36. Keenan TDL. 2023.. Geographic atrophy in age-related macular degeneration: a tale of two stages. . Ophthalmol. Sci. 3:(3):100306
    [Crossref] [Google Scholar]
  37. Khanani AM, Patel SS, Staurenghi G, Tadayoni R, Danzig CJ, et al. 2023.. Efficacy and safety of avacincaptad pegol in patients with geographic atrophy (GATHER2): 12-month results from a randomised, double-masked, phase 3 trial. . Lancet 402:(10411):144958
    [Crossref] [Google Scholar]
  38. Künzel SH, Lindner M, Sassen J, Möller PT, Goerdt L, et al. 2021.. Association of reading performance in geographic atrophy secondary to age-related macular degeneration with visual function and structural biomarkers. . JAMA Ophthalmol. 139:(11):119199
    [Crossref] [Google Scholar]
  39. Künzel SH, Möller PT, Lindner M, Goerdt L, Nadal J, et al. 2020.. Determinants of quality of life in geographic atrophy secondary to age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 61:(5):63
    [Crossref] [Google Scholar]
  40. Laiginhas R, Shi Y, Shen M, Jiang X, Feuer W, et al. 2022.. Persistent hypertransmission defects detected on en face swept source optical computed tomography images predict the formation of geographic atrophy in age-related macular degeneration. . Am. J. Ophthalmol. 237::5870
    [Crossref] [Google Scholar]
  41. Lee JY, Lee DH, Lee JY, Yoon YH. 2013.. Correlation between subfoveal choroidal thickness and the severity or progression of nonexudative age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 54:(12):781218
    [Crossref] [Google Scholar]
  42. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, et al. 2020.. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. . Ophthalmology 127:(2):18695
    [Crossref] [Google Scholar]
  43. Lindblad AS, Lloyd PC, Clemons TE, Gensler GR, Ferris FL 3rd, et al. 2009.. Change in area of geographic atrophy in the Age-Related Eye Disease study: AREDS report number 26. . Arch. Ophthalmol. 127:(9):116874
    [Crossref] [Google Scholar]
  44. Lindner M, Bezatis A, Czauderna J, Becker E, Brinkmann CK, et al. 2015a.. Choroidal thickness in geographic atrophy secondary to age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 56:(2):87582
    [Crossref] [Google Scholar]
  45. Lindner M, Böker A, Mauschitz MM, Göbel AP, Fimmers R, et al. 2015b.. Directional kinetics of geographic atrophy progression in age-related macular degeneration with foveal sparing. . Ophthalmology 122:(7):135665
    [Crossref] [Google Scholar]
  46. Lindner M, Nadal J, Mauschitz MM, Lüning A, Czauderna J, et al. 2017.. Combined fundus autofluorescence and near infrared reflectance as prognostic biomarkers for visual acuity in foveal-sparing geographic atrophy. . Investig. Ophthalmol. Vis. Sci. 58:(6):BIO6167
    [Crossref] [Google Scholar]
  47. McLeod DS, Grebe R, Bhutto I, Merges C, Baba T, Lutty GA. 2009.. Relationship between RPE and choriocapillaris in age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 50:(10):498291
    [Crossref] [Google Scholar]
  48. Merle BMJ, Colijn JM, Cougnard-Grégoire A, de Koning-Backus APM, Delyfer MN, et al. 2019.. Mediterranean diet and incidence of advanced age-related macular degeneration: the EYE-RISK consortium. . Ophthalmology 126:(3):38190
    [Crossref] [Google Scholar]
  49. Moult EM, Shi Y, Zhang Q, Wang L, Mazumder R, et al. 2021.. Analysis of correlations between local geographic atrophy growth rates and local OCT angiography-measured choriocapillaris flow deficits. . Biomed. Opt. Express 12:(7):457395
    [Crossref] [Google Scholar]
  50. Moussa K, Lee JY, Stinnett SS, Jaffe GJ. 2013.. Spectral domain optical coherence tomography-determined morphologic predictors of age-related macular degeneration-associated geographic atrophy progression. . Retina 33:(8):159099
    [Crossref] [Google Scholar]
  51. Narita C, Wu Z, Rosenfeld PJ, Yang J, Lyu C, et al. 2020.. Structural OCT signs suggestive of subclinical nonexudative macular neovascularization in eyes with large drusen. . Ophthalmology 127:(5):63747
    [Crossref] [Google Scholar]
  52. Nassisi M, Baghdasaryan E, Borrelli E, Ip M, Sadda SR. 2019.. Choriocapillaris flow impairment surrounding geographic atrophy correlates with disease progression. . PLOS ONE 14:(2):e0212563
    [Crossref] [Google Scholar]
  53. Nattagh K, Zhou H, Rinella N, Zhang Q, Dai Y, et al. 2020.. OCT angiography to predict geographic atrophy progression using choriocapillaris flow void as a biomarker. . Transl. Vis. Sci. Technol. 9:(7):6
    [Google Scholar]
  54. Pfau M, Lindner M, Goerdt L, Thiele S, Nadal J, et al. 2019.. Prognostic value of shape-descriptive factors for the progression of geographic atrophy secondary to age-related macular degeneration. . Retina 39:(8):152740
    [Crossref] [Google Scholar]
  55. Pfau M, Möller PT, Künzel SH, von der Emde L, Lindner M, et al. 2020a.. Type 1 choroidal neovascularization is associated with reduced localized progression of atrophy in age-related macular degeneration. . Ophthalmol. Retina 4:(3):23848
    [Crossref] [Google Scholar]
  56. Pfau M, von der Emde L, de Sisternes L, Hallak JA, Leng T, et al. 2020b.. Progression of photoreceptor degeneration in geographic atrophy secondary to age-related macular degeneration. . JAMA Ophthalmol. 138:(10):102634
    [Crossref] [Google Scholar]
  57. Querques G, Srour M, Massamba N, Georges A, Ben Moussa N, et al. 2013.. Functional characterization and multimodal imaging of treatment-naive “quiescent” choroidal neovascularization. . Investig. Ophthalmol. Vis. Sci. 54:(10):688692
    [Crossref] [Google Scholar]
  58. Quinn N, Csincsik L, Flynn E, Curcio CA, Kiss S, et al. 2019.. The clinical relevance of visualising the peripheral retina. . Prog. Retin. Eye Res. 68::83109
    [Crossref] [Google Scholar]
  59. Roisman L, Zhang Q, Wang RK, Gregori G, Zhang A, et al. 2016.. Optical coherence tomography angiography of asymptomatic neovascularization in intermediate age-related macular degeneration. . Ophthalmology 123:(6):130919
    [Crossref] [Google Scholar]
  60. Rosenfeld PJ, Dugel PU, Holz FG, Heier JS, Pearlman JA, et al. 2018.. Emixustat hydrochloride for geographic atrophy secondary to age-related macular degeneration: a randomized clinical trial. . Ophthalmology 125:(10):155667
    [Crossref] [Google Scholar]
  61. Sacconi R, Corbelli E, Borrelli E, Capone L, Carnevali A, et al. 2021.. Choriocapillaris flow impairment could predict the enlargement of geographic atrophy lesion. . Br. J. Ophthalmol. 105:(1):97102
    [Crossref] [Google Scholar]
  62. Sarks JP, Sarks SH, Killingsworth MC. 1997.. Morphology of early choroidal neovascularisation in age-related macular degeneration: correlation with activity. . Eye 11:(Part 4):51522
    [Crossref] [Google Scholar]
  63. Sato T, Suzuki M, Ooto S, Spaide RF. 2015.. Multimodal imaging findings and multimodal vision testing in neovascular age-related macular degeneration. . Retina 35:(7):1292302
    [Crossref] [Google Scholar]
  64. Schmitz-Valckenberg S, Bindewald-Wittich A, Dolar-Szczasny J, Dreyhaupt J, Wolf S, et al. 2006.. Correlation between the area of increased autofluorescence surrounding geographic atrophy and disease progression in patients with AMD. . Investig. Ophthalmol. Vis. Sci. 47:(6):264854
    [Crossref] [Google Scholar]
  65. Schmitz-Valckenberg S, Sahel J-A, Danis R, Fleckenstein M, Jaffe GJ, et al. 2016.. Natural history of geographic atrophy progression secondary to age-related macular degeneration (Geographic Atrophy Progression Study). . Ophthalmology 123:(2):36168
    [Crossref] [Google Scholar]
  66. Shen LL, Sun M, Ahluwalia A, Park MM, Young BK, Del Priore LV. 2021a.. Local progression kinetics of geographic atrophy depends upon the border location. . Investig. Ophthalmol. Vis. Sci. 62:(13):28
    [Crossref] [Google Scholar]
  67. Shen LL, Sun M, Ahluwalia A, Young BK, Park MM, Del Priore LV. 2021b.. Geographic atrophy growth is strongly related to lesion perimeter: unifying effects of lesion area, number, and circularity on growth. . Ophthalmol. Retina 5:(9):86878
    [Crossref] [Google Scholar]
  68. Shen LL, Sun M, Ahluwalia A, Young BK, Park MM, et al. 2021c.. Relationship of topographic distribution of geographic atrophy to visual acuity in nonexudative age-related macular degeneration. . Ophthalmol. Retina 5:(8):76174
    [Crossref] [Google Scholar]
  69. Shen LL, Sun M, Khetpal S, Nardini HKG, Del Priore LV. 2020.. Topographic variation of the growth rate of geographic atrophy in nonexudative age-related macular degeneration: a systematic review and meta-analysis. . Investig. Ophthalmol. Vis. Sci. 61:(1):2
    [Google Scholar]
  70. Shi Y, Motulsky EH, Goldhardt R, Zohar Y, Thulliez M, et al. 2019.. Predictive value of the OCT double-layer sign for identifying subclinical neovascularization in age-related macular degeneration. . Ophthalmol. Retina 3:(3):21119
    [Crossref] [Google Scholar]
  71. Stetson PF, Yehoshua Z, Garcia Filho CAA, Nunes RP, Gregori G, Rosenfeld PJ. 2014.. OCT minimum intensity as a predictor of geographic atrophy enlargement. . Investig. Ophthalmol. Vis. Sci. 55:(2):792800
    [Crossref] [Google Scholar]
  72. Sunness JS, Applegate CA. 2005.. Long-term follow-up of fixation patterns in eyes with central scotomas from geographic atrophy that is associated with age-related macular degeneration. . Am. J. Ophthalmol. 140:(6):108593
    [Crossref] [Google Scholar]
  73. Sunness JS, Applegate CA, Gonzalez-Baron J. 2000.. Improvement of visual acuity over time in patients with bilateral geographic atrophy from age-related macular degeneration. . Retina 20:(2):16269
    [Crossref] [Google Scholar]
  74. Sunness JS, Applegate CA, Haselwood D, Rubin GS. 1996.. Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. . Ophthalmology 103:(9):145866
    [Crossref] [Google Scholar]
  75. Sunness JS, Gonzalez-Baron J, Applegate CA, Bressler NM, Tian Y, et al. 1999.. Enlargement of atrophy and visual acuity loss in the geographic atrophy form of age-related macular degeneration. . Ophthalmology 106:(9):176879
    [Crossref] [Google Scholar]
  76. Sunness JS, Ifrah A, Wolf R, Applegate CA, Sparrow JR. 2020.. Abnormal visual function outside the area of atrophy defined by short-wavelength fundus autofluorescence in Stargardt disease. . Investig. Ophthalmol. Vis. Sci. 61:(4):36
    [Crossref] [Google Scholar]
  77. Sunness JS, Margalit E, Srikumaran D, Applegate CA, Tian Y, et al. 2007.. The long-term natural history of geographic atrophy from age-related macular degeneration: enlargement of atrophy and implications for interventional clinical trials. . Ophthalmology 114:(2):27177
    [Crossref] [Google Scholar]
  78. Sunness JS, Rubin GS, Applegate CA, Bressler NM, Marsh MJ, et al. 1997.. Visual function abnormalities and prognosis in eyes with age-related geographic atrophy of the macula and good visual acuity. . Ophthalmology 104:(10):167791
    [Crossref] [Google Scholar]
  79. Sunness JS, Rubin GS, Broman A, Applegate CA, Bressler NM, Hawkins BS. 2008.. Low luminance visual dysfunction as a predictor of subsequent visual acuity loss from geographic atrophy in age-related macular degeneration. . Ophthalmology 115:(9):148088.e1–2
    [Crossref] [Google Scholar]
  80. Thorell MR, Goldhardt R, Nunes RP, de Amorim Garcia Filho CA, Abbey AM, et al. 2015.. Association between subfoveal choroidal thickness, reticular pseudodrusen, and geographic atrophy in age-related macular degeneration. . Ophthalmic Surg. Lasers Imaging Retina 46:(5):51321
    [Crossref] [Google Scholar]
  81. Varma R, Souied EH, Tufail A, Tschosik E, Ferrara D, et al. 2018.. Maximum reading speed in patients with geographic atrophy secondary to age-related macular degeneration. . Investig. Ophthalmol. Vis. Sci. 59:(4):AMD195201
    [Crossref] [Google Scholar]
  82. Walter P, Widder RA, Lüke C, Königsfeld P, Brunner R. 1999.. Electrophysiological abnormalities in age-related macular degeneration. . Graefes Arch. Clin. Exp. Ophthalmol. 237:(12):96268
    [Crossref] [Google Scholar]
  83. Yazdanie M, Alvarez J, Agrón E, Wong WT, Wiley HE, et al. 2017.. Decreased visual function scores on a low luminance questionnaire is associated with impaired dark adaptation. . Ophthalmology 124:(9):133239
    [Crossref] [Google Scholar]
  84. You JI, Yu S-Y, Kim ES, Kim K. 2021.. Correlation between topographic progression of geographic atrophy and visual acuity changes. . Korean J. Ophthalmol. 35:(6):44854
    [Crossref] [Google Scholar]
  85. Zhang Q, Shi Y, Shen M, Cheng Y, Zhou H, et al. 2022.. Does the outer retinal thickness around geographic atrophy represent another clinical biomarker for predicting growth?. Am. J. Ophthalmol. 244::7987
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-101922-045110
Loading
/content/journals/10.1146/annurev-vision-101922-045110
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error