1932

Abstract

Carotenoids, yellow and red pigments found abundantly in nature, play essential roles in various aspects of human physiology. They serve as critical molecules in vision by functioning as antioxidants and as filters for blue light within the retina. Furthermore, carotenoids are the natural precursors of vitamin A, which is indispensable for the synthesis of retinaldehyde, the visual chromophore, and retinoic acid, a small molecule that regulates gene expression. Insufficient levels of carotenoids and retinoids have been linked to age-related macular degeneration and xerophthalmia, respectively. Nevertheless, the mechanisms by which the eye maintains carotenoid and retinoid homeostasis have remained a mystery. Recent breakthroughs identified the molecular players involved in this process and provided valuable biochemical insights into their functioning. Mutations in the corresponding genes disrupt the homeostasis of carotenoids and retinoids, leading to visual system pathologies. This review aims to consolidate our current understanding of these pathways, including their regulatory principles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-101846
2024-09-18
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-101846.html?itemId=/content/journals/10.1146/annurev-vision-102122-101846&mimeType=html&fmt=ahah

Literature Cited

  1. Ables GP, Yang KJ, Vogel S, Hernandez-Ono A, Yu S, et al. 2012.. Intestinal DGAT1 deficiency reduces postprandial triglyceride and retinyl ester excursions by inhibiting chylomicron secretion and delaying gastric emptying. . J. Lipid Res. 53::236479
    [Crossref] [Google Scholar]
  2. Acton S, Rigotti A, Landschulz KT, Xu S, Hobbs HH, Krieger M. 1996.. Identification of scavenger receptor SR-BI as a high density lipoprotein receptor. . Science 271::51820
    [Crossref] [Google Scholar]
  3. Alapatt P, Guo F, Komanetsky SM, Wang S, Cai J, et al. 2013.. Liver retinol transporter and receptor for serum retinol-binding protein (RBP4). . J. Biol. Chem. 288::125065
    [Crossref] [Google Scholar]
  4. Amengual J, Golczak M, Palczewski K, von Lintig J. 2012.. Lecithin:retinol acyltransferase is critical for cellular uptake of vitamin A from serum retinol-binding protein. . J. Biol. Chem. 287::2421627
    [Crossref] [Google Scholar]
  5. Amengual J, Lobo GP, Golczak M, Li HN, Klimova T, et al. 2011.. A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. . FASEB J. 25::94859
    [Crossref] [Google Scholar]
  6. Amengual J, Widjaja-Adhi MA, Rodriguez-Santiago S, Hessel S, Golczak M, et al. 2013.. Two carotenoid oxygenases contribute to mammalian provitamin A metabolism. . J. Biol. Chem. 288::3408196
    [Crossref] [Google Scholar]
  7. Amengual J, Zhang N, Kemerer M, Maeda T, Palczewski K, von Lintig J. 2014.. STRA6 is critical for cellular vitamin A uptake and homeostasis. . Hum. Mol. Genet. 23::540217
    [Crossref] [Google Scholar]
  8. Bachmann H, Desbarats A, Pattison P, Sedgewick M, Riss G, et al. 2002.. Feedback regulation of β,β-carotene 15,15′-monooxygenase by retinoic acid in rats and chickens. . J. Nutr. 132::361622
    [Crossref] [Google Scholar]
  9. Balla T, Kim YJ, Alvarez-Prats A, Pemberton J. 2019.. Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. . Annu. Rev. Cell Dev. Biol. 35::85109
    [Crossref] [Google Scholar]
  10. Bandara S, Moon J, Ramkumar S, von Lintig J. 2023.. ASTER-B regulates mitochondrial carotenoid transport and homeostasis. . J. Lipid Res. 64::100369
    [Crossref] [Google Scholar]
  11. Bandara S, Ramkumar S, Imanishi S, Thomas LD, Sawant OB, et al. 2022.. Aster proteins mediate carotenoid transport in mammalian cells. . PNAS 119::e2200068119
    [Crossref] [Google Scholar]
  12. Bandara S, Thomas LD, Ramkumar S, Khadka N, Kiser PD, et al. 2021.. The structural and biochemical basis of apocarotenoid processing by β-carotene oxygenase-2. . ACS Chem. Biol. 16::48090
    [Crossref] [Google Scholar]
  13. Bandara S, von Lintig J. 2022.. Aster la vista: unraveling the biochemical basis of carotenoid homeostasis in the human retina. . Bioessays 44::e2200133
    [Crossref] [Google Scholar]
  14. Batten ML, Imanishi Y, Maeda T, Tu DC, Moise AR, et al. 2004.. Lecithin-retinol acyltransferase is essential for accumulation of all-trans-retinyl esters in the eye and in the liver. . J. Biol. Chem. 279::1042232
    [Crossref] [Google Scholar]
  15. Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, et al. 2016.. Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid-based nutritional interventions against ocular disease. . Prog. Retin. Eye Res. 50::3466
    [Crossref] [Google Scholar]
  16. Berry DC, Jacobs H, Marwarha G, Gely-Pernot A, O'Byrne SM, et al. 2013.. The STRA6 receptor is essential for retinol-binding protein-induced insulin resistance but not for maintaining vitamin A homeostasis in tissues other than the eye. . J. Biol. Chem. 288::2452839
    [Crossref] [Google Scholar]
  17. Berry SD, Davis SR, Beattie EM, Thomas NL, Burrett AK, et al. 2009.. Mutation in bovine β-carotene oxygenase 2 affects milk color. . Genetics 182::92326
    [Crossref] [Google Scholar]
  18. Besprozvannaya M, Dickson E, Li H, Ginburg KS, Bers DM, et al. 2018.. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. . eLife 7::e31019
    [Crossref] [Google Scholar]
  19. Bhosale P, Larson AJ, Frederick JM, Southwick K, Thulin CD, Bernstein PS. 2004.. Identification and characterization of a Pi isoform of glutathione S-transferase (GSTP1) as a zeaxanthin-binding protein in the macula of the human eye. . J. Biol. Chem. 279::4944754
    [Crossref] [Google Scholar]
  20. Blaner WS. 2007.. STRA6, a cell-surface receptor for retinol-binding protein: The plot thickens. . Cell Metab. 5::16466
    [Crossref] [Google Scholar]
  21. Blaner WS. 2019.. Vitamin A signaling and homeostasis in obesity, diabetes, and metabolic disorders. . Pharmacol. Ther. 197::15378
    [Crossref] [Google Scholar]
  22. Blaner WS, Brun PJ, Calderon RM, Golczak M. 2020.. Retinol-binding protein 2 (RBP2): biology and pathobiology. . Crit. Rev. Biochem. Mol. Biol. 55::197218
    [Crossref] [Google Scholar]
  23. Bohn T, Desmarchelier C, Dragsted LO, Nielsen CS, Stahl W, et al. 2017.. Host-related factors explaining interindividual variability of carotenoid bioavailability and tissue concentrations in humans. . Mol. Nutr. Food Res. 61::1600685
    [Crossref] [Google Scholar]
  24. Bonifant CM, Shevill E, Chang AB. 2014.. Vitamin A supplementation for cystic fibrosis. . Cochrane Database Syst. Rev. 8::CD006751
    [Google Scholar]
  25. Borel P, Desmarchelier C. 2017.. Genetic variations associated with vitamin A status and vitamin A bioavailability. . Nutrients 9::246
    [Crossref] [Google Scholar]
  26. Borel P, Desmarchelier C. 2018.. Bioavailability of fat-soluble vitamins and phytochemicals in humans: effects of genetic variation. . Annu. Rev. Nutr. 38::6996
    [Crossref] [Google Scholar]
  27. Borel P, Lietz G, Goncalves A, Szabo De Edelenyi F, Lecompte S, et al. 2013.. CD36 and SR-BI are involved in cellular uptake of provitamin A carotenoids by Caco-2 and HEK cells, and some of their genetic variants are associated with plasma concentrations of these micronutrients in humans. . J. Nutr. 143::44856
    [Crossref] [Google Scholar]
  28. Bouillet P, Sapin V, Chazaud C, Messaddeq N, Decimo D, et al. 1997.. Developmental expression pattern of Stra6, a retinoic acid-responsive gene encoding a new type of membrane protein. . Mech. Dev. 63::17386
    [Crossref] [Google Scholar]
  29. Bradley MJ, Black M, Arballo JR, Amengual J, Erdman JW Jr. 2023.. Lycopene accumulation in transgenic mice lacking one or both carotenoid cleaving enzymes. . J. Nutr. 153::221627
    [Crossref] [Google Scholar]
  30. Breithaupt DE, Weller P, Wolters M, Hahn A. 2003.. Plasma response to a single dose of dietary β-cryptoxanthin esters from papaya (Carica papaya L.) or non-esterified β-cryptoxanthin in adult human subjects: a comparative study. . Br. J. Nutr. 90::795801
    [Crossref] [Google Scholar]
  31. Casey J, Kawaguchi R, Morrissey M, Sun H, McGettigan P, et al. 2011.. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype. . Hum. Mutat. 32::141726
    [Crossref] [Google Scholar]
  32. Castenmiller JJ, West CE. 1998.. Bioavailability and bioconversion of carotenoids. . Annu. Rev. Nutr. 18::1938
    [Crossref] [Google Scholar]
  33. Chambon P. 1996.. A decade of molecular biology of retinoic acid receptors. . FASEB J. 10::94054
    [Crossref] [Google Scholar]
  34. Charbel Issa P, Van Der Veen RL, Stijfs A, Holz FG, Scholl HP, Berendschot TT. 2009.. Quantification of reduced macular pigment optical density in the central retina in macular telangiectasia type 2. . Exp. Eye Res. 89::2531
    [Crossref] [Google Scholar]
  35. Chen Y, Clarke OB, Kim J, Stowe S, Kim YK, et al. 2016.. Structure of the STRA6 receptor for retinol uptake. . Science 353::aad8266
    [Crossref] [Google Scholar]
  36. Chew EY, Clemons TE, Sangiovanni JP, Danis RP, Ferris FL III, et al. 2014.. Secondary analyses of the effects of lutein/zeaxanthin on age-related macular degeneration progression: AREDS2 report no. . 3:. JAMA Ophthalmol. 132::14249
    [Google Scholar]
  37. Chichili GR, Nohr D, Schaffer M, von Lintig J, Biesalski HK. 2005.. β-Carotene conversion into vitamin A in human retinal pigment epithelial cells. . Investig. Ophthalmol. Vis. Sci. 46::356269
    [Crossref] [Google Scholar]
  38. Chou CM, Nelson C, Tarle SA, Pribila JT, Bardakjian T, et al. 2015.. Biochemical basis for dominant inheritance, variable penetrance, and maternal effects in RBP4 congenital eye disease. . Cell 161::63446
    [Crossref] [Google Scholar]
  39. Cianci M, Rizkallah PJ, Olczak A, Raftery J, Chayen NE, et al. 2002.. The molecular basis of the coloration mechanism in lobster shell: β-crustacyanin at 3.2-Å resolution. . PNAS 99::9795800
    [Crossref] [Google Scholar]
  40. Curran-Celentano J, Erdman JW Jr., Nelson RA, Grater SJ. 1985.. Alterations in vitamin A and thyroid hormone status in anorexia nervosa and associated disorders. . Am. J. Clin. Nutr. 42::118391
    [Crossref] [Google Scholar]
  41. D'Ambrosio DN, Clugston RD, Blaner WS. 2011.. Vitamin A metabolism: an update. . Nutrients 3::63103
    [Crossref] [Google Scholar]
  42. Daruich A, Matet A, Moulin A, Kowalczuk L, Nicolas M, et al. 2018.. Mechanisms of macular edema: beyond the surface. . Prog. Retin. Eye Res. 63::2068
    [Crossref] [Google Scholar]
  43. Daruwalla A, Zhang J, Lee HJ, Khadka N, Farquhar ER, et al. 2020.. Structural basis for carotenoid cleavage by an archaeal carotenoid dioxygenase. . PNAS 117::1991425
    [Crossref] [Google Scholar]
  44. De Vries JJ, Chang AB, Bonifant CM, Shevill E, Marchant JM. 2018.. Vitamin A and beta (β)-carotene supplementation for cystic fibrosis. . Cochrane Database Syst. Rev. 8::CD006751
    [Google Scholar]
  45. During A, Dawson HD, Harrison EH. 2005.. Carotenoid transport is decreased and expression of the lipid transporters SR-BI, NPC1L1, and ABCA1 is downregulated in Caco-2 cells treated with ezetimibe. . J. Nutr. 135::230512
    [Crossref] [Google Scholar]
  46. During A, Hussain MM, Morel DW, Harrison EH. 2002.. Carotenoid uptake and secretion by CaCo-2 cells: β-carotene isomer selectivity and carotenoid interactions. . J. Lipid Res. 43::108695
    [Crossref] [Google Scholar]
  47. Elbaz-Alon Y, Eisenberg-Bord M, Shinder V, Stiller SB, Shimoni E, et al. 2015.. Lam6 regulates the extent of contacts between organelles. . Cell Rep. 12::714
    [Crossref] [Google Scholar]
  48. Episkopou V, Maeda S, Nishiguchi S, Shimada K, Gaitanaris GA, et al. 1993.. Disruption of the transthyretin gene results in mice with depressed levels of plasma retinol and thyroid hormone. . PNAS 90::237579
    [Crossref] [Google Scholar]
  49. Eriksson J, Larson G, Gunnarsson U, Bed'hom B, Tixier-Boichard M, et al. 2008.. Identification of the yellow skin gene reveals a hybrid origin of the domestic chicken. . PLOS Genet. 4:(2):e1000010
    [Crossref] [Google Scholar]
  50. Ferrari A, Whang E, Xiao X, Kennelly JP, Romartinez-Alonso B, et al. 2023.. Aster-dependent non-vesicular transport facilitates dietary cholesterol uptake. . Science 382::eadf0966
    [Crossref] [Google Scholar]
  51. Ferrucci L, Perry JR, Matteini A, Perola M, Tanaka T, et al. 2009.. Common variation in the β-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. . Am. J. Hum. Genet. 84::12333
    [Crossref] [Google Scholar]
  52. Ghyselinck NB, Båvik C, Sapin V, Mark M, Bonnier D, et al. 1999.. Cellular retinol-binding protein I is essential for vitamin A homeostasis. . EMBO J. 18::490314
    [Crossref] [Google Scholar]
  53. Golczak M, Sears AE, Kiser PD, Palczewski K. 2015.. LRAT-specific domain facilitates vitamin A metabolism by domain swapping in HRASLS3. . Nat. Chem. Biol. 11::2632
    [Crossref] [Google Scholar]
  54. Golzio C, Martinovic-Bouriel J, Thomas S, Mougou-Zrelli S, Grattagliano-Bessieres B, et al. 2007.. Matthew-Wood syndrome is caused by truncating mutations in the retinol-binding protein receptor gene STRA6. . Am. J. Hum. Genet. 80::117987
    [Crossref] [Google Scholar]
  55. Goncalves A, Gontero B, Nowicki M, Margier M, Masset G, et al. 2015.. Micellar lipid composition affects micelle interaction with class B scavenger receptor extracellular loops. . J. Lipid Res. 56::112333
    [Crossref] [Google Scholar]
  56. Goncalves A, Margier M, Roi S, Collet X, Niot I, et al. 2014.. Intestinal scavenger receptors are involved in vitamin K1 absorption. . J. Biol. Chem. 289::3074352
    [Crossref] [Google Scholar]
  57. Guerreiro RA, Ribeiro R. 2015.. Ophthalmic complications of bariatric surgery. . Obes. Surg. 25::16773
    [Crossref] [Google Scholar]
  58. Hall JA, Grainger JR, Spencer SP, Belkaid Y. 2011.. The role of retinoic acid in tolerance and immunity. . Immunity 35::1322
    [Crossref] [Google Scholar]
  59. Hammond BR Jr., Fletcher LM, Elliott JG. 2013.. Glare disability, photostress recovery, and chromatic contrast: relation to macular pigment and serum lutein and zeaxanthin. . Investig. Ophthalmol. Vis. Sci. 54::47681
    [Crossref] [Google Scholar]
  60. He PP, Jiang T, Ouyang XP, Liang YQ, Zou JQ, et al. 2018.. Lipoprotein lipase: biosynthesis, regulatory factors, and its role in atherosclerosis and other diseases. . Clin. Chim. Acta 480::12637
    [Crossref] [Google Scholar]
  61. Heller M, Bok D. 1976.. A specific receptor for retinol binding protein as detected by the binding of human and bovine retinol binding protein to pigment epithelial cells. . Am. J. Ophthalmol. 81::9397
    [Crossref] [Google Scholar]
  62. Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S, et al. 2007.. CMO1 deficiency abolishes vitamin A production from β-carotene and alters lipid metabolism in mice. . J. Biol. Chem. 282::3355361
    [Crossref] [Google Scholar]
  63. Hu Y, Chen Y, Moiseyev G, Takahashi Y, Mott R, Ma JX. 2011.. Comparison of ocular pathologies in vitamin A-deficient mice and RPE65 gene knockout mice. . Investig. Ophthalmol. Vis. Sci. 52::550714
    [Crossref] [Google Scholar]
  64. Hurley JB. 2021.. Retina metabolism and metabolism in the pigmented epithelium: a busy intersection. . Annu. Rev. Vis. Sci. 7::66592
    [Crossref] [Google Scholar]
  65. Iqbal J, Rudel LL, Hussain MM. 2008.. Microsomal triglyceride transfer protein enhances cellular cholesteryl esterification by relieving product inhibition. . J. Biol. Chem. 283::1996780
    [Crossref] [Google Scholar]
  66. Isken A, Golczak M, Oberhauser V, Hunzelmann S, Driever W, et al. 2008.. RBP4 disrupts vitamin A uptake homeostasis in a STRA6-deficient animal model for Matthew-Wood syndrome. . Cell Metab. 7::25868
    [Crossref] [Google Scholar]
  67. Kawaguchi R, Yu J, Honda J, Hu J, Whitelegge J, et al. 2007.. A membrane receptor for retinol binding protein mediates cellular uptake of vitamin A. . Science 315::82025
    [Crossref] [Google Scholar]
  68. Kawaguchi R, Yu J, Ter-Stepanian M, Zhong M, Cheng G, et al. 2011.. Receptor-mediated cellular uptake mechanism that couples to intracellular storage. . ACS Chem. Biol. 6::104145
    [Crossref] [Google Scholar]
  69. Kedishvili NY. 2013.. Enzymology of retinoic acid biosynthesis and degradation. . J. Lipid Res. 54::174460
    [Crossref] [Google Scholar]
  70. Kelly M, Widjaja-Adhi MA, Palczewski G, von Lintig J. 2016.. Transport of vitamin A across blood-tissue barriers is facilitated by STRA6. . FASEB J. 30::298595
    [Crossref] [Google Scholar]
  71. Kelly ME, Ramkumar S, Sun W, Colon Ortiz C, Kiser PD, et al. 2018.. The biochemical basis of vitamin A production from the asymmetric carotenoid β-cryptoxanthin. . ACS Chem. Biol. 13::212129
    [Crossref] [Google Scholar]
  72. Kiefer C, Sumser E, Wernet MF, von Lintig J. 2002.. A class B scavenger receptor mediates the cellular uptake of carotenoids in Drosophila. . PNAS 99::1058186
    [Crossref] [Google Scholar]
  73. Kim YK, Wassef L, Hamberger L, Piantedosi R, Palczewski K, et al. 2008.. Retinyl ester formation by lecithin: Retinol acyltransferase is a key regulator of retinoid homeostasis in mouse embryogenesis. . J. Biol. Chem. 283::561121
    [Crossref] [Google Scholar]
  74. Kiser PD, Golczak M, Lodowski DT, Chance MR, Palczewski K. 2009.. Crystal structure of native RPE65, the retinoid isomerase of the visual cycle. . PNAS 106::1732530
    [Crossref] [Google Scholar]
  75. Kiser PD, Golczak M, Palczewski K. 2014.. Chemistry of the retinoid (visual) cycle. . Chem. Rev. 114::194232
    [Crossref] [Google Scholar]
  76. Kiser PD, Palczewski K. 2016.. Retinoids and retinal diseases. . Annu. Rev. Vis. Sci. 2::197234
    [Crossref] [Google Scholar]
  77. Li B, George EW, Rognon GT, Gorusupudi A, Ranganathan A, et al. 2020.. Imaging lutein and zeaxanthin in the human retina with confocal resonance Raman microscopy. . PNAS 117::1235258
    [Crossref] [Google Scholar]
  78. Li B, Vachali P, Chang FY, Gorusupudi A, Arunkumar R, et al. 2022.. HDL is the primary transporter for carotenoids from liver to retinal pigment epithelium in transgenic ApoA-I−/−/Bco2−/− mice. . Arch. Biochem. Biophys. 716::109111
    [Crossref] [Google Scholar]
  79. Li B, Vachali P, Frederick JM, Bernstein PS. 2011.. Identification of StARD3 as a lutein-binding protein in the macula of the primate retina. . Biochemistry 50::254149
    [Crossref] [Google Scholar]
  80. Lindqvist A, Sharvill J, Sharvill DE, Andersson S. 2007.. Loss-of-function mutation in carotenoid 15,15′-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. . J. Nutr. 137::234650
    [Crossref] [Google Scholar]
  81. Lobo GP, Amengual J, Baus D, Shivdasani RA, Taylor D, von Lintig J. 2013.. Genetics and diet regulate vitamin A production via the homeobox transcription factor ISX. . J. Biol. Chem. 288::901727
    [Crossref] [Google Scholar]
  82. Lobo GP, Hessel S, Eichinger A, Noy N, Moise AR, et al. 2010.. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production. . FASEB J. 24::165666
    [Crossref] [Google Scholar]
  83. Lobo MV, Huerta L, Ruiz-Velasco N, Teixeiro E, De La Cueva P, et al. 2001.. Localization of the lipid receptors CD36 and CLA-1/SR-BI in the human gastrointestinal tract: towards the identification of receptors mediating the intestinal absorption of dietary lipids. . J. Histochem. Cytochem. 49::125360
    [Crossref] [Google Scholar]
  84. Mares J. 2016.. Lutein and zeaxanthin isomers in eye health and disease. . Annu. Rev. Nutr. 36::571602
    [Crossref] [Google Scholar]
  85. Meyers KJ, Johnson EJ, Bernstein PS, Iyengar SK, Engelman CD, et al. 2013.. Genetic determinants of macular pigments in women of the Carotenoids in Age-Related Eye Disease Study. . Investig. Ophthalmol. Vis. Sci. 54::233345
    [Crossref] [Google Scholar]
  86. Miller AP, Coronel J, Amengual J. 2020.. The role of β-carotene and vitamin A in atherogenesis: evidences from preclinical and clinical studies. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865::158635
    [Crossref] [Google Scholar]
  87. Moise AR, Al-Babili S, Wurtzel ET. 2014.. Mechanistic aspects of carotenoid biosynthesis. . Chem. Rev. 114::16493
    [Crossref] [Google Scholar]
  88. Montenegro D, Zhao J, Kim HJ, Shmarakov IO, Blaner WS, Sparrow JR. 2022.. Products of the visual cycle are detected in mice lacking retinol binding protein 4, the only known vitamin A carrier in plasma. . J. Biol. Chem. 298::102722
    [Crossref] [Google Scholar]
  89. Moon J, Ramkumar S, von Lintig J. 2022a.. Genetic dissection in mice reveals a dynamic crosstalk between the delivery pathways of vitamin A. . J. Lipid Res. 63::100215
    [Crossref] [Google Scholar]
  90. Moon J, Ramkumar S, von Lintig J. 2022b.. Genetic tuning of β-carotene oxygenase-1 activity rescues cone photoreceptor function in STRA6-deficient mice. . Hum. Mol. Genet. 32::798809
    [Google Scholar]
  91. Moon J, Zhou G, Jankowsky E, von Lintig J. 2023.. Vitamin A deficiency compromises the barrier function of the retinal pigment epithelium. . PNAS Nexus 2::pgad167
    [Crossref] [Google Scholar]
  92. O'Byrne SM, Blaner WS. 2013.. Retinol and retinyl esters: biochemistry and physiology. . J. Lipid Res. 54::173143
    [Crossref] [Google Scholar]
  93. O'Byrne SM, Wongsiriroj N, Libien J, Vogel S, Goldberg IJ, et al. 2005.. Retinoid absorption and storage is impaired in mice lacking lecithin:retinol acyltransferase (LRAT). . J. Biol. Chem. 280::3564757
    [Crossref] [Google Scholar]
  94. Palczewski G, Amengual J, Hoppel CL, von Lintig J. 2014.. Evidence for compartmentalization of mammalian carotenoid metabolism. . FASEB J. 28::445769
    [Crossref] [Google Scholar]
  95. Palczewski G, Widjaja-Adhi MA, Amengual J, Golczak M, von Lintig J. 2016.. Genetic dissection in a mouse model reveals interactions between carotenoids and lipid metabolism. . J. Lipid Res. 57::168495
    [Crossref] [Google Scholar]
  96. Pang JJ, Chang B, Kumar A, Nusinowitz S, Noorwez SM, et al. 2006.. Gene therapy restores vision-dependent behavior as well as retinal structure and function in a mouse model of RPE65 Leber congenital amaurosis. . Mol. Ther. 13::56572
    [Crossref] [Google Scholar]
  97. Pang XY, Cao J, Addington L, Lovell S, Battaile KP, et al. 2012.. Structure/function relationships of adipose phospholipase A2 containing a cys-his-his catalytic triad. . J. Biol. Chem. 287::3526074
    [Crossref] [Google Scholar]
  98. Pollock LM, Xie J, Bell BA, Anand-Apte B. 2018.. Retinoic acid signaling is essential for maintenance of the blood-retinal barrier. . FASEB J. 32::567484
    [Crossref] [Google Scholar]
  99. Quadro L, Blaner WS, Salchow DJ, Vogel S, Piantedosi R, et al. 1999.. Impaired retinal function and vitamin A availability in mice lacking retinol-binding protein. . EMBO J. 18::463344
    [Crossref] [Google Scholar]
  100. Radhakrishnan R, Leung M, Roehrich H, Walterhouse S, Kondkar AA, et al. 2022.. Mice lacking the systemic vitamin A receptor RBPR2 show decreased ocular retinoids and loss of visual function. . Nutrients 14::2371
    [Crossref] [Google Scholar]
  101. Ramkumar S, Moon J, Golczak M, von Lintig J. 2021.. LRAT coordinates the negative-feedback regulation of intestinal retinoid biosynthesis from β-carotene. . J. Lipid Res. 62::100055
    [Crossref] [Google Scholar]
  102. Ramkumar S, Parmar VM, Moon J, Lee C, Taylor PR, von Lintig J. 2022a.. Diabetes aggravates photoreceptor pathologies in a mouse model for ocular vitamin A deficiency. . Antioxidants 11::1142
    [Crossref] [Google Scholar]
  103. Ramkumar S, Parmar VM, Samuels I, Berger NA, Jastrzebska B, von Lintig J. 2022b.. The vitamin A transporter STRA6 adjusts the stoichiometry of chromophore and opsins in visual pigment synthesis and recycling. . Hum. Mol. Genet. 31::54860
    [Crossref] [Google Scholar]
  104. Reboul E, Abou L, Mikail C, Ghiringhelli O, Andre M, et al. 2005.. Lutein transport by Caco-2 TC-7 cells occurs partly by a facilitated process involving the scavenger receptor class B type I (SR-BI). . Biochem. J. 387::45561
    [Crossref] [Google Scholar]
  105. Reboul E, Klein A, Bietrix F, Gleize B, Malezet-Desmoulins C, et al. 2006.. Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. . J. Biol. Chem. 281::473945
    [Crossref] [Google Scholar]
  106. Redondo C, Vouropoulou M, Evans J, Findlay JB. 2008.. Identification of the retinol-binding protein (RBP) interaction site and functional state of RBPs for the membrane receptor. . FASEB J. 22::104354
    [Crossref] [Google Scholar]
  107. Rhinn M, Dollé P. 2012.. Retinoic acid signalling during development. . Development 139::84358
    [Crossref] [Google Scholar]
  108. Rodrigueza WV, Thuahnai ST, Temel RE, Lund-Katz S, Phillips MC, Williams DL. 1999.. Mechanism of scavenger receptor class B type I-mediated selective uptake of cholesteryl esters from high density lipoprotein to adrenal cells. . J. Biol. Chem. 274::2034450
    [Crossref] [Google Scholar]
  109. Ruiz A, Mark M, Jacobs H, Klopfenstein M, Hu J, et al. 2012.. Retinoid content, visual responses, and ocular morphology are compromised in the retinas of mice lacking the retinol-binding protein receptor, STRA6. . Investig. Ophthalmol. Vis. Sci. 53::302739
    [Crossref] [Google Scholar]
  110. Saari JC, Teller DC, Crabb JW, Bredberg L. 1985.. Properties of an interphotoreceptor retinoid-binding protein from bovine retina. . J. Biol. Chem. 260::195201
    [Crossref] [Google Scholar]
  111. Sakudoh T, Iizuka T, Narukawa J, Sezutsu H, Kobayashi I, et al. 2010.. A CD36-related transmembrane protein is coordinated with an intracellular lipid-binding protein in selective carotenoid transport for cocoon coloration. . J. Biol. Chem. 285::773951
    [Crossref] [Google Scholar]
  112. Sakudoh T, Sezutsu H, Nakashima T, Kobayashi I, Fujimoto H, et al. 2007.. Carotenoid silk coloration is controlled by a carotenoid-binding protein, a product of the Yellow blood gene. . PNAS 104::894146
    [Crossref] [Google Scholar]
  113. Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE, et al. 2018.. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. . Cell 175::51429.e20
    [Crossref] [Google Scholar]
  114. Seino Y, Miki T, Kiyonari H, Abe T, Fujimoto W, et al. 2008.. Isx participates in the maintenance of vitamin A metabolism by regulation of β-carotene 15,15′-monooxygenase (Bcmo1) expression. . J. Biol. Chem. 283::490511
    [Crossref] [Google Scholar]
  115. Senoo H, Imai K, Mezaki Y, Miura M, Morii M, et al. 2012.. Accumulation of vitamin A in the hepatic stellate cell of arctic top predators. . Anat. Rec. 295::166068
    [Crossref] [Google Scholar]
  116. Shmarakov IO, Gusarova GA, Islam MN, Marhuenda-Munoz M, Bhattacharya J, Blaner WS. 2023.. Retinoids stored locally in the lung are required to attenuate the severity of acute lung injury in male mice. . Nat. Commun. 14::851
    [Crossref] [Google Scholar]
  117. Shyam R, Vachali P, Gorusupudi A, Nelson K, Bernstein PS. 2017.. All three human scavenger receptor class B proteins can bind and transport all three macular xanthophyll carotenoids. . Arch. Biochem. Biophys. 634::2128
    [Crossref] [Google Scholar]
  118. Slonimskiy YB, Egorkin NA, Ashikhmin AA, Friedrich T, Maksimov EG, Sluchanko NN. 2022.. Reconstitution of the functional carotenoid-binding protein from silkworm in E. coli. . Int. J. Biol. Macromol. 214::66471
    [Crossref] [Google Scholar]
  119. Sluchanko NN, Slonimskiy YB, Egorkin NA, Varfolomeeva LA, Kleymenov SY, et al. 2022.. Structural basis for the carotenoid binding and transport function of a START domain. . Structure 30::164759.e4
    [Crossref] [Google Scholar]
  120. Snodderly DM. 1995.. Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. . Am. J. Clin. Nutr. 62::1448S61S
    [Crossref] [Google Scholar]
  121. Snodderly DM, Handelman GJ, Adler AJ. 1991.. Distribution of individual macular pigment carotenoids in central retina of macaque and squirrel monkeys. . Investig. Ophthalmol. Vis. Sci. 32::26879
    [Google Scholar]
  122. Solanki AK, Kondkar AA, Fogerty J, Su Y, Kim SH, et al. 2020.. A functional binding domain in the Rbpr2 receptor is required for vitamin A transport, ocular retinoid homeostasis, and photoreceptor cell survival in zebrafish. . Cells 9::1099
    [Crossref] [Google Scholar]
  123. Sommer A. 2008.. Vitamin A deficiency and clinical disease: an historical overview. . J. Nutr. 138::183539
    [Crossref] [Google Scholar]
  124. Sowa M, Mourao L, Sheftel J, Kaeppler M, Simons G, et al. 2020.. Overlapping vitamin A interventions with provitamin A carotenoids and preformed vitamin A cause excessive liver retinol stores in male Mongolian gerbils. . J. Nutr. 150::291223
    [Crossref] [Google Scholar]
  125. Sporn MB, Dunlop NM, Newton DL, Smith JM. 1976.. Prevention of chemical carcinogenesis by vitamin A and its synthetic analogs (retinoids). . Fed. Proc. 35::133238
    [Google Scholar]
  126. Sun H, Kawaguchi R. 2011.. The membrane receptor for plasma retinol-binding protein, a new type of cell-surface receptor. . Int. Rev. Cell Mol. Biol. 288::141
    [Crossref] [Google Scholar]
  127. Thomas LD, Bandara S, Parmar VM, Srinivasagan R, Khadka N, et al. 2020.. The human mitochondrial enzyme BCO2 exhibits catalytic activity toward carotenoids and apocarotenoids. . J. Biol. Chem. 295::1555365
    [Crossref] [Google Scholar]
  128. Thomas LD, Ramkumar S, Golczak M, von Lintig J. 2023.. Genetic deletion of Bco2 and Isx establishes a golden mouse model for carotenoid research. . Mol. Metab. 73::101742
    [Crossref] [Google Scholar]
  129. Thomas SE, Harrison EH. 2016.. Mechanisms of selective delivery of xanthophylls to retinal pigment epithelial cells by human lipoproteins. . J. Lipid Res. 57::186578
    [Crossref] [Google Scholar]
  130. Thompson SJ, Sargsyan A, Lee SA, Yuen JJ, Cai J, et al. 2017.. Hepatocytes are the principal source of circulating RBP4 in mice. . Diabetes 66::5863
    [Crossref] [Google Scholar]
  131. Toomey MB, Lopes RJ, Araujo PM, Johnson JD, Gazda MA, et al. 2017.. High-density lipoprotein receptor SCARB1 is required for carotenoid coloration in birds. . PNAS 114::521924
    [Crossref] [Google Scholar]
  132. Vachali PP, Besch BM, Gonzalez-Fernandez F, Bernstein PS. 2013.. Carotenoids as possible interphotoreceptor retinoid-binding protein (IRBP) ligands: a surface plasmon resonance (SPR) based study. . Arch. Biochem. Biophys. 539::18186
    [Crossref] [Google Scholar]
  133. Van Bennekum A, Werder M, Thuahnai ST, Han CH, Duong P, et al. 2005.. Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. . Biochemistry 44::451725
    [Crossref] [Google Scholar]
  134. Voigt AP, Whitmore SS, Flamme-Wiese MJ, Riker MJ, Wiley LA, et al. 2019.. Molecular characterization of foveal versus peripheral human retina by single-cell RNA sequencing. . Exp. Eye Res. 184::23442
    [Crossref] [Google Scholar]
  135. von Lintig J. 2010.. Colors with functions: elucidating the biochemical and molecular basis of carotenoid metabolism. . Annu. Rev. Nutr. 30::3556
    [Crossref] [Google Scholar]
  136. von Lintig J, Moon J, Lee J, Ramkumar S. 2020.. Carotenoid metabolism at the intestinal barrier. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865::158580
    [Crossref] [Google Scholar]
  137. Voolstra O, Kiefer C, Hoehne M, Welsch R, Vogt K, von Lintig J. 2006.. The Drosophila class B scavenger receptor NinaD-I is a cell surface receptor mediating carotenoid transport for visual chromophore synthesis. . Biochemistry 45::1342937
    [Crossref] [Google Scholar]
  138. Wald G. 1968.. Molecular basis of visual excitation. . Science 162::23039
    [Crossref] [Google Scholar]
  139. Widjaja-Adhi MAK, Golczak M. 2019.. The molecular aspects of absorption and metabolism of carotenoids and retinoids in vertebrates. . Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865::158571
    [Crossref] [Google Scholar]
  140. Widjaja-Adhi MAK, Lobo GP, Golczak M, von Lintig J. 2015.. A genetic dissection of intestinal fat-soluble vitamin and carotenoid absorption. . Hum. Mol. Genet. 24::320619
    [Crossref] [Google Scholar]
  141. Widjaja-Adhi MAK, Palczewski G, Dale K, Knauss EA, Kelly ME, et al. 2017.. Transcription factor ISX mediates the cross talk between diet and immunity. . PNAS 114::1153035
    [Crossref] [Google Scholar]
  142. Widjaja-Adhi MAK, Ramkumar S, von Lintig J. 2018.. Protective role of carotenoids in the visual cycle. . FASEB J. 32::630515
    [Crossref] [Google Scholar]
  143. Wongsiriroj N, Jiang H, Piantedosi R, Yang KJ, Kluwe J, et al. 2014.. Genetic dissection of retinoid esterification and accumulation in the liver and adipose tissue. . J. Lipid Res. 55::10414
    [Crossref] [Google Scholar]
  144. Wongsiriroj N, Piantedosi R, Palczewski K, Goldberg IJ, Johnston TP, et al. 2008.. The molecular basis of retinoid absorption: a genetic dissection. . J. Biol. Chem. 283::1351019
    [Crossref] [Google Scholar]
  145. Yabuzaki J. 2017.. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. . Database 2017::bax004
    [Crossref] [Google Scholar]
  146. Young BD, Varney KM, Wilder PT, Costabile BK, Pozharski E, et al. 2021.. Physiologically relevant free Ca2+ ion concentrations regulate STRA6-calmodulin complex formation via the BP2 region of STRA6. . J. Mol. Biol. 433::167272
    [Crossref] [Google Scholar]
  147. Yu M, Lau TY, Carr SA, Krieger M. 2012.. Contributions of a disulfide bond and a reduced cysteine side chain to the intrinsic activity of the high-density lipoprotein receptor SR-BI. . Biochemistry 51::1004455
    [Crossref] [Google Scholar]
  148. Zhong M, Kawaguchi R, Costabile B, Tang Y, Hu J, et al. 2020.. Regulatory mechanism for the transmembrane receptor that mediates bidirectional vitamin A transport. . PNAS 117::985764
    [Crossref] [Google Scholar]
  149. Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. 2020.. A connectomics approach to understanding a retinal disease. . PNAS 117::1878087
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-101846
Loading
/content/journals/10.1146/annurev-vision-102122-101846
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error