1932

Abstract

Central serous chorioretinopathy (CSCR) is the fourth most common medical retinal disease. Moderate vision loss occurs in approximately one-third of patients who have the chronic form of the disease. CSCR has a multifactorial etiology, with acquired risk factors and increasing evidence of genetic susceptibility factors. The detection of new gene variants in CSCR and association of these variants with age-related macular degeneration provide insights into possible disease mechanisms. The contribution of multimodal ocular imaging and associated research studies to the modern-day clinical investigation of CSCR has been significant. This review aims to provide an overview of the most significant epidemiological and genetic studies of CSCR, in addition to describing its clinical and multimodal imaging features. The review also provides an update of the latest evidence from studies investigating pathophysiological mechanisms in CSCR and current opinions on multimodal imaging to better classify this complex retinal disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-102907
2024-09-18
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-102907.html?itemId=/content/journals/10.1146/annurev-vision-102122-102907&mimeType=html&fmt=ahah

Literature Cited

  1. Abalem MF, Machado MC, Santos HN, Garcia R, Helal J Jr., et al. 2016.. Choroidal and retinal abnormalities by optical coherence tomography in endogenous Cushing's syndrome. . Front. Endocrinol. 7::154
    [Crossref] [Google Scholar]
  2. Agrawal R, Chhablani J, Tan KA, Shah S, Sarvaiya C, Banker A. 2016.. Choroidal vascularity index in central serous chorioretinopathy. . Retina 36::164651
    [Crossref] [Google Scholar]
  3. Akiyama M, Miyake M, Momozawa Y, Arakawa S, Maruyama-Inoue M, et al. 2023.. Genome-wide association study of age-related macular degeneration reveals 2 new loci implying shared genetic components with central serous chorioretinopathy. . Ophthalmology 130::36172
    [Crossref] [Google Scholar]
  4. Arndt C, Sari A, Ferre M, Parrat E, Courtas D, et al. 2001.. Electrophysiological effects of corticosteroids on the retinal pigment epithelium. . Investig. Ophthalmol. Vis. Sci. 42::47275
    [Google Scholar]
  5. Arora S, Maltsev DS, Sahoo NK, Parameshwarappa DC, Iovino C, et al. 2022.. Visual acuity correlates with multimodal imaging-based categories of central serous chorioretinopathy. . Eye 36::51723
    [Crossref] [Google Scholar]
  6. Bacci T, Oh DJ, Singer M, Sadda S, Freund KB. 2022.. Ultra-widefield indocyanine green angiography reveals patterns of choroidal venous insufficiency influencing pachychoroid disease. . Investig. Ophthalmol. Vis. Sci. 63::17
    [Crossref] [Google Scholar]
  7. Baek J, Kook L, Lee WK. 2019.. Choriocapillaris flow impairments in association with pachyvessel in early stages of pachychoroid. . Sci. Rep. 9::5565
    [Crossref] [Google Scholar]
  8. Baker ME, Katsu Y. 2020.. Progesterone: an enigmatic ligand for the mineralocorticoid receptor. . Biochem. Pharmacol. 177::113976
    [Crossref] [Google Scholar]
  9. Bandello F, Incorvaia C, Parmeggiani F, Sebastiani A. 2000.. Idiopathic multiple serous detachments of the retinal pigment epithelium followed by bilateral central serous chorioretinopathy: a case report. . Ophthalmologica 214::36267
    [Crossref] [Google Scholar]
  10. Bernasconi P, Messmer E, Bernasconi A, Tholen A. 1998.. Assessment of the sympatho-vagal interaction in central serous chorioretinopathy measured by power spectral analysis of heart rate variability. . Graefes Arch. Clin. Exp. Ophthalmol. 236::57176
    [Crossref] [Google Scholar]
  11. Borrelli E, Battista M, Sacconi R, Gelormini F, Querques L, et al. 2021.. OCT risk factors for 3-year development of macular complications in eyes with “resolved” chronic central serous chorioretinopathy. . Am. J. Ophthalmol. 223::12939
    [Crossref] [Google Scholar]
  12. Bousquet E, Torres-Villaros H, Provost J, Elalouf M, Gigon A, et al. 2022.. Clinical characteristics and multimodal imaging findings of central serous chorioretinopathy in women versus men. . J. Clin. Med. 11::1706
    [Crossref] [Google Scholar]
  13. Bouzas EA, Scott MH, Mastorakos G, Chrousos GP, Kaiser-Kupfer MI. 1993.. Central serous chorioretinopathy in endogenous hypercortisolism. . Arch. Ophthalmol. 111::122933
    [Crossref] [Google Scholar]
  14. Breazzano MP, Coleman DJ, Chen RWS, Chang S, Daly S, Tsang SH. 2020.. Prospective impact of sildenafil on chronic central serous chorioretinopathy: PISCES trial. . Ophthalmol. Retina 4::111923
    [Crossref] [Google Scholar]
  15. Brinks J, van Dijk EHC, Meijer OC, Schlingemann RO, Boon CJF. 2022.. Choroidal arteriovenous anastomoses: a hypothesis for the pathogenesis of central serous chorioretinopathy and other pachychoroid disease spectrum abnormalities. . Acta Ophthalmol. 100::94659
    [Crossref] [Google Scholar]
  16. Brodie FL, Charlson ES, Aleman TS, Salvo RT, Gewaily DY, et al. 2015.. Obstructive sleep apnea and central serous chorioretinopathy. . Retina 35::23843
    [Crossref] [Google Scholar]
  17. Buckhurst HD, Gilmartin B, Cubbidge RP, Logan NS. 2015.. Measurement of scleral thickness in humans using anterior segment optical coherent tomography. . PLOS ONE 10::e0132902
    [Crossref] [Google Scholar]
  18. Camelo S, Raoul W, Lavalette S, Calippe B, Cristofaro B, et al. 2012.. Delta-like 4 inhibits choroidal neovascularization despite opposing effects on vascular endothelium and macrophages. . Angiogenesis 15::60922
    [Crossref] [Google Scholar]
  19. Carvalho-Recchia CA, Yannuzzi LA, Negrao S, Spaide RF, Freund KB, et al. 2002.. Corticosteroids and central serous chorioretinopathy. . Ophthalmology 109::183437
    [Crossref] [Google Scholar]
  20. Chang YS, Weng SF, Chang C, Wang JJ, Wang JY, Jan RL. 2015.. Associations between topical ophthalmic corticosteroids and central serous chorioretinopathy: a Taiwanese population-based study. . Investig. Ophthalmol. Vis. Sci. 56::408389
    [Crossref] [Google Scholar]
  21. Chatziralli I, Kabanarou SA, Parikakis E, Chatzirallis A, Xirou T, Mitropoulos P. 2017.. Risk factors for central serous chorioretinopathy: multivariate approach in a case-control study. . Curr. Eye Res. 42::106973
    [Crossref] [Google Scholar]
  22. Cheung CMG, Lee WK, Koizumi H, Dansingani K, Lai TYY, Freund KB. 2019.. Pachychoroid disease. . Eye 33::1433
    [Crossref] [Google Scholar]
  23. Chhablani J, Cohen FB, Cent. Serous Chorioretinopathy Int. Group. 2020.. Multimodal imaging-based central serous chorioretinopathy classification. . Ophthalmol. Retina 4::104346
    [Crossref] [Google Scholar]
  24. Chumbley LC, Frank RN. 1974.. Central serous retinopathy and pregnancy. . Am. J. Ophthalmol. 77::15860
    [Crossref] [Google Scholar]
  25. Cordell WH, Maturi RK, Costigan TM, Marmor MF, Weleber RG, et al. 2009.. Retinal effects of 6 months of daily use of tadalafil or sildenafil. . Arch. Ophthalmol. 127::36773
    [Crossref] [Google Scholar]
  26. Dang Y, Mu Y, Zhao M, Li L, Guo Y, Zhu Y. 2013.. The effect of eradicating Helicobacter pylori on idiopathic central serous chorioretinopathy patients. . Ther. Clin. Risk Manag. 9::35560
    [Crossref] [Google Scholar]
  27. Dansingani KK, Balaratnasingam C, Naysan J, Freund KB. 2016.. En face imaging of pachychoroid spectrum disorders with swept-source optical coherence tomography. . Retina 36::499516
    [Crossref] [Google Scholar]
  28. Daruich A, Matet A, Dirani A, Bousquet E, Zhao M, et al. 2015.. Central serous chorioretinopathy: recent findings and new physiopathology hypothesis. . Prog. Retin. Eye Res. 48::82118
    [Crossref] [Google Scholar]
  29. de Jong EK, Breukink MB, Schellevis RL, Bakker B, Mohr JK, et al. 2015.. Chronic central serous chorioretinopathy is associated with genetic variants implicated in age-related macular degeneration. . Ophthalmology 122::56270
    [Crossref] [Google Scholar]
  30. Erol MK, Balkarli A, Yucel O, Akar Y, Dogan B, Suren E. 2017.. Neutrophil/lymphocyte ratio and mean platelet volume in central serous chorioretinopathy. . Ther. Clin. Risk Manag. 13::94550
    [Crossref] [Google Scholar]
  31. Ersoz MG, Arf S, Hocaoglu M, Sayman Muslubas I, Karacorlu M. 2019.. Patient characteristics and risk factors for central serous chorioretinopathy: an analysis of 811 patients. . Br. J. Ophthalmol. 103::72529
    [Crossref] [Google Scholar]
  32. Ficker L, Vafidis G, While A, Leaver P. 1988.. Long-term follow-up of a prospective trial of argon laser photocoagulation in the treatment of central serous retinopathy. . Br. J. Ophthalmol. 72::82934
    [Crossref] [Google Scholar]
  33. Framme C, Walter A, Gabler B, Roider J, Sachs HG, Gabel VP. 2005.. Fundus autofluorescence in acute and chronic-recurrent central serous chorioretinopathy. . Acta Ophthalmol. Scand. 83::16167
    [Crossref] [Google Scholar]
  34. Francis JH, Habib LA, Abramson DH, Yannuzzi LA, Heinemann M, et al. 2017.. Clinical and morphologic characteristics of MEK inhibitor-associated retinopathy: differences from central serous chorioretinopathy. . Ophthalmology 124::178898
    [Crossref] [Google Scholar]
  35. Friberg TR, Campagna J. 1989.. Central serous chorioretinopathy: an analysis of the clinical morphology using image-processing techniques. . Graefes Arch. Clin. Exp. Ophthalmol. 227::2015
    [Crossref] [Google Scholar]
  36. Fritsche LG, Igl W, Bailey JN, Grassmann F, Sengupta S, et al. 2016.. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. . Nat. Genet. 48::13443
    [Crossref] [Google Scholar]
  37. Gäckle HC, Lang GE, Freissler KA, Lang GK. 1998.. [ Central serous chorioretinopathy. Clinical, fluorescein angiography and demographic aspects. ]. Ophthalmologe 95::52933 ( In German )
    [Crossref] [Google Scholar]
  38. Garg SP, Dada T, Talwar D, Biswas NR. 1997.. Endogenous cortisol profile in patients with central serous chorioretinopathy. . Br. J. Ophthalmol. 81::96264
    [Crossref] [Google Scholar]
  39. Gass JD. 1967.. Pathogenesis of disciform detachment of the neuroepithelium. . Am. J. Ophthalmol. 63:(Suppl.):1139
    [Google Scholar]
  40. Gilbert CM, Owens SL, Smith PD, Fine SL. 1984.. Long-term follow-up of central serous chorioretinopathy. . Br. J. Ophthalmol. 68::81520
    [Crossref] [Google Scholar]
  41. Gomez-Ulla F, Seoane I, Labella F, Torreiro J, Ruiz C. 1993.. An image analyzer study of central serous chorioretinopathy. . Optom. Vis. Sci. 70::11822
    [Crossref] [Google Scholar]
  42. Govindahari V, Singh SR, Rajesh B, Gallego-Pinazo R, Marco RD, et al. 2019.. Multicolor imaging in central serous chorioretinopathy—a quantitative and qualitative comparison with fundus autofluorescence. . Sci. Rep. 9::11728
    [Crossref] [Google Scholar]
  43. Guyer DR, Yannuzzi LA, Slakter JS, Sorenson JA, Ho A, Orlock D. 1994.. Digital indocyanine green videoangiography of central serous chorioretinopathy. . Arch. Ophthalmol. 112::105762
    [Crossref] [Google Scholar]
  44. Haimovici R, Gragoudas ES, Duker JS, Sjaarda RN, Eliott D. 1997.. Central serous chorioretinopathy associated with inhaled or intranasal corticosteroids. . Ophthalmology 104::165360
    [Crossref] [Google Scholar]
  45. Haimovici R, Koh S, Gagnon DR, Lehrfeld T, Wellik S, Cent. Serous Chorioretinopathy Case-Control Study Group. 2004.. Risk factors for central serous chorioretinopathy: a case-control study. . Ophthalmology 111::24449
    [Crossref] [Google Scholar]
  46. Haimovici R, Rumelt S, Melby J. 2003.. Endocrine abnormalities in patients with central serous chorioretinopathy. . Ophthalmology 110::698703
    [Crossref] [Google Scholar]
  47. Han J, Cho NS, Kim K, Kim ES, Kim DG, et al. 2020.. Fundus autofluorescence patterns in central serous chorioretinopathy. . Retina 40::138794
    [Crossref] [Google Scholar]
  48. Hanumunthadu D, Van Dijk EHC, Gangakhedkar S, Goud A, Cheung CMG, et al. 2018.. Gender variation in central serous chorioretinopathy. . Eye 32::17039
    [Crossref] [Google Scholar]
  49. Hayashi K, Hasegawa Y, Tokoro T. 1986.. Indocyanine green angiography of central serous chorioretinopathy. . Int. Ophthalmol. 9::3741
    [Crossref] [Google Scholar]
  50. Hee MR, Puliafito CA, Wong C, Reichel E, Duker JS, et al. 1995.. Optical coherence tomography of central serous chorioretinopathy. . Am. J. Ophthalmol. 120::6574
    [Crossref] [Google Scholar]
  51. Hiroe T, Kishi S. 2018.. Dilatation of asymmetric vortex vein in central serous chorioretinopathy. . Ophthalmol. Retina 2::15261
    [Crossref] [Google Scholar]
  52. Horozoglu F, Sever O, Celik E, Mete R, Sahin E. 2018.. Choroidal thickness of Helicobacter-positive patients without central serous chorioretinopathy. . Curr. Eye Res. 43::26265
    [Crossref] [Google Scholar]
  53. Hosoda Y, Miyake M, Schellevis RL, Boon CJF, Hoyng CB, et al. 2019.. Genome-wide association analyses identify two susceptibility loci for pachychoroid disease central serous chorioretinopathy. . Commun. Biol. 2::468
    [Crossref] [Google Scholar]
  54. Hosoda Y, Yoshikawa M, Miyake M, Tabara Y, Ahn J, et al. 2018.. CFH and VIPR2 as susceptibility loci in choroidal thickness and pachychoroid disease central serous chorioretinopathy. . PNAS 115::626166
    [Crossref] [Google Scholar]
  55. How AC, Koh AH. 2006.. Angiographic characteristics of acute central serous chorioretinopathy in an Asian population. . Ann. Acad. Med. Singap. 35::7779
    [Crossref] [Google Scholar]
  56. Iida T, Kishi S, Hagimura N, Shimizu K. 1999.. Persistent and bilateral choroidal vascular abnormalities in central serous chorioretinopathy. . Retina 19::50812
    [Crossref] [Google Scholar]
  57. Iida T, Yannuzzi LA, Spaide RF, Borodoker N, Carvalho CA, Negrao S. 2003.. Cystoid macular degeneration in chronic central serous chorioretinopathy. . Retina 23::17; quiz 137–38
    [Crossref] [Google Scholar]
  58. Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. 2010.. Choroidal thickness in healthy Japanese subjects. . Investig. Ophthalmol. Vis. Sci. 51::217376
    [Crossref] [Google Scholar]
  59. Imamura Y, Fujiwara T, Margolis R, Spaide RF. 2009.. Enhanced depth imaging optical coherence tomography of the choroid in central serous chorioretinopathy. . Retina 29::146973
    [Crossref] [Google Scholar]
  60. Imamura Y, Fujiwara T, Spaide RF. 2011.. Fundus autofluorescence and visual acuity in central serous chorioretinopathy. . Ophthalmology 118::7005
    [Crossref] [Google Scholar]
  61. Imanaga N, Terao N, Nakamine S, Tamashiro T, Wakugawa S, et al. 2021.. Scleral thickness in central serous chorioretinopathy. . Ophthalmol. Retina 5::28591
    [Crossref] [Google Scholar]
  62. Imasawa M, Ohshiro T, Gotoh T, Imai M, Iijima H. 2005.. Central serous chorioretinopathy following vitrectomy with intravitreal triamcinolone acetonide for diabetic macular oedema. . Acta Ophthalmol. Scand. 83::13233
    [Crossref] [Google Scholar]
  63. Kanda P, Gupta A, Gottlieb C, Karanjia R, Coupland SG, Bal MS. 2022.. Pathophysiology of central serous chorioretinopathy: a literature review with quality assessment. . Eye 36::94162
    [Crossref] [Google Scholar]
  64. Karska-Basta I, Pociej-Marciak W, Chrzaszcz M, Kubicka-Trzaska A, Romanowska-Dixon B, Sanak M. 2021.. Altered plasma cytokine levels in acute and chronic central serous chorioretinopathy. . Acta Ophthalmol. 99::e22231
    [Crossref] [Google Scholar]
  65. Kaye R, Chandra S, Sheth J, Boon CJF, Sivaprasad S, Lotery A. 2020.. Central serous chorioretinopathy: an update on risk factors, pathophysiology and imaging modalities. . Prog. Retin. Eye Res. 79::100865
    [Crossref] [Google Scholar]
  66. Khan AH, Sutton J, Cree AJ, Khandhadia S, De Salvo G, et al. 2021.. Prevalence and phenotype associations of complement factor I mutations in geographic atrophy. . Hum. Mutat. 42::113952
    [Crossref] [Google Scholar]
  67. Khandhadia S, Thulasidharan S, Hoang NTV, Ibrahim SA, Ouyang Y, Lotery A. 2023.. Real world outcomes of photodynamic therapy for chronic central serous chorioretinopathy. . Eye 37::254853
    [Crossref] [Google Scholar]
  68. Kishi S, Matsumoto H, Sonoda S, Hiroe T, Sakamoto T, Akiyama H. 2018.. Geographic filling delay of the choriocapillaris in the region of dilated asymmetric vortex veins in central serous chorioretinopathy. . PLOS ONE 13::e0206646
    [Crossref] [Google Scholar]
  69. Kitzmann AS, Pulido JS, Diehl NN, Hodge DO, Burke JP. 2008.. The incidence of central serous chorioretinopathy in Olmsted County, Minnesota, 1980–2002. . Ophthalmology 115::16973
    [Crossref] [Google Scholar]
  70. Klien BA. 1956.. Retinal lesions associated with uveal disease. I. . Am. J. Ophthalmol. 42::83147
    [Crossref] [Google Scholar]
  71. Kloos P, Laube I, Thoelen A. 2008.. Obstructive sleep apnea in patients with central serous chorioretinopathy. . Graefes Arch. Clin. Exp. Ophthalmol. 246::122528
    [Crossref] [Google Scholar]
  72. Lawson ND, Scheer N, Pham VN, Kim CH, Chitnis AB, et al. 2001.. Notch signaling is required for arterial-venous differentiation during embryonic vascular development. . Development 128::367583
    [Crossref] [Google Scholar]
  73. Lee WJ, Lee JH, Lee BR. 2016.. Fundus autofluorescence imaging patterns in central serous chorioretinopathy according to chronicity. . Eye 30::133642
    [Crossref] [Google Scholar]
  74. Lehmann M, Bousquet E, Beydoun T, Behar-Cohen F. 2015.. Pachychoroid: an inherited condition?. Retina 35::1016
    [Crossref] [Google Scholar]
  75. Leveque TK, Yu L, Musch DC, Chervin RD, Zacks DN. 2007.. Central serous chorioretinopathy and risk for obstructive sleep apnea. . Sleep Breath. 11::25357
    [Crossref] [Google Scholar]
  76. Liang ZQ, Huang LZ, Qu JF, Zhao MW. 2018.. Association between endogenous cortisol level and the risk of central serous chorioretinopathy: a meta-analysis. . Int. J. Ophthalmol. 11::296300
    [Google Scholar]
  77. Liew G, Quin G, Gillies M, Fraser-Bell S. 2013.. Central serous chorioretinopathy: a review of epidemiology and pathophysiology. . Clin. Exp. Ophthalmol. 41::20114
    [Crossref] [Google Scholar]
  78. Lim JI, Glassman AR, Aiello LP, Chakravarthy U, Flaxel CJ, et al. 2014.. Collaborative retrospective macula society study of photodynamic therapy for chronic central serous chorioretinopathy. . Ophthalmology 121::107378
    [Crossref] [Google Scholar]
  79. Lin E, Arrigg PG, Kim RY. 2000.. Familial central serous choroidopathy. . Graefes Arch. Clin. Exp. Ophthalmol. 238::93031
    [Crossref] [Google Scholar]
  80. Liszewski MK, Post TW, Atkinson JP. 1991.. Membrane cofactor protein (MCP or CD46): newest member of the regulators of complement activation gene cluster. . Annu. Rev. Immunol. 9::43155
    [Crossref] [Google Scholar]
  81. Liu B, Deng T, Zhang J. 2016.. Risk factors for central serous chorioretinopathy: a systematic review and meta-analysis. . Retina 36::919
    [Crossref] [Google Scholar]
  82. Loewenstein A. 1949.. Glomus cells in the human choroid as the basis of arteriovenous anastomoses. . Am. J. Ophthalmol. 32::165159
    [Crossref] [Google Scholar]
  83. Loo RH, Scott IU, Flynn HW Jr., Gass JD, Murray TG, et al. 2002.. Factors associated with reduced visual acuity during long-term follow-up of patients with idiopathic central serous chorioretinopathy. . Retina 22::1924
    [Crossref] [Google Scholar]
  84. Lotery A. 2022.. Can we classify central serous chorioretinopathy better? Yes we can. . Eye 36::487
    [Crossref] [Google Scholar]
  85. Lotery A, Sivaprasad S, O'Connell A, Harris RA, Culliford L, et al. 2020.. Eplerenone for chronic central serous chorioretinopathy in patients with active, previously untreated disease for more than 4 months (VICI): a randomised, double-blind, placebo-controlled trial. . Lancet 395::294303
    [Crossref] [Google Scholar]
  86. Maruko I, Iida T, Sugano Y, Ojima A, Sekiryu T. 2011.. Subfoveal choroidal thickness in fellow eyes of patients with central serous chorioretinopathy. . Retina 31::16038
    [Crossref] [Google Scholar]
  87. Matsumoto H, Hiroe T, Morimoto M, Mimura K, Ito A, Akiyama H. 2018.. Efficacy of treat-and-extend regimen with aflibercept for pachychoroid neovasculopathy and Type 1 neovascular age-related macular degeneration. . Jpn. J. Ophthalmol. 62::14450
    [Crossref] [Google Scholar]
  88. Matsumoto H, Hoshino J, Mukai R, Nakamura K, Kikuchi Y, et al. 2020.. Vortex vein anastomosis at the watershed in pachychoroid spectrum diseases. . Ophthalmol. Retina 4::93845
    [Crossref] [Google Scholar]
  89. Matsumoto H, Kishi S, Mukai R, Akiyama H. 2019.. Remodeling of macular vortex veins in pachychoroid neovasculopathy. . Sci. Rep. 9::14689
    [Crossref] [Google Scholar]
  90. Maumenee AE. 1965.. Macular diseases: clinical manifestations. . Trans. Am. Acad. Ophthalmol. Otolaryngol. 69::60513
    [Google Scholar]
  91. McLaughlin BJ, Fan W, Zheng JJ, Cai H, Del Priore LV, et al. 2003.. Novel role for a complement regulatory protein (CD46) in retinal pigment epithelial adhesion. . Investig. Ophthalmol. Vis. Sci. 44::366974
    [Crossref] [Google Scholar]
  92. Menchini U, Virgili G, Lanzetta P, Ferrari E. 1997.. Indocyanine green angiography in central serous chorioretinopathy. ICG angiography in CSC. . Int. Ophthalmol. 21::5769
    [Crossref] [Google Scholar]
  93. Mendrinos E, Mavrakanas N, Dang-Burgener NP, Pournaras CJ. 2008.. Bilateral multifocal retinal pigment epithelium detachments associated with systemic corticosteroids. . Eur. J. Ophthalmol. 18::64951
    [Crossref] [Google Scholar]
  94. Miki A, Kondo N, Yanagisawa S, Bessho H, Honda S, Negi A. 2014.. Common variants in the complement factor H gene confer genetic susceptibility to central serous chorioretinopathy. . Ophthalmology 121::106772
    [Crossref] [Google Scholar]
  95. Mitarai K, Gomi F, Tano Y. 2006.. Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy. . Graefes Arch. Clin. Exp. Ophthalmol. 244::141520
    [Crossref] [Google Scholar]
  96. Mohabati D, van Rijssen TJ, van Dijk EH, Luyten GP, Missotten TO, et al. 2018.. Clinical characteristics and long-term visual outcome of severe phenotypes of chronic central serous chorioretinopathy. . Clin. Ophthalmol. 12::106170
    [Crossref] [Google Scholar]
  97. Montero JA, Ruiz-Moreno JM. 2005.. Optical coherence tomography characterisation of idiopathic central serous chorioretinopathy. . Br. J. Ophthalmol. 89::56264
    [Crossref] [Google Scholar]
  98. Moschos MM, Gazouli M, Gatzioufas Z, Brouzas D, Nomikarios N, et al. 2016.. Prevalence of the complement factor H and Gstm1 genes polymorphisms in patients with central serous chorioretinopathy. . Retina 36::4027
    [Crossref] [Google Scholar]
  99. Mrejen S, Balaratnasingam C, Kaden TR, Bottini A, Dansingani K, et al. 2019.. Long-term visual outcomes and causes of vision loss in chronic central serous chorioretinopathy. . Ophthalmology 126::57688
    [Crossref] [Google Scholar]
  100. Naikawadi RP, Cheng N, Vogel SM, Qian F, Wu D, et al. 2012.. A critical role for phosphatidylinositol (3,4,5)-trisphosphate-dependent Rac exchanger 1 in endothelial junction disruption and vascular hyperpermeability. . Circ. Res. 111::151727
    [Crossref] [Google Scholar]
  101. Nicholson B, Noble J, Forooghian F, Meyerle C. 2013.. Central serous chorioretinopathy: update on pathophysiology and treatment. . Surv. Ophthalmol. 58::10326
    [Crossref] [Google Scholar]
  102. Nicholson BP, Ali Idris AM, Bakri SJ. 2018a.. Central serous chorioretinopathy: clinical characteristics associated with visual outcomes. . Semin. Ophthalmol. 33::8047
    [Crossref] [Google Scholar]
  103. Nicholson BP, Atchison E, Ali Idris A, Bakri SJ. 2018b.. Central serous chorioretinopathy and glucocorticoids: an update on evidence for association. . Surv. Ophthalmol. 63::18
    [Crossref] [Google Scholar]
  104. Noh GM, Nam KY, Lee SU, Lee SJ. 2019.. Central serous chorioretinopathy following intravitreal dexamethasone implant. . Korean J. Ophthalmol. 33::39294
    [Crossref] [Google Scholar]
  105. Ober MD, Yannuzzi LA, Do DV, Spaide RF, Bressler NM, et al. 2005.. Photodynamic therapy for focal retinal pigment epithelial leaks secondary to central serous chorioretinopathy. . Ophthalmology 112::208894
    [Crossref] [Google Scholar]
  106. Oh JH, Oh J, Togloom A, Kim SW, Huh K. 2014.. Biometric characteristics of eyes with central serous chorioretinopathy. . Investig. Ophthalmol. Vis. Sci. 55::15028
    [Crossref] [Google Scholar]
  107. Oosterhuis JA. 1996.. Familial central serous retinopathy. . Graefes Arch. Clin. Exp. Ophthalmol. 234::33741
    [Crossref] [Google Scholar]
  108. Pauleikhoff LJB, Diederen RMH, Chang-Wolf JM, Moll AC, Schlingemann RO, et al. 2023.. Choroidal vascular changes on ultrawidefield indocyanine green angiography in central serous chorioretinopathy: CERTAIN study report 1. . Ophthalmol. Retina 8::25463
    [Crossref] [Google Scholar]
  109. Peiretti E, Caminiti G, Serra R, Querques L, Pertile R, Querques G. 2018.. Anti-vascular endothelial growth factor therapy versus photodynamic therapy in the treatment of choroidal neovascularization secondary to central serous chorioretinopathy. . Retina 38::152632
    [Crossref] [Google Scholar]
  110. Peiretti E, Ferrara DC, Caminiti G, Mura M, Hughes J. 2015.. Choroidal neovascularization in Caucasian patients with longstanding central serous chorioretinopathy. . Retina 35::136067
    [Crossref] [Google Scholar]
  111. Piccolino FC, Borgia L, Zinicola E, Zingirian M. 1995.. Indocyanine green angiographic findings in central serous chorioretinopathy. . Eye 9:(Pt 3):32432
    [Crossref] [Google Scholar]
  112. Piccolino FC, de la Longrais RR, Ravera G, Eandi CM, Ventre L, et al. 2005.. The foveal photoreceptor layer and visual acuity loss in central serous chorioretinopathy. . Am. J. Ophthalmol. 139::8799
    [Crossref] [Google Scholar]
  113. Polak BC, Baarsma GS, Snyers B. 1995.. Diffuse retinal pigment epitheliopathy complicating systemic corticosteroid treatment. . Br. J. Ophthalmol. 79::92225
    [Crossref] [Google Scholar]
  114. Prunte C. 1995.. Indocyanine green angiographic findings in central serous chorioretinopathy. . Int. Ophthalmol. 19::7782
    [Crossref] [Google Scholar]
  115. Prunte C, Flammer J. 1996.. Choroidal capillary and venous congestion in central serous chorioretinopathy. . Am. J. Ophthalmol. 121::2634
    [Crossref] [Google Scholar]
  116. Quillen DA, Gass DM, Brod RD, Gardner TW, Blankenship GW, Gottlieb JL. 1996.. Central serous chorioretinopathy in women. . Ophthalmology 103::7279
    [Crossref] [Google Scholar]
  117. Ramo JT, Abner E, van Dijk EHC, Wang X, Brinks J, et al. 2023.. Overlap of genetic loci for central serous chorioretinopathy with age-related macular degeneration. . JAMA Ophthalmol. 141::44957
    [Crossref] [Google Scholar]
  118. Rim TH, Kim HS, Kwak J, Lee JS, Kim DW, Kim SS. 2018.. Association of corticosteroid use with incidence of central serous chorioretinopathy in South Korea. . JAMA Ophthalmol. 136::116469
    [Crossref] [Google Scholar]
  119. Sahoo NK, Ong J, Selvam A, Brown R, Avdalimov M, et al. 2024.. Gender differences in central serous chorioretinopathy based on the new multimodal imaging classification. . Eye 38::96467
    [Crossref] [Google Scholar]
  120. Schatz H, Madeira D, Johnson RN, McDonald HR. 1992.. Central serous chorioretinopathy occurring in patients 60 years of age and older. . Ophthalmology 99::6367
    [Crossref] [Google Scholar]
  121. Scheider A, Nasemann JE, Lund OE. 1993.. Fluorescein and indocyanine green angiographies of central serous choroidopathy by scanning laser ophthalmoscopy. . Am. J. Ophthalmol. 115::5056
    [Crossref] [Google Scholar]
  122. Schellevis RL, van Dijk EHC, Breukink MB, Altay L, Bakker B, et al. 2018.. Role of the complement system in chronic central serous chorioretinopathy: a genome-wide association study. . JAMA Ophthalmol. 136::112836
    [Crossref] [Google Scholar]
  123. Schubert C, Pryds A, Zeng S, Xie Y, Freund KB, et al. 2014.. Cadherin 5 is regulated by corticosteroids and associated with central serous chorioretinopathy. . Hum. Mutat. 35::85967
    [Crossref] [Google Scholar]
  124. Schworm B, Luft N, Keidel LF, Hagenau F, Kern C, et al. 2020.. Response of neovascular central serous chorioretinopathy to an extended upload of anti-VEGF agents. . Graefes Arch. Clin. Exp. Ophthalmol. 258::101321
    [Crossref] [Google Scholar]
  125. Siedlecki J, Fischer C, Schworm B, Kreutzer TC, Luft N, et al. 2020.. Impact of sub-retinal fluid on the long-term incidence of macular atrophy in neovascular age-related macular degeneration under treat & extend anti-vascular endothelial growth factor inhibitors. . Sci. Rep. 10::8036
    [Crossref] [Google Scholar]
  126. Siedlecki J, Schworm B, Priglinger SG. 2019.. The pachychoroid disease spectrum—and the need for a uniform classification system. . Ophthalmol. Retina 3::101315
    [Crossref] [Google Scholar]
  127. Sirks MJ, van Dijk EHC, Rosenberg N, Hollak CEM, Aslanis S, et al. 2022.. Clinical impact of the worldwide shortage of verteporfin (Visudyne®) on ophthalmic care. . Acta Ophthalmol. 100::e152232
    [Crossref] [Google Scholar]
  128. Smailhodzic D, Klaver CC, Klevering BJ, Boon CJ, Groenewoud JM, et al. 2012.. Risk alleles in CFH and ARMS2 are independently associated with systemic complement activation in age-related macular degeneration. . Ophthalmology 119::33946
    [Crossref] [Google Scholar]
  129. Sohn EH, Flamme-Wiese MJ, Whitmore SS, Wang K, Tucker BA, Mullins RF. 2014.. Loss of CD34 expression in aging human choriocapillaris endothelial cells. . PLOS ONE 9::e86538
    [Crossref] [Google Scholar]
  130. Spaide RF. 2021.. The ambiguity of pachychoroid. . Retina 41::23137
    [Crossref] [Google Scholar]
  131. Spaide RF, Campeas L, Haas A, Yannuzzi LA, Fisher YL, et al. 1996a.. Central serous chorioretinopathy in younger and older adults. . Ophthalmology 103::207079; discussion 79–80
    [Crossref] [Google Scholar]
  132. Spaide RF, Gemmy Cheung CM, Matsumoto H, Kishi S, Boon CJF, et al. 2022.. Venous overload choroidopathy: a hypothetical framework for central serous chorioretinopathy and allied disorders. . Prog. Retin. Eye Res. 86::100973
    [Crossref] [Google Scholar]
  133. Spaide RF, Hall L, Haas A, Campeas L, Yannuzzi LA, et al. 1996b.. Indocyanine green videoangiography of older patients with central serous chorioretinopathy. . Retina 16::20313
    [Crossref] [Google Scholar]
  134. Spaide RF, Klancnik JM Jr. 2005.. Fundus autofluorescence and central serous chorioretinopathy. . Ophthalmology 112::82533
    [Crossref] [Google Scholar]
  135. Spaide RF, Ledesma-Gil G. 2020.. Novel method for image averaging of optical coherence tomography angiography images. . Retina 40::2099105
    [Crossref] [Google Scholar]
  136. Spaide RF, Ledesma-Gil G. 2021.. Choriocapillaris vascular parameters in normal eyes and those with pachychoroid with and without disease. . Retina 41::67985
    [Crossref] [Google Scholar]
  137. Spaide RF, Ledesma-Gil G, Gemmy Cheung CM. 2021.. Intervortex venous anastomosis in pachychoroid-related disorders. . Retina 41::9971004
    [Crossref] [Google Scholar]
  138. Suwal B, Khadka D, Shrestha A, Shrestha S, Shrestha N, Khatri B. 2019.. Baseline predictive factors of visual outcome and persistence of subretinal fluid based on morphologic changes in spectral domain optical coherence tomography in patients with idiopathic central serous chorioretinopathy. . Clin. Ophthalmol. 13::243944
    [Crossref] [Google Scholar]
  139. Takahashi A, Ooto S, Yamashiro K, Tamura H, Oishi A, et al. 2018.. Pachychoroid geographic atrophy: clinical and genetic characteristics. . Ophthalmol. Retina 2::295305
    [Crossref] [Google Scholar]
  140. Terao N, Koizumi H, Kojima K, Yamagishi T, Yamamoto Y, et al. 2018.. Distinct aqueous humour cytokine profiles of patients with pachychoroid neovasculopathy and neovascular age-related macular degeneration. . Sci. Rep. 8::10520
    [Crossref] [Google Scholar]
  141. Tetel MJ, de Vries GJ, Melcangi RC, Panzica G, O'Mahony SM. 2018.. Steroids, stress and the gut microbiome-brain axis. . J. Neuroendocrinol. 30::e12548
    [Crossref] [Google Scholar]
  142. Teussink MM, Breukink MB, van Grinsven MJ, Hoyng CB, Klevering BJ, et al. 2015.. OCT angiography compared to fluorescein and indocyanine green angiography in chronic central serous chorioretinopathy. . Investig. Ophthalmol. Vis. Sci. 56::522937
    [Crossref] [Google Scholar]
  143. Todd KC, Hainsworth DP, Lee LR, Madsen RW. 2002.. Longitudinal analysis of central serous chorioretinopathy and sex. . Can. J. Ophthalmol. 37::4058
    [Crossref] [Google Scholar]
  144. Tsai DC, Chen SJ, Huang CC, Chou P, Chung CM, et al. 2014.. Risk of central serous chorioretinopathy in adults prescribed oral corticosteroids: a population-based study in Taiwan. . Retina 34::186774
    [Crossref] [Google Scholar]
  145. Tsujikawa A, Ojima Y, Yamashiro K, Ooto S, Tamura H, et al. 2010.. Punctate hyperfluorescent spots associated with central serous chorioretinopathy as seen on indocyanine green angiography. . Retina 30::8019
    [Crossref] [Google Scholar]
  146. Üçgül Atılgan C, Yozgat A, Kösekahya P, Çağlayan M, Şendul SY, et al. 2018.. The evaluation of the effect of Helicobacter pylori infection on choroidal thickness. . Turk. J. Gastroenterol. 29::63641
    [Crossref] [Google Scholar]
  147. van Dijk EH, Dijkman G, Biermasz NR, van Haalen FM, Pereira AM, Boon CJ. 2016.. Chronic central serous chorioretinopathy as a presenting symptom of Cushing syndrome. . Eur. J. Ophthalmol. 26::44248
    [Crossref] [Google Scholar]
  148. van Dijk EHC, Schellevis RL, van Bergen M, Breukink MB, Altay L, et al. 2017a.. Association of a haplotype in the NR3C2 gene, encoding the mineralocorticoid receptor, with chronic central serous chorioretinopathy. . JAMA Ophthalmol. 135::44651
    [Crossref] [Google Scholar]
  149. van Dijk EHC, Soonawala D, Rooth V, Hoyng CB, Meijer OC, et al. 2017b.. Spectrum of retinal abnormalities in renal transplant patients using chronic low-dose steroids. . Graefes Arch. Clin. Exp. Ophthalmol. 255::244349
    [Crossref] [Google Scholar]
  150. van Haalen FM, van Dijk EHC, Andela CD, Dijkman G, Biermasz NR, et al. 2019.. Maladaptive personality traits, psychological morbidity and coping strategies in chronic central serous chorioretinopathy. . Acta Ophthalmol. 97::e57279
    [Crossref] [Google Scholar]
  151. van Rijssen TJ, van Dijk EHC, Yzer S, Ohno-Matsui K, Keunen JEE, et al. 2019.. Central serous chorioretinopathy: towards an evidence-based treatment guideline. . Prog. Retin. Eye Res. 73::100770
    [Crossref] [Google Scholar]
  152. van Velthoven ME, Verbraak FD, Garcia PM, Schlingemann RO, Rosen RB, de Smet MD. 2005.. Evaluation of central serous retinopathy with en face optical coherence tomography. . Br. J. Ophthalmol. 89::148388
    [Crossref] [Google Scholar]
  153. Venkatesh R, Prabhu V, Joshi A, Mangla R, Singh R, et al. 2023.. Real-world practice patterns of eplerenone use for central serous chorioretinopathy. . Int. J. Retina Vitreous 9::61
    [Crossref] [Google Scholar]
  154. Voigt AP, Mulfaul K, Mullin NK, Flamme-Wiese MJ, Giacalone JC, et al. 2019.. Single-cell transcriptomics of the human retinal pigment epithelium and choroid in health and macular degeneration. . PNAS 116::241007
    [Crossref] [Google Scholar]
  155. Voigt AP, Whitmore SS, Mulfaul K, Chirco KR, Giacalone JC, et al. 2020.. Bulk and single-cell gene expression analyses reveal aging human choriocapillaris has pro-inflammatory phenotype. . Microvasc. Res. 131::104031
    [Crossref] [Google Scholar]
  156. von Graefe A. 1866.. Über centrale recidivierende retinitis. . Graefes Arch. Clin. Exp. Ophthalmol. 12::21115
    [Google Scholar]
  157. Wang M, Munch IC, Hasler PW, Prunte C, Larsen M. 2008.. Central serous chorioretinopathy. . Acta Ophthalmol. 86::12645
    [Crossref] [Google Scholar]
  158. Warrow DJ, Hoang QV, Freund KB. 2013.. Pachychoroid pigment epitheliopathy. . Retina 33::165972
    [Crossref] [Google Scholar]
  159. Weenink AC, Borsje RA, Oosterhuis JA. 2001.. Familial chronic central serous chorioretinopathy. . Ophthalmologica 215::18387
    [Crossref] [Google Scholar]
  160. Wong R, Chopdar A, Brown M. 2004.. Five to 15 year follow-up of resolved idiopathic central serous chorioretinopathy. . Eye 18::26268
    [Crossref] [Google Scholar]
  161. Yalcinbayir O, Gelisken O, Akova-Budak B, Ozkaya G, Gorkem Cevik S, Yucel AA. 2014.. Correlation of spectral domain optical coherence tomography findings and visual acuity in central serous chorioretinopathy. . Retina 34::70512
    [Crossref] [Google Scholar]
  162. Yang HS, Kang TG, Park H, Heo JS, Park J, et al. 2020.. Quantitative evaluation of choriocapillaris using optical coherence tomography and optical coherence tomography angiography in patients with central serous chorioretinopathy after half-dose photodynamic therapy. . PLOS ONE 15::e0227718
    [Crossref] [Google Scholar]
  163. Yang L, Jonas JB, Wei W. 2013.. Choroidal vessel diameter in central serous chorioretinopathy. . Acta Ophthalmol. 91::e35862
    [Google Scholar]
  164. Yannuzzi LA. 1986.. Type A behavior and central serous chorioretinopathy. . Trans. Am. Ophthalmol. Soc. 84::799845
    [Google Scholar]
  165. Yannuzzi LA. 1987.. Type-A behavior and central serous chorioretinopathy. . Retina 7::11131
    [Crossref] [Google Scholar]
  166. Yannuzzi LA, Shakin JL, Fisher YL, Altomonte MA. 1984.. Peripheral retinal detachments and retinal pigment epithelial atrophic tracts secondary to central serous pigment epitheliopathy. . Ophthalmology 91::155472
    [Crossref] [Google Scholar]
  167. Yannuzzi LA, Slakter JS, Gross NE, Spaide RF, Costa D, et al. 2003.. Indocyanine green angiography-guided photodynamic therapy for treatment of chronic central serous chorioretinopathy: a pilot study. . Retina 23::28898
    [Crossref] [Google Scholar]
  168. Yavas GF, Kusbeci T, Kasikci M, Gunay E, Dogan M, et al. 2014.. Obstructive sleep apnea in patients with central serous chorioretinopathy. . Curr. Eye Res. 39::8892
    [Crossref] [Google Scholar]
  169. Yoneyama S, Fukui A, Sakurada Y, Terao N, Shijo T, et al. 2022.. Distinct characteristics of central serous chorioretinopathy according to gender. . Sci. Rep. 12::10565
    [Crossref] [Google Scholar]
  170. Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. 2020.. Gut microbiota and immune system interactions. . Microorganisms 8::1587
    [Crossref] [Google Scholar]
  171. Zakir SM, Shukla M, Simi ZU, Ahmad J, Sajid M. 2009.. Serum cortisol and testosterone levels in idiopathic central serous chorioretinopathy. . Ind. J. Ophthalmol. 57::41922
    [Crossref] [Google Scholar]
  172. Zavoloka O, Bezditko P, Lahorzhevska I, Zubkova D, Ilyina Y. 2016.. Clinical efficiency of Helicobacter pylori eradication in the treatment of patients with acute central serous chorioretinopathy. . Graefes Arch. Clin. Exp. Ophthalmol. 254::173742
    [Crossref] [Google Scholar]
  173. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, et al. 2016.. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. . Nat. Genet. 48::48187
    [Crossref] [Google Scholar]
  174. Zysset-Burri DC, Morandi S, Herzog EL, Berger LE, Zinkernagel MS. 2023.. The role of the gut microbiome in eye diseases. . Prog. Retin. Eye Res. 92::101117
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-102907
Loading
/content/journals/10.1146/annurev-vision-102122-102907
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error