1932

Abstract

Synapse formation within the retinal circuit ensures that distinct neuronal types can communicate efficiently to process visual signals. Synapses thus form the core of the visual computations performed by the retinal circuit. Retinal synapses are diverse but can be broadly categorized into multipartner ribbon synapses and 1:1 conventional synapses. In this article, we review our current understanding of the cellular and molecular mechanisms that regulate the functional establishment of mammalian retinal synapses, including the role of adhesion proteins, synaptic proteins, extracellular matrix and cytoskeletal-associated proteins, and activity-dependent cues. We outline future directions and areas of research that will expand our knowledge of these mechanisms. Understanding the regulators moderating synapse formation and function not only reveals the integrated developmental processes that establish retinal circuits, but also divulges the identity of mechanisms that could be engaged during disease and degeneration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-105721
2024-09-18
2024-10-05
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-105721.html?itemId=/content/journals/10.1146/annurev-vision-102122-105721&mimeType=html&fmt=ahah

Literature Cited

  1. Agosto MA, Anastassov IA, Robichaux MA, Wensel TG. 2018.. A large endoplasmic reticulum-resident pool of TRPM1 in retinal ON-bipolar cells. . eNeuro 5::ENEURO.0143-18.2018
    [Crossref] [Google Scholar]
  2. Auferkorte ON, Baden T, Kaushalya SK, Zabouri N, Rudolph U, et al. 2012.. GABAA receptors containing the α2 subunit are critical for direction-selective inhibition in the retina. . PLOS ONE 7::e35109
    [Crossref] [Google Scholar]
  3. Aviles EC, Krol A, Henle SJ, Burroughs-Garcia J, Deans MR, Goodrich LV. 2022.. Fat3 acts through independent cytoskeletal effectors to coordinate asymmetric cell behaviors during polarized circuit assembly. . Cell Rep. 38::110307
    [Crossref] [Google Scholar]
  4. Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. 2016.. Connectivity map of bipolar cells and photoreceptors in the mouse retina. . eLife 5::e20041
    [Crossref] [Google Scholar]
  5. Bleckert A, Zhang C, Turner MH, Koren D, Berson DM, et al. 2018.. GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. . PNAS 115::E1208390
    [Crossref] [Google Scholar]
  6. Brandstatter JH, Fletcher EL, Garner CC, Gundelfinger ED, Wassle H. 1999.. Differential expression of the presynaptic cytomatrix protein bassoon among ribbon synapses in the mammalian retina. . Eur. J. Neurosci. 11::368393
    [Crossref] [Google Scholar]
  7. Cao Y, Masuho I, Okawa H, Xie K, Asami J, et al. 2009.. Retina-specific GTPase accelerator RGS11/G beta 5S/R9AP is a constitutive heterotrimer selectively targeted to mGluR6 in ON-bipolar neurons. . J. Neurosci. 29::930113
    [Crossref] [Google Scholar]
  8. Cao Y, Sarria I, Fehlhaber KE, Kamasawa N, Orlandi C, et al. 2015.. Mechanism for selective synaptic wiring of rod photoreceptors into the retinal circuitry and its role in vision. . Neuron 87::124860
    [Crossref] [Google Scholar]
  9. Cao Y, Wang Y, Dunn HA, Orlandi C, Shultz N, et al. 2020.. Interplay between cell-adhesion molecules governs synaptic wiring of cone photoreceptors. . PNAS 117::2391424
    [Crossref] [Google Scholar]
  10. Care RA, Anastassov IA, Kastner DB, Kuo YM, Della Santina L, Dunn FA. 2020.. Mature retina compensates functionally for partial loss of rod photoreceptors. . Cell Rep. 31::107730
    [Crossref] [Google Scholar]
  11. Care RA, Kastner DB, De la Huerta I, Pan S, Khoche A, et al. 2019.. Partial cone loss triggers synapse-specific remodeling and spatial receptive field rearrangements in a mature retinal circuit. . Cell Rep. 27::217183.e5
    [Crossref] [Google Scholar]
  12. Chai Z, Silverman D, Li G, Williams D, Raviola E, Yau KW. 2020.. Light-dependent photoreceptor orientation in mouse retina. . Sci. Adv. 6::eabe2782
    [Crossref] [Google Scholar]
  13. Chaya T, Matsumoto A, Sugita Y, Watanabe S, Kuwahara R, et al. 2017.. Versatile functional roles of horizontal cells in the retinal circuit. . Sci. Rep. 7::5540
    [Crossref] [Google Scholar]
  14. Clements R, Turk R, Campbell KP, Wright KM. 2017.. Dystroglycan maintains inner limiting membrane integrity to coordinate retinal development. . J. Neurosci. 37::855974
    [Crossref] [Google Scholar]
  15. Condomitti G, de Wit J. 2018.. Heparan sulfate proteoglycans as emerging players in synaptic specificity. . Front. Mol. Neurosci. 11::14
    [Crossref] [Google Scholar]
  16. de Wit J, O'Sullivan ML, Savas JN, Condomitti G, Caccese MC, et al. 2013.. Unbiased discovery of glypican as a receptor for LRRTM4 in regulating excitatory synapse development. . Neuron 79::696711
    [Crossref] [Google Scholar]
  17. Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV. 2011.. Control of neuronal morphology by the atypical cadherin Fat3. . Neuron 71::82032
    [Crossref] [Google Scholar]
  18. Dembla E, Dembla M, Maxeiner S, Schmitz F. 2020.. Synaptic ribbons foster active zone stability and illumination-dependent active zone enrichment of RIM2 and CaV1.4 in photoreceptor synapses. . Sci. Rep. 10::5957
    [Crossref] [Google Scholar]
  19. Denes V, Witkovsky P, Koch M, Hunter DD, Pinzon-Duarte G, Brunken WJ. 2007.. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. . Vis. Neurosci. 24::54962
    [Crossref] [Google Scholar]
  20. Dick O, tom Dieck S, Altrock WD, Ammermuller J, Weiler R, et al. 2003.. The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. . Neuron 37::77586
    [Crossref] [Google Scholar]
  21. Dolan J, Walshe K, Alsbury S, Hokamp K, O'Keeffe S, et al. 2007.. The extracellular leucine-rich repeat superfamily: a comparative survey and analysis of evolutionary relationships and expression patterns. . BMC Genom. 8::320
    [Crossref] [Google Scholar]
  22. Dunn FA. 2015.. Photoreceptor ablation initiates the immediate loss of glutamate receptors in postsynaptic bipolar cells in retina. . J. Neurosci. 35::242331
    [Crossref] [Google Scholar]
  23. Dunn FA, Della Santina L, Parker ED, Wong RO. 2013.. Sensory experience shapes the development of the visual system's first synapse. . Neuron 80::115966
    [Crossref] [Google Scholar]
  24. Dunn HA, Patil DN, Cao Y, Orlandi C, Martemyanov KA. 2018.. Synaptic adhesion protein ELFN1 is a selective allosteric modulator of group III metabotropic glutamate receptors in trans. . PNAS 115::502227
    [Crossref] [Google Scholar]
  25. Ellis EM, Paniagua AE, Scalabrino ML, Thapa M, Rathinavelu J, et al. 2023.. Cones and cone pathways remain functional in advanced retinal degeneration. . Curr. Biol. 33::151322.e4
    [Crossref] [Google Scholar]
  26. El-Quessny M, Maanum K, Feller MB. 2020.. Visual experience influences dendritic orientation but is not required for asymmetric wiring of the retinal direction selective circuit. . Cell Rep. 31::107844
    [Crossref] [Google Scholar]
  27. Fairless R, Williams SK, Katiyar R, Maxeiner S, Schmitz F, Diem R. 2020.. ERG responses in mice with deletion of the synaptic ribbon component RIBEYE. . Investig. Ophthalmol. Vis. Sci. 61::37
    [Crossref] [Google Scholar]
  28. Fischer F, Kneussel M, Tintrup H, Haverkamp S, Rauen T, et al. 2000.. Reduced synaptic clustering of GABA and glycine receptors in the retina of the gephyrin null mutant mouse. . J. Comp. Neurol. 427::63448
    [Crossref] [Google Scholar]
  29. Fitzpatrick MJ, Kerschensteiner D. 2023.. Homeostatic plasticity in the retina. . Prog. Retin. Eye Res. 94::101131
    [Crossref] [Google Scholar]
  30. Ford KJ, Feller MB. 2012.. Assembly and disassembly of a retinal cholinergic network. . Vis. Neurosci. 29::6171
    [Crossref] [Google Scholar]
  31. Gamlin CR, Zhang C, Dyer MA, Wong ROL. 2020.. Distinct developmental mechanisms act independently to shape biased synaptic divergence from an inhibitory neuron. . Curr. Biol. 30::125868.e2
    [Crossref] [Google Scholar]
  32. Goetz J, Jessen ZF, Jacobi A, Mani A, Cooler S, et al. 2022.. Unified classification of mouse retinal ganglion cells using function, morphology, and gene expression. . Cell Rep. 40::111040
    [Crossref] [Google Scholar]
  33. Gomi F, Imaizumi K, Yoneda T, Taniguchi M, Mori Y, et al. 2000.. Molecular cloning of a novel membrane glycoprotein, pal, specifically expressed in photoreceptor cells of the retina and containing leucine-rich repeat. . J. Neurosci. 20::320613
    [Crossref] [Google Scholar]
  34. Gregg RG, Hasan N, Borghuis BG. 2023.. LRIT3 expression in cone photoreceptors restores post-synaptic bipolar cell signalplex assembly and partial function in Lrit3−/− mice. . iScience 26::106499
    [Crossref] [Google Scholar]
  35. Gregg RG, Kamermans M, Klooster J, Lukasiewicz PD, Peachey NS, et al. 2007.. Nyctalopin expression in retinal bipolar cells restores visual function in a mouse model of complete X-linked congenital stationary night blindness. . J. Neurophysiol. 98::302333
    [Crossref] [Google Scholar]
  36. Gregg RG, Mukhopadhyay S, Candille SI, Ball SL, Pardue MT, et al. 2003.. Identification of the gene and the mutation responsible for the mouse nob phenotype. . Investig. Ophthalmol. Vis. Sci. 44::37884
    [Crossref] [Google Scholar]
  37. Grünert U, Martin PR. 2020.. Cell types and cell circuits in human and non-human primate retina. . Prog. Retin. Eye Res. 78::100844
    [Crossref] [Google Scholar]
  38. Hamilton NR, Scasny AJ, Kolodkin AL. 2021.. Development of the vertebrate retinal direction-selective circuit. . Dev. Biol. 477::27383
    [Crossref] [Google Scholar]
  39. Hasan N, Pangeni G, Cobb CA, Ray TA, Nettesheim ER, et al. 2019.. Presynaptic expression of LRIT3 transsynaptically organizes the postsynaptic glutamate signaling complex containing TRPM1. . Cell Rep. 27::310716.e3
    [Crossref] [Google Scholar]
  40. Hasan N, Pangeni G, Ray TA, Fransen KM, Noel J, et al. 2020.. LRIT3 is required for nyctalopin expression and normal ON and OFF pathway signaling in the retina. . eNeuro 7::ENEURO.0002-20.2020
    [Crossref] [Google Scholar]
  41. Heidelberger R, Thoreson WB, Witkovsky P. 2005.. Synaptic transmission at retinal ribbon synapses. . Prog. Retin. Eye Res. 24::682720
    [Crossref] [Google Scholar]
  42. Hoon M, Bauer G, Fritschy JM, Moser T, Falkenburger BH, Varoqueaux F. 2009.. Neuroligin 2 controls the maturation of GABAergic synapses and information processing in the retina. . J. Neurosci. 29::803950
    [Crossref] [Google Scholar]
  43. Hoon M, Krishnamoorthy V, Gollisch T, Falkenburger B, Varoqueaux F. 2017.. Loss of Neuroligin3 specifically downregulates retinal GABA2 receptors without abolishing direction selectivity. . PLOS ONE 12::e0181011
    [Crossref] [Google Scholar]
  44. Hoon M, Okawa H, Della Santina L, Wong RO. 2014.. Functional architecture of the retina: development and disease. . Prog. Retin. Eye Res. 42::4484
    [Crossref] [Google Scholar]
  45. Hoon M, Sinha R, Okawa H, Suzuki SC, Hirano AA, et al. 2015.. Neurotransmission plays contrasting roles in the maturation of inhibitory synapses on axons and dendrites of retinal bipolar cells. . PNAS 112::1284045
    [Crossref] [Google Scholar]
  46. Hoon M, Soykan T, Falkenburger B, Hammer M, Patrizi A, et al. 2011.. Neuroligin-4 is localized to glycinergic postsynapses and regulates inhibition in the retina. . PNAS 108::305358
    [Crossref] [Google Scholar]
  47. Hu H, Li J, Zhang Z, Yu M. 2011.. Pikachurin interaction with dystroglycan is diminished by defective O-mannosyl glycosylation in congenital muscular dystrophy models and rescued by LARGE overexpression. . Neurosci. Lett. 489::1015
    [Crossref] [Google Scholar]
  48. Inatani M, Tanihara H. 2002.. Proteoglycans in retina. . Prog. Retin. Eye Res. 21::42947
    [Crossref] [Google Scholar]
  49. Johnson RE, Tien NW, Shen N, Pearson JT, Soto F, Kerschensteiner D. 2017.. Homeostatic plasticity shapes the visual system's first synapse. . Nat. Commun. 8::1220
    [Crossref] [Google Scholar]
  50. Kajander T, Kuja-Panula J, Rauvala H, Goldman A. 2011.. Crystal structure and role of glycans and dimerization in folding of neuronal leucine-rich repeat protein AMIGO-1. . J. Mol. Biol. 413::100115
    [Crossref] [Google Scholar]
  51. Kanagawa M, Omori Y, Sato S, Kobayashi K, Miyagoe-Suzuki Y, et al. 2010.. Post-translational maturation of dystroglycan is necessary for pikachurin binding and ribbon synaptic localization. . J. Biol. Chem. 285::3120816
    [Crossref] [Google Scholar]
  52. Karthikeyan L, Flad M, Engel M, Meyer-Puttlitz B, Margolis RU, Margolis RK. 1994.. Immunocytochemical and in situ hybridization studies of the heparan sulfate proteoglycan, glypican, in nervous tissue. . J. Cell Sci. 107:(Pt 11):321322
    [Crossref] [Google Scholar]
  53. Kerov V, Laird JG, Joiner ML, Knecht S, Soh D, et al. 2018.. α2δ-4 Is required for the molecular and structural organization of rod and cone photoreceptor synapses. . J. Neurosci. 38::614560
    [Crossref] [Google Scholar]
  54. Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO. 2009.. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. . Nature 460::101620
    [Crossref] [Google Scholar]
  55. Krol A, Henle SJ, Goodrich LV. 2016.. Fat3 and Ena/VASP proteins influence the emergence of asymmetric cell morphology in the developing retina. . Development 143::217282
    [Google Scholar]
  56. Kuja-Panula J, Kiiltomaki M, Yamashiro T, Rouhiainen A, Rauvala H. 2003.. AMIGO, a transmembrane protein implicated in axon tract development, defines a novel protein family with leucine-rich repeats. . J. Cell Biol. 160::96373
    [Crossref] [Google Scholar]
  57. Kunze VP, Angueyra J, Ball JM, Thomsen MB, Li X, et al. 2023.. Neurexin 3 is required for the specific S-cone to S-cone bipolar cell synapse in the mammalian retina. . bioRxiv 2023.02.13.527055. https://doi.org/10.1101/2023.02/13/527055
  58. Liu X, Kerov V, Haeseleer F, Majumder A, Artemyev N, et al. 2013.. Dysregulation of CaV1.4 channels disrupts the maturation of photoreceptor synaptic ribbons in congenital stationary night blindness type 2. . Channels 7::51423
    [Crossref] [Google Scholar]
  59. Maddox JW, Randall KL, Yadav RP, Williams B, Hagen J, et al. 2020.. A dual role for CaV1.4 Ca2+ channels in the molecular and structural organization of the rod photoreceptor synapse. . eLife 9::e62184
    [Crossref] [Google Scholar]
  60. Matsunaga H, Aruga J. 2021.. Trans-synaptic regulation of metabotropic glutamate receptors by Elfn proteins in health and disease. . Front. Neural Circuits 15::634875
    [Crossref] [Google Scholar]
  61. Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H, et al. 2011a.. Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. . Neuron 71::46073
    [Crossref] [Google Scholar]
  62. Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chedotal A, Kolodkin AL. 2011b.. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. . Nature 470::25963
    [Crossref] [Google Scholar]
  63. Migdale K, Herr S, Klug K, Ahmad K, Linberg K, et al. 2003.. Two ribbon synaptic units in rod photoreceptors of macaque, human, and cat. . J. Comp. Neurol. 455::10012
    [Crossref] [Google Scholar]
  64. Morrie RD, Feller MB. 2016.. Development of synaptic connectivity in the retinal direction selective circuit. . Curr. Opin. Neurobiol. 40::4552
    [Crossref] [Google Scholar]
  65. Mortensen LS, Park SJH, Ke JB, Cooper BH, Zhang L, et al. 2016.. Complexin 3 increases the fidelity of signaling in a retinal circuit by regulating exocytosis at ribbon synapses. . Cell Rep. 15::223950
    [Crossref] [Google Scholar]
  66. Nagae S, Tanoue T, Takeichi M. 2007.. Temporal and spatial expression profiles of the Fat3 protein, a giant cadherin molecule, during mouse development. . Dev. Dyn. 236::53443
    [Crossref] [Google Scholar]
  67. Nemitz L, Dedek K, Janssen-Bienhold U. 2019.. Rod bipolar cells require horizontal cells for invagination into the terminals of rod photoreceptors. . Front. Cell. Neurosci. 13::423
    [Crossref] [Google Scholar]
  68. Nemitz L, Dedek K, Janssen-Bienhold U. 2021.. Synaptic remodeling in the cone pathway after early postnatal horizontal cell ablation. . Front. Cell Neurosci. 15::657594
    [Crossref] [Google Scholar]
  69. Neuille M, Cao Y, Caplette R, Guerrero-Given D, Thomas C, et al. 2017.. LRIT3 differentially affects connectivity and synaptic transmission of cones to ON- and OFF-bipolar cells. . Investig. Ophthalmol. Vis. Sci. 58::176878
    [Crossref] [Google Scholar]
  70. Neuille M, Morgans CW, Cao Y, Orhan E, Michiels C, et al. 2015.. LRIT3 is essential to localize TRPM1 to the dendritic tips of depolarizing bipolar cells and may play a role in cone synapse formation. . Eur. J. Neurosci. 42::196675
    [Crossref] [Google Scholar]
  71. Okawa H, Hoon M, Yoshimatsu T, Della Santina L, Wong ROL. 2014.. Illuminating the multifaceted roles of neurotransmission in shaping neuronal circuitry. . Neuron 83::130318
    [Crossref] [Google Scholar]
  72. Okawa H, Yu WQ, Matti U, Schwarz K, Odermatt B, et al. 2019.. Dynamic assembly of ribbon synapses and circuit maintenance in a vertebrate sensory system. . Nat. Commun. 10::2167
    [Crossref] [Google Scholar]
  73. Omori Y, Araki F, Chaya T, Kajimura N, Irie S, et al. 2012.. Presynaptic dystroglycan-pikachurin complex regulates the proper synaptic connection between retinal photoreceptor and bipolar cells. . J. Neurosci. 32::612637
    [Crossref] [Google Scholar]
  74. Orlandi C, Omori Y, Wang Y, Cao Y, Ueno A, et al. 2018.. Transsynaptic binding of orphan receptor GPR179 to dystroglycan-pikachurin complex is essential for the synaptic organization of photoreceptors. . Cell Rep. 25::13045.e5
    [Crossref] [Google Scholar]
  75. Papadopoulos T, Soykan T. 2011.. The role of collybistin in gephyrin clustering at inhibitory synapses: facts and open questions. . Front. Cell. Neurosci. 5::11
    [Crossref] [Google Scholar]
  76. Patil DN, Pantalone S, Cao Y, Laboute T, Novick SJ, et al. 2023.. Structure of the photoreceptor synaptic assembly of the extracellular matrix protein pikachurin with the orphan receptor GPR179. . Sci. Signal. 16::eadd9539
    [Crossref] [Google Scholar]
  77. Pearring JN, Bojang P Jr., Shen Y, Koike C, Furukawa T, et al. 2011.. A role for nyctalopin, a small leucine-rich repeat protein, in localizing the TRP melastatin 1 channel to retinal depolarizing bipolar cell dendrites. . J. Neurosci. 31::1006066
    [Crossref] [Google Scholar]
  78. Reim K, Regus-Leidig H, Ammermuller J, El-Kordi A, Radyushkin K, et al. 2009.. Aberrant function and structure of retinal ribbon synapses in the absence of complexin 3 and complexin 4. . J. Cell Sci. 122::135261
    [Crossref] [Google Scholar]
  79. Reim K, Wegmeyer H, Brandstatter JH, Xue M, Rosenmund C, et al. 2005.. Structurally and functionally unique complexins at retinal ribbon synapses. . J. Cell Biol. 169::66980
    [Crossref] [Google Scholar]
  80. Reinhard J, Mueller-Buehl C, Wiemann S, Roll L, Luft V, et al. 2023.. Neural extracellular matrix regulates visual sensory motor integration. . bioRxiv 2023.04.17.537074. https://doi.org/10.1101/2023.04.17.537074
  81. Ribic A, Liu X, Crair MC, Biederer T. 2014.. Structural organization and function of mouse photoreceptor ribbon synapses involve the immunoglobulin protein synaptic cell adhesion molecule 1. . J. Comp. Neurol. 522::90020
    [Crossref] [Google Scholar]
  82. Saiepour L, Fuchs C, Patrizi A, Sassoe-Pognetto M, Harvey RJ, Harvey K. 2010.. Complex role of collybistin and gephyrin in GABAA receptor clustering. . J. Biol. Chem. 285::2962331
    [Crossref] [Google Scholar]
  83. Sanuki R, Watanabe S, Sugita Y, Irie S, Kozuka T, et al. 2015.. Protein-4.1G-mediated membrane trafficking is essential for correct rod synaptic location in the retina and for normal visual function. . Cell Rep. 10::796808
    [Crossref] [Google Scholar]
  84. Sarria I, Cao Y, Wang Y, Ingram NT, Orlandi C, et al. 2018.. LRIT1 modulates adaptive changes in synaptic communication of cone photoreceptors. . Cell Rep. 22::356273
    [Crossref] [Google Scholar]
  85. Sato S, Omori Y, Katoh K, Kondo M, Kanagawa M, et al. 2008.. Pikachurin, a dystroglycan ligand, is essential for photoreceptor ribbon synapse formation. . Nat. Neurosci. 11::92331
    [Crossref] [Google Scholar]
  86. Sawant A, Ebbinghaus BN, Bleckert A, Gamlin C, Yu WQ, et al. 2021.. Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. . Cell Rep. 34::108858
    [Crossref] [Google Scholar]
  87. Schmitz F. 2009.. The making of synaptic ribbons: how they are built and what they do. . Neuroscientist 15::61124
    [Crossref] [Google Scholar]
  88. Schmitz F, Drenckhahn D. 1997.. Dystrophin in the retina. . Prog. Neurobiol. 53::54760
    [Crossref] [Google Scholar]
  89. Schubert T, Hoon M, Euler T, Lukasiewicz PD, Wong RO. 2013.. Developmental regulation and activity-dependent maintenance of GABAergic presynaptic inhibition onto rod bipolar cell axonal terminals. . Neuron 78::12437
    [Crossref] [Google Scholar]
  90. Schwartz GW, Okawa H, Dunn FA, Morgan JL, Kerschensteiner D, et al. 2012.. The spatial structure of a nonlinear receptive field. . Nat. Neurosci. 15::157280
    [Crossref] [Google Scholar]
  91. Seiradake E, Coles CH, Perestenko PV, Harlos K, McIlhinney RA, et al. 2011.. Structural basis for cell surface patterning through NetrinG-NGL interactions. . EMBO J. 30::447988
    [Crossref] [Google Scholar]
  92. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ, et al. 2016.. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. . Cell 166::130823.e30
    [Crossref] [Google Scholar]
  93. Shen N, Wang B, Soto F, Kerschensteiner D. 2020.. Homeostatic plasticity shapes the retinal response to photoreceptor degeneration. . Curr. Biol. 30::191626.e3
    [Crossref] [Google Scholar]
  94. Siddiqui TJ, Tari PK, Connor SA, Zhang P, Dobie FA, et al. 2013.. An LRRTM4-HSPG complex mediates excitatory synapse development on dentate gyrus granule cells. . Neuron 79::68095
    [Crossref] [Google Scholar]
  95. Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, et al. 2021.. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. . Curr. Biol. 31::431426.e5
    [Crossref] [Google Scholar]
  96. Sinha R, Siddiqui TJ, Padmanabhan N, Wallin J, Zhang C, et al. 2020.. LRRTM4: a novel regulator of presynaptic inhibition and ribbon synapse arrangements of retinal bipolar cells. . Neuron 105::100717.e5
    [Crossref] [Google Scholar]
  97. Soto F, Shen N, Kerschensteiner D. 2022.. AMIGO1 promotes axon growth and territory matching in the retina. . J. Neurosci. 42::267889
    [Crossref] [Google Scholar]
  98. Soto F, Tien NW, Goel A, Zhao L, Ruzycki PA, Kerschensteiner D. 2019.. AMIGO2 scales dendrite arbors in the retina. . Cell Rep. 29::156878.e4
    [Crossref] [Google Scholar]
  99. Soto F, Watkins KL, Johnson RE, Schottler F, Kerschensteiner D. 2013.. NGL-2 regulates pathway-specific neurite growth and lamination, synapse formation, and signal transmission in the retina. . J. Neurosci. 33::1194959
    [Crossref] [Google Scholar]
  100. Soto F, Zhao L, Kerschensteiner D. 2018.. Synapse maintenance and restoration in the retina by NGL2. . eLife 7::e30388
    [Crossref] [Google Scholar]
  101. Stacy RC, Demas J, Burgess RW, Sanes JR, Wong RO. 2005.. Disruption and recovery of patterned retinal activity in the absence of acetylcholine. . J. Neurosci. 25::934757
    [Crossref] [Google Scholar]
  102. Tian N, Copenhagen DR. 2001.. Visual deprivation alters development of synaptic function in inner retina after eye opening. . Neuron 32::43949
    [Crossref] [Google Scholar]
  103. Tian N, Copenhagen DR. 2003.. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. . Neuron 39::8596
    [Crossref] [Google Scholar]
  104. Tien NW, Soto F, Kerschensteiner D. 2017.. Homeostatic plasticity shapes cell-type-specific wiring in the retina. . Neuron 94::65665.e4
    [Crossref] [Google Scholar]
  105. Tiriac A, Bistrong K, Pitcher MN, Tworig JM, Feller MB. 2022.. The influence of spontaneous and visual activity on the development of direction selectivity maps in mouse retina. . Cell Rep. 38::110225
    [Crossref] [Google Scholar]
  106. Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, et al. 2018.. Melanopsin retinal ganglion cells regulate cone photoreceptor lamination in the mouse retina. . Cell Rep. 23::241628
    [Crossref] [Google Scholar]
  107. Ueno A, Omori Y, Sugita Y, Watanabe S, Chaya T, et al. 2018.. Lrit1, a retinal transmembrane protein, regulates selective synapse formation in cone photoreceptor cells and visual acuity. . Cell Rep. 22::354861
    [Crossref] [Google Scholar]
  108. Vistamehr S, Tian N. 2004.. Light deprivation suppresses the light response of inner retina in both young and adult mouse. . Vis. Neurosci. 21::2337
    [Crossref] [Google Scholar]
  109. Voufo C, Chen AQ, Smith BE, Yan R, Feller MB, Tiriac A. 2023.. Circuit mechanisms underlying embryonic retinal waves. . eLife 12::e81983
    [Crossref] [Google Scholar]
  110. Wachtmeister L. 1998.. Oscillatory potentials in the retina: What do they reveal?. Prog. Retin. Eye Res. 17::485521
    [Crossref] [Google Scholar]
  111. Wang Y, Fehlhaber KE, Sarria I, Cao Y, Ingram NT, et al. 2017.. The auxiliary calcium channel subunit α2δ4 is required for axonal elaboration, synaptic transmission, and wiring of rod photoreceptors. . Neuron 93::135974.e6
    [Crossref] [Google Scholar]
  112. Wassle H. 2004.. Parallel processing in the mammalian retina. . Nat. Rev. Neurosci. 5::74757
    [Crossref] [Google Scholar]
  113. Wassle H, Koulen P, Brandstatter JH, Fletcher EL, Becker CM. 1998.. Glycine and GABA receptors in the mammalian retina. . Vis. Res. 38::141130
    [Crossref] [Google Scholar]
  114. Whitney IE, Butrus S, Dyer MA, Rieke F, Sanes JR, Shekhar K. 2023.. Vision-dependent and -independent molecular maturation of mouse retinal ganglion cells. . Neuroscience 508::15373
    [Crossref] [Google Scholar]
  115. Williams B, Maddox JW, Lee A. 2022.. Calcium channels in retinal function and disease. . Annu. Rev. Vis. Sci. 8::5377
    [Crossref] [Google Scholar]
  116. Wisner SR, Saha A, Grimes WN, Mizerska K, Kolarik HJ, et al. 2023.. Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina. . Curr. Biol. 33::441529.e3
    [Crossref] [Google Scholar]
  117. Xu HP, Burbridge TJ, Ye M, Chen M, Ge X, et al. 2016.. Retinal wave patterns are governed by mutual excitation among starburst amacrine cells and drive the refinement and maintenance of visual circuits. . J. Neurosci. 36::387186
    [Crossref] [Google Scholar]
  118. Yamagata A, Goto-Ito S, Sato Y, Shiroshima T, Maeda A, et al. 2018.. Structural insights into modulation and selectivity of transsynaptic neurexin-LRRTM interaction. . Nat. Commun. 9::3964
    [Crossref] [Google Scholar]
  119. Yan W, Laboulaye MA, Tran NM, Whitney IE, Benhar I, Sanes JR. 2020.. Mouse Retinal Cell Atlas: molecular identification of over sixty amacrine cell types. . J. Neurosci. 40::517795
    [Crossref] [Google Scholar]
  120. Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S. 2001.. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. . Neuron 30::77180
    [Crossref] [Google Scholar]
  121. Zhang C, Hellevik A, Takeuchi S, Wong RO. 2022.. Hierarchical partner selection shapes rod-cone pathway specificity in the inner retina. . iScience 25::105032
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-105721
Loading
/content/journals/10.1146/annurev-vision-102122-105721
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error