Investigation of natural behavior has contributed a number of insights to our understanding of visual guidance of actions by highlighting the importance of behavioral goals and focusing attention on how vision and action play out in time. In this context, humans make continuous sequences of sensory-motor decisions to satisfy current behavioral goals, and the role of vision is to provide the relevant information for making good decisions in order to achieve those goals. This conceptualization of visually guided actions as a sequence of sensory-motor decisions has been formalized within the framework of statistical decision theory, which structures the problem and provides the context for much recent progress in vision and action. Components of a good decision include the task, which defines the behavioral goals, the rewards and costs associated with those goals, uncertainty about the state of the world, and prior knowledge.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ackermann J, Landy M. 2013. Choice of saccade endpoint under risk. J. Vis. 13:327 [Google Scholar]
  2. Aivar MP, Hayhoe MH, Chizk CL, Mruczek REB. 2005. Spatial memory in saccadic targeting in a natural task. J. Vis. 5:33 [Google Scholar]
  3. Aivar MP, Li C-L, Tong MH, Kit D, Hayhoe M. 2016. Acquisition and persistence of location information over the time course of natural actions. J. Vis. 16:12353 [Google Scholar]
  4. Assad J, Maunsell J. 1995. Neuronal correlates of inferred motion in primate posterior parietal cortex. Nature 373:518–21 [Google Scholar]
  5. Barnes GR, Collins CJS. 2008. Evidence for a link between the extra-retinal component of random-onset pursuit and the anticipatory pursuit of predictable object motion. J. Neurophysiol. 100:1135–46 [Google Scholar]
  6. Belousov B, Neumann G, Rothkopf C, Peters J. 2016. Catching heuristics are optimal control policies. Adv. Neural Inf. Process. Syst. Proc. 29:1–9 [Google Scholar]
  7. Brenner E, Smeets J. 2007. Insights about seeing. Cortex 43:271–74 [Google Scholar]
  8. Brenner E, Smeets J. 2015. How people achieve their amazing temporal precision in interception. J. Vis. 15:38 [Google Scholar]
  9. Brockmole JR, Castelhano MS, Henderson JM. 2006. Contextual cueing in naturalistic scenes: global and local contexts. J. Exp. Psychol. Learn. Mem. Cogn. 32:699–706 [Google Scholar]
  10. Bromberg-Martin ES, Hikosaka O. 2009. Midbrain dopamine neurons signal preference for advance information about upcoming rewards. Neuron 63:119–26 [Google Scholar]
  11. Brouwer A, Knill D. 2007. The role of memory in visually guided reaching. J. Vis. 7:56 [Google Scholar]
  12. Brouwer A, Knill D. 2009. Humans use visual and remembered information about object location to plan pointing movements. J. Vis. 9:124 [Google Scholar]
  13. Bruce NDB, Tsotsos JK. 2009. Saliency, attention, and visual search: an information theoretic approach. J. Vis. 9:35 [Google Scholar]
  14. Cicchini GM, Binda P, Burr DC, Morrone MC. 2013. Transient spatiotopic integration across saccadic eye movements mediates visual stability. J. Neurophysiol. 109:1117–25 [Google Scholar]
  15. Cole J, Paillard J. 1995. Living without touch and peripheral information about body position and movement: studies with a deafferented subject. The Body and the Self JL Bermúdez, A Marcel, J Eilan 245–66 Cambridge, MA: MIT Press [Google Scholar]
  16. Daddaoua N, Lopes M, Gottlieb J. 2016. Intrinsically motivated oculomotor exploration guided by uncertainty reduction and conditioned reinforcement in non-human primates. Sci. Rep. 6:20202 [Google Scholar]
  17. de la Malla C, López-Moliner J. 2015. Predictive plus online visual information optimizes temporal precision in interception. J. Exp. Psychol. Hum. Percept. Perform. 41:1271–80 [Google Scholar]
  18. Della Liberia C, Chelazzi L. 2009. Learning to attend and to ignore is a matter of gains and losses. Psychol. Sci. 20:778–84 [Google Scholar]
  19. Diaz GJ, Cooper J, Hayhoe M. 2013a. Memory and prediction in natural gaze control. Philos. Trans. R. Soc. B 368:0064 [Google Scholar]
  20. Diaz GJ, Cooper J, Rothkopf C, Hayhoe M. 2013b. Saccades to future ball location reveal memory-based prediction in a natural interception task. J. Vis. 13:120 [Google Scholar]
  21. Diaz GJ, Phillips F, Fajen BR. 2009. Intercepting moving targets: a little foresight helps a lot. Exp. Brain Res. 195:345–60 [Google Scholar]
  22. Diedrichsen J, Shadmehr R, Ivry R. 2009. The coordination of movement: optimal feedback control and beyond. Trends Cogn. Sci. 14:31–39 [Google Scholar]
  23. Dorris MC, Glimcher PW. 2004. Activity in posterior parietal cortex is correlated with the subjective desirability of an action. Neuron 44:365–78 [Google Scholar]
  24. Droll J, Hayhoe M. 2007. Deciding when to remember and when to forget: trade-offs between working memory and gaze. J. Exp. Psychol. Hum. Percept. Perform. 33:1352–65 [Google Scholar]
  25. Droll J, Hayhoe M, Triesch J, Sullivan B. 2005. Task demands control acquisition and maintenance of visual information. J. Exp. Psychol. Hum. Percept. Perform. 31:1416–38 [Google Scholar]
  26. Duhamel J, Colby CL, Goldberg ME. 1992. The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92 [Google Scholar]
  27. Epelboim J, Steinman R, Kowler E, Edwards M, Pizlo Z. et al. 1995. The function of visual search and memory in sequential looking tasks. Vis. Res. 35:3401–22 [Google Scholar]
  28. Fajen BR, Matthis JS. 2013. Visual and non-visual contributions to the perception of object motion during self-motion. PLOS ONE 8:e55446 [Google Scholar]
  29. Fajen BR, Parade MS, Matthis JS. 2013. Humans perceive object motion in world coordinates during obstacle avoidance. J. Vis. 13:825 [Google Scholar]
  30. Ferrera VP, Barborica A. 2010. Internally generated error signals in monkey frontal eye field during an inferred motion task. J. Neurosci. 30:11612–23 [Google Scholar]
  31. Flanagan J, Beltzner M. 2000. Independence of perceptual and sensorimotor predictions in the size-weight illusion. Nat. Neurosci. 3:737–41 [Google Scholar]
  32. Foley NC, Kelly SP, Mhatre H, Lopes M, Gottlieb J. 2017. Parietal neurons encode expected gains in instrumental information. PNAS 114:3315–23 [Google Scholar]
  33. Fooken J, Yeo S-H, Pai DK, Spering M. 2016. Eye movement accuracy determines natural interception strategies. J. Vis. 16:141 [Google Scholar]
  34. Foulsham T, Chapman C, Nasiopoulos E, Kingstone A. 2014. Top-down and bottom-up aspects of active search in a real-world environment. Can. J. Exp. Psychol. 68:8–19 [Google Scholar]
  35. Franchak JM, Adolph KE. 2010. Visually guided navigation: head mounted eye tracking of natural locomotion in children and adults. Vis. Res. 50:2766–74 [Google Scholar]
  36. Franklin DW, Wolpert D. 2011. Computational mechanisms of sensorimotor control. Neuron 72:427–42 [Google Scholar]
  37. Freud E, Plaut DC, Behrmann M. 2016. “What” is happening in the dorsal visual pathway. Trends Cogn. Sci. 20(10):773–84 [Google Scholar]
  38. Fukushima J, Akao T, Kurkin S, Kaneko C, Fukushima K. 2006. The vestibular-related frontal cortex and its role in smooth-pursuit eye movements and vestibular-pursuit interactions. J. Vestib. Res. 16:1–22 [Google Scholar]
  39. Ghahghaei S, Verghese P. 2015. Efficient saccade planning requires time and clear choices. Vis. Res. 113:125–36 [Google Scholar]
  40. Glimcher PW. 2011. Understanding dopamine and reinforcement learning: the dopamine reward prediction error hypothesis. PNAS 108:Suppl. 315647–54 [Google Scholar]
  41. Glimcher PW, Camerer CF, Fehr E, Poldrack RA. 2009. Neuroeconomics: Decision Making and the Brain London: Acad. Press [Google Scholar]
  42. Goodale MA. 2008. Action without perception in human vision. Cogn. Neuropsychol. 25:891–919 [Google Scholar]
  43. Goodale MA. 2014. How (and why) the visual control of action differs from visual perception. Proc. R. Soc. B 281:20140337 [Google Scholar]
  44. Goodale M, Milner D. 2005. Sight Unseen: An Exploration of Conscious and Unconscious Vision Oxford, UK: Oxford Univ. Press [Google Scholar]
  45. Gordon A, Forssberg H, Johansson R, Westling G. 1991. Visual size cues in the programming of manipulative forces during precision grip. Exp. Brain Res. 83:477–82 [Google Scholar]
  46. Gottlieb J. 2012. Attention, learning, and the value of information. Neuron 76:281–95 [Google Scholar]
  47. Harris LR, Jenkin M, Zikovitz DC. 2000. Visual and non-visual cues in the perception of linear self motion. Exp. Brain Res. 135:12–21 [Google Scholar]
  48. Harris LR, Jenkin M, Zikowitz D, Redlick F, Jaekl P. et al. 2002. Simulating self-motion I: cues for the perception of motion. Virtual Real 6:75–85 [Google Scholar]
  49. Hayhoe M. 2009. Visual memory in motor planning and action. Memory for the Visual World J Brockmole 117–39 Hove, UK: Psychol. Press [Google Scholar]
  50. Hayhoe M, Ballard D. 2005. Eye movements in natural behavior. Trends Cogn. Sci. 9:4188–93 [Google Scholar]
  51. Hayhoe M, Ballard D. 2014. Modeling task control of eye movements. Curr. Biol. 24:622–28 [Google Scholar]
  52. Hayhoe M, Chajka K, McKinney T, Pelz J. 2012. Prediction in saccadic eye movements. Exp. Brain Res. 217:125–36 [Google Scholar]
  53. Hayhoe M, Shrivastrava A, Mruczek R, Pelz J. 2003. Visual memory and motor planning in a natural task. J. Vis. 3:16 [Google Scholar]
  54. Hesse C, Franz VH. 2009. Memory mechanisms in grasping. Neuropsychologia 47:61532–45 [Google Scholar]
  55. Hesse C, Franz VH. 2010. Grasping remembered objects: exponential decay of the visual memory. Vis. Res. 50:2642–50 [Google Scholar]
  56. Hikosaka O, Nakamura K, Nakahara H. 2006. Basal ganglia orient eyes to reward. J. Neurophysiol. 95:567–84 [Google Scholar]
  57. Hollingworth A. 2009. Two forms of scene memory guide visual search: memory for scene context and memory for the binding of target object to scene location. Vis. Cogn. 17:273–91 [Google Scholar]
  58. Hollingworth A. 2012. Task specificity and the influence of memory on visual search: comment on Võ and Wolfe 2012. J. Exp. Psychol. Hum. Percept. Perform. 38:1596–603 [Google Scholar]
  59. Hoppe D, Rothkopf C. 2016. Learning rational temporal eye movement strategies. PNAS 113:8332–37 [Google Scholar]
  60. Itti L, Baldi P. 2005. Bayesian surprise attracts human attention. Advances in Neural Information Processing Systems 18 Y Weiss, PB Schölkopf, JC Platt 547–54 Cambridge, MA: MIT Press [Google Scholar]
  61. Itti L, Koch C. 2000. A saliency-based search mechanism for overt and covert shifts of visual attention. Vis. Res. 40:1489–506 [Google Scholar]
  62. Jiang YV, Won B-Y, Swallow KM, Mussack DM. 2014. Spatial reference frame of attention in a large outdoor environment. J. Exp. Psychol. Hum. Percept. Perform. 40:1346–57 [Google Scholar]
  63. Johansson R, Westling G, Bäckstrom A, Flanagan R. 2001. Eye–hand coordination in object manipulation. J. Neurosci. 21:6917–32 [Google Scholar]
  64. Johnson LM, Sullivan BT, Hayhoe MM, Ballard DH. 2014. Predicting human visuo-motor behavior in a driving task. Philos. Trans. R. Soc. B 368:1471–2970 [Google Scholar]
  65. Jovancevic J, Hayhoe M. 2009. Adaptive gaze control in natural environments. J. Neurosci. 29:6234–38 [Google Scholar]
  66. Kable JW, Glimcher PW. 2009. The neurobiology of decision: consensus and controversy. Neuron 63:733–45 [Google Scholar]
  67. Kim HF, Ghazizadeh A, Hikosaka O. 2014. Separate groups of dopamine neurons innervate caudate head and tail encoding flexible and stable value memories. Front. Neuroanat. 8:120 [Google Scholar]
  68. Kit D, Katz L, Sullivan B, Snyder K, Hayhoe M, Ballard D. 2014. Searching for objects in a virtual apartment: the effects of experience on scene memory. PLOS ONE 9:e94362 [Google Scholar]
  69. Knill DC, Bondada A, Chhabra M. 2011. Flexible, task-dependent use of sensory feedback to control hand movement. J. Neurosci. 31:1219–37 [Google Scholar]
  70. Knill DC, Richards W. 1996. Perception as Bayesian Inference New York: Cambridge Univ. Press [Google Scholar]
  71. Koerding K, Wolpert D. 2004. Bayesian integration in sensorimotor learning. Nature 427:244–47 [Google Scholar]
  72. Kowler E. 2011. Eye movements: the last 25 years. Vis. Res. 51:1457–83 [Google Scholar]
  73. Kriegeskorte N. 2015. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vis. Sci. 1:417–46 [Google Scholar]
  74. Land MF, Furneaux S. 1997. The knowledge base of the oculomotor system. Philos. Trans. R. Soc. B 352:1231–39 [Google Scholar]
  75. Land MF, Hayhoe M. 2001. In what ways do eye movements contribute to everyday activities. ? Vis. Res. 41:3559–66 [Google Scholar]
  76. Land MF, Lee DN. 1994. Where we look when we steer. Nature 369:742–44 [Google Scholar]
  77. Land MF, Mennie N, Rusted J. 1999. The roles of vision and eye movements in the control of activities of daily living. Perception 28:1311–28 [Google Scholar]
  78. Land MF, McLeod P. 2000. From eye movements to actions: how batsmen hit the ball. Nat. Neurosci. 3:1340–45 [Google Scholar]
  79. Land MF, Tatler B. 2009. Looking and Acting: Vision and Eye Movements in Natural Behavior Oxford, UK: Oxford Univ. Press [Google Scholar]
  80. Latash ML, Scholz JP, Schöner G. 2002. Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 30:26–31 [Google Scholar]
  81. Lee D, Seo H, Jung MW. 2012. Neural basis of reinforcement learning and decision making. Annu. Rev. Neurosci. 35:287–308 [Google Scholar]
  82. Li C-L, Aivar MP, Kit DM, Tong MH, Hayhoe M. 2016. Memory and visual search in naturalistic 2D and 3D environments. J. Vis. 16:89 [Google Scholar]
  83. Liu D, Todorov E. 2007. Evidence for the flexible sensorimotor strategies predicted by optimal feedback control. J. Neurosci. 27:9354–68 [Google Scholar]
  84. Mack SC, Eckstein MP. 2011. Object co-occurrence serves as a contextual cue to guide and facilitate visual search in a natural viewing environment. J. Vis. 11:99 [Google Scholar]
  85. Madelain L, Krauzlis RJ. 2003. Effects of learning on smooth pursuit during transient disappearance of a visual target. J. Neurophysiol. 90:972–82 [Google Scholar]
  86. Maloney L, Zhang H. 2010. Decision-theoretic models of visual perception and action. Vis. Res. 50:2362–74 [Google Scholar]
  87. Marr D. 1982. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information Cambridge, MA: MIT Press [Google Scholar]
  88. Martin T, Riley M, Kelly K, Hayhoe M, Huxlin K. 2007. Visually-guided behavior of homonymous hemianopes in a naturalistic task. Vis. Res. 47:3434–46 [Google Scholar]
  89. Matthis JS, Fajen BR. 2013. Humans exploit the biomechanics of bipedal gait during visually guided walking over complex terrain. Proc. R. Soc. B 280:20130700 [Google Scholar]
  90. Matthis JS, Fajen BR. 2014. Visual control of foot placement when walking over complex terrain. J. Exp. Psychol. Hum. Percept. Perform. 40:106–15 [Google Scholar]
  91. Melcher D, Colby C. 2008. Trans-saccadic perception. Trends Cogn. Sci. 12:466–73 [Google Scholar]
  92. Milner AD, Goodale MA. 2008. Two visual systems re-viewed. Neuropsychologia 46:774–85 [Google Scholar]
  93. Najemnik J, Geisler WS. 2005. Optimal eye movement strategies in visual search. Nature 434:387–91 [Google Scholar]
  94. Najemnik J, Geisler WS. 2008. Eye movement statistics in humans are consistent with an optimal search strategy. J. Vis. 8:34 [Google Scholar]
  95. Navalpakkam V, Koch C, Rangel A, Perona P. 2010. Optimal reward harvesting in complex perceptual environments. PNAS 107:5232–37 [Google Scholar]
  96. Nyffeler T, Rivaud-Pechoux S, Wattiez N, Gaymard B. 2008. Involvement of the supplementary eye field in oculomotor predictive behavior. J. Cogn. Neurosci. 20:1583–94 [Google Scholar]
  97. Orban de Xivry J-J, Bennett SJ, Lefèvre P, Barnes GR. 2006. Evidence for synergy between saccades and smooth pursuit during transient target disappearance. J. Neurophysiol. 95:418–27 [Google Scholar]
  98. Patla AE, Vickers JN. 2003. How far ahead do we look when required to step on specific locations in the travel path during locomotion. ? Exp. Brain Res. 148:133–38 [Google Scholar]
  99. Paulun V, Gegenfurtner K, Goodale M, Fleming R. 2016. Effects of material properties and object orientation on precision grasp kinematics. Exp. Brain Res. 234:2253–65 [Google Scholar]
  100. Pelz JB, Canosa R. 2001. Oculomotor behavior and perceptual strategies in complex tasks. Vis. Res. 41:3587–59 [Google Scholar]
  101. Platt M, Glimcher P. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38 [Google Scholar]
  102. Pollick F, Chizk C, Hager-Ross C, Hayhoe M. 2001. Implicit accuracy constraints in two-fingered grasps of virtual objects with haptic feedback. Haptic Human Computer Interaction M Brewster, R Murray-Smith 98–107 Lecture Notes Comput. Sci 2058 Berlin: Springer [Google Scholar]
  103. Renninger LW, Verghese P, Coughlan J. 2007. Where to look next? Eye movements reduce local uncertainty. J. Vis. 7:36 [Google Scholar]
  104. Rosenholtz R. 1999. A simple saliency model predicts a number of motion popout phenomena. Vis. Res. 39:3157–63 [Google Scholar]
  105. Roth M, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB. 2016. Thalamic nuclei convey diverse contextual information to layer 1 of visual cortex. Nat. Neurosci. 19:299–307 [Google Scholar]
  106. Schultz W. 2000. Multiple reward signals in the brain. Nat. Rev. Neurosci. 1:199–207 [Google Scholar]
  107. Schütz AC, Braun DI, Gegenfurtner KR. 2011. Eye movements and perception: a selective review. J. Vis. 11:59 [Google Scholar]
  108. Schütz AC, Trommershäuser J, Gegenfurtner K. 2012. Dynamic integration of information about salience and value for saccadic eye movements. PNAS 109:7547–52 [Google Scholar]
  109. Seo H, Barraclough DJ, Lee D. 2007. Dynamic signals related to choices and outcomes in the dorsolateral prefrontal cortex. Cereb. Cortex 17:110–17 [Google Scholar]
  110. Seydell A, McCann BC, Trommershäuser J, Knill DC. 2008. Learning stochastic reward distributions in a speeded pointing task. J. Neurosci. 28:4356–67 [Google Scholar]
  111. Shadmehr R, Smith M, Krakauer JW. 2010. Error correction, sensory prediction, and adaptation in motor control. Annu. Rev. Neurosci. 33:89–108 [Google Scholar]
  112. Shenk T, McIntosh RD. 2010. Do we have independent visual streams for perception and action?. Cogn. Neurosci. 1:52–78 [Google Scholar]
  113. Shichinohe N, Akao T, Kurkin S, Fukushima J, Kaneko CRS, Fukushima K. 2009. Memory and decision making in the frontal cortex during visual motion processing for smooth pursuit eye movements. Neuron 62:717–32 [Google Scholar]
  114. Spering M, Carrasco M. 2015. Acting without seeing: Eye movements reveal visual processing without awareness. Trends Neurosci 38:247–58 [Google Scholar]
  115. Spering M, Schütz AC, Braun DI, Gegenfurtner KR. 2011. Keep your eyes on the ball: Smooth pursuit eye movements enhance the prediction of visual motion. J. Neurophysiol. 105:1756–67 [Google Scholar]
  116. Sprague N, Ballard DH, Robinson A. 2007. Modeling embodied visual behaviors. ACM Trans. Appl. Percept. 4:11 [Google Scholar]
  117. Sprague W, Cooper E, Tosic I, Banks M. 2015. Stereopsis is adaptive for the natural environment. Sci. Adv. 1:e1400254 [Google Scholar]
  118. Stuphorn V, Schall JD. 2006. Executive control of countermanding saccades by the supplementary eye field. Nat. Neurosci. 9:925–31 [Google Scholar]
  119. Sugrue LP, Corrado GS, Newsome WT. 2004. Matching behavior and the encoding of value in parietal cortex. Science 304:1782–87 [Google Scholar]
  120. Sugrue LP, Corrado GS, Newsome WT. 2005. Choosing the greater of two goods: neural currencies for valuation and decision making. Nat. Rev. Neurosci. 6:363–75 [Google Scholar]
  121. Sullivan B, Johnson L, Rothkopf C, Ballard D, Hayhoe M. 2012. The role of uncertainty and reward on eye movements in a virtual driving task. J. Vis. 12:1319 [Google Scholar]
  122. Sutton R, Barto A. 1998. Reinforcement Learning: An Introduction Cambridge, MA: MIT Press [Google Scholar]
  123. ’t Hart BM, Einhäuser W. 2012. Mind the step: complementary effects of an implicit task on eye and head movements in real-life gaze allocation. Exp. Brain Res. 223:233–49 [Google Scholar]
  124. Tassinari H, Hudson TE, Landy MS. 2006. Combining priors and noisy visual cues in a rapid pointing task. J. Neurosci. 26:10154–63 [Google Scholar]
  125. Tatler B, Hayhoe M, Land MF, Ballard D. 2011. Eye guidance in natural vision: reinterpreting salience. J. Vis. 11:55 [Google Scholar]
  126. Tatler B, Land MF. 2011. Vision and the representation of the surroundings in spatial memory. Philos. Trans. R. Soc. B 366:596–610 [Google Scholar]
  127. Todorov E, Jordan MI. 2002. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5:1226–35 [Google Scholar]
  128. Tong M, Zhang S, Johnson L, Ballard D, Hayhoe M. 2015. Modelling task control of gaze. J. Vis. 15:12784 [Google Scholar]
  129. Tong M, Zohar O, Hayhoe M. 2017. Control of gaze while walking: task structure, reward, and uncertainty. J. Vis. 17:128 [Google Scholar]
  130. Triesch J, Ballard DH, Hayhoe MM, Sullivan BT. 2003. What you see is what you need. J. Vis. 3:19 [Google Scholar]
  131. Trommershäuser J, Glimcher PW, Gegenfurtner KR. 2009. Visual processing, learning and feedback in the primate eye movement system. Trends Neurosci 32:583–90 [Google Scholar]
  132. Trommershäuser J, Maloney L, Landy M. 2003. Statistical decision theory and the selection of rapid, goal-directed movements. J. Opt. Soc. Am. A 20:1419–33 [Google Scholar]
  133. Troncoso XG, McCamy MB, Jazi AN, Cui J, Otero-Millan J. et al. 2015. V1 neurons respond differently to object motion versus motion from eye movements. Nat. Commun. 6:8114 [Google Scholar]
  134. Verghese P. 2012. Active search for multiple targets is inefficient. Vis. Res. 74:61–71 [Google Scholar]
  135. ML-H, Henderson JM. 2010. The time course of initial scene processing for eye movement guidance in natural scene search. J. Vis. 10:314 [Google Scholar]
  136. ML-H, Wolfe JM. 2012. When does repeated search in scenes involve memory? Looking at versus looking for objects in scenes. J. Exp. Psychol. Learn. Mem. Cogn. 38:23–41 [Google Scholar]
  137. Warren PA, Rushton SK. 2008. Evidence for flow-parsing in radial flow displays. Vis. Res. 48:655–63 [Google Scholar]
  138. Warren PA, Rushton SK. 2009a. Optic flow processing for the assessment of object movement during ego movement.. Curr. Biol. 19:1555–60 [Google Scholar]
  139. Warren PA, Rushton SK. 2009b. Perception of scene-relative object movement: optic flow parsing and the contribution of monocular depth cues. Vis. Res. 49:1406–19 [Google Scholar]
  140. Wolpert DM, Flanagan JR. 2016. Computations underlying sensorimotor learning. Curr. Opin. Neurobiol. 37:7–11 [Google Scholar]
  141. Wolpert DM, Landy MS. 2012. Motor control is decision making. Curr. Opin. Neurobiol. 22:1–8 [Google Scholar]
  142. Wolpert DM, Miall RC, Kawato M. 1998. Internal models in the cerebellum. Trends Cogn. Sci. 2:338–47 [Google Scholar]
  143. Yasuda M, Yamamoto S, Hikosaka O. 2012. Robust representation of stable object values in the oculomotor basal ganglia. J. Neurosci. 32:16917–32 [Google Scholar]
  144. Yu C, Smith LB. 2017. Multiple sensory-motor pathways lead to coordinated visual attention. Cogn. Sci. 41:Suppl. 15–31 [Google Scholar]
  145. Zago M, McIntyre J, Senot P, Lacquaniti F. 2009. Visuo-motor coordination and internal models for object interception. Exp. Brain Res. 192:571–604 [Google Scholar]
  146. Zhang L, Tong MH, Marks TK, Shan H, Cottrell GW. 2008. SUN: a Bayesian framework for saliency using natural statistics. J. Vis. 8:732 [Google Scholar]
  147. Zhao H, Warren WH. 2015. On-line and model-based approaches to the visual control of action. Vis. Res. 110:190–202 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error