1932

Abstract

The retina is an ideal model for understanding the fundamental rules for how neural networks are constructed. The compact neural networks of the retina perform all of the initial processing of visual information before transmission to higher visual centers in the brain. The field of retinal connectomics uses high-resolution electron microscopy datasets to map the intricate organization of these networks and further our understanding of how these computations are performed by revealing the fundamental topologies and allowable networks behind retinal computations. In this article, we review some of the notable advances that retinal connectomics has provided in our understanding of the specific cells and the organization of their connectivities within the retina, as well as how these are shaped in development and break down in disease. Using these anatomical maps to inform modeling has been, and will continue to be, instrumental in understanding how the retina processes visual signals.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-102122-110414
2024-09-18
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-102122-110414.html?itemId=/content/journals/10.1146/annurev-vision-102122-110414&mimeType=html&fmt=ahah

Literature Cited

  1. Ackert JM, Farajian R, Volgyi B, Bloomfield SA. 2009.. GABA blockade unmasks an OFF response in ON direction selective ganglion cells in the mammalian retina. . J. Physiol. 587:(Pt 18):448195
    [Crossref] [Google Scholar]
  2. Ackert JM, Wu SH, Lee JC, Abrams J, Hu EH, et al. 2006.. Light-induced changes in spike synchronization between coupled ON direction selective ganglion cells in the mammalian retina. . J. Neurosci. 26:(16):420615
    [Crossref] [Google Scholar]
  3. Anderson DH, Fisher SK, Steinberg RH. 1978.. Mammalian cones: disc shedding, phagocytosis, and renewal. . Investig. Ophthalmol. Vis. Sci. 17:(2):11733
    [Google Scholar]
  4. Anderson JR, Jones BW, Watt CB, Shaw MV, Yang JH, et al. 2011.. Exploring the retinal connectome. . Mol. Vis. 17::35579
    [Google Scholar]
  5. Anderson JR, Jones BW, Yang JH, Shaw MV, Watt CB, et al. 2009.. A computational framework for ultrastructural mapping of neural circuitry. . PLOS Biol. 7:(3):e1000074
    [Crossref] [Google Scholar]
  6. Barlow HB, Levick WR. 1965.. The mechanism of directionally selective units in rabbit's retina. . J. Physiol. 178:(3):477504
    [Crossref] [Google Scholar]
  7. Beaudoin DL, Manookin MB, Demb JB. 2008.. Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell. . J. Physiol. 586:(22):5487502
    [Crossref] [Google Scholar]
  8. Becker SM, Tumminia SJ, Chiang MF. 2021.. The NEI Audacious Goals Initiative: advancing the frontier of regenerative medicine. . Transl. Vis. Sci. Technol. 10:(10):2
    [Crossref] [Google Scholar]
  9. Behrens C, Schubert T, Haverkamp S, Euler T, Berens P. 2016.. Connectivity map of bipolar cells and photoreceptors in the mouse retina. . eLife 5::e20041
    [Crossref] [Google Scholar]
  10. Bleckert A, Zhang C, Turner MH, Koren D, Berson DM, et al. 2018.. GABA release selectively regulates synapse development at distinct inputs on direction-selective retinal ganglion cells. . PNAS 115:(51):E1208390
    [Crossref] [Google Scholar]
  11. Bloomfield SA, Dacheux RF. 2001.. Rod vision: pathways and processing in the mammalian retina. . Prog. Retin. Eye Res. 20:(3):35184
    [Crossref] [Google Scholar]
  12. Bloomfield SA, Xin D, Osborne T. 1997.. Light-induced modulation of coupling between AII amacrine cells in the rabbit retina. . Vis. Neurosci. 14:(3):56576
    [Crossref] [Google Scholar]
  13. Bordt AS, Patterson SS, Girresch RJ, Perez D, Tseng L, et al. 2021.. Synaptic inputs to broad thorny ganglion cells in macaque retina. . J. Comp. Neurol. 529:(11):3098111
    [Crossref] [Google Scholar]
  14. Bordt AS, Patterson SS, Kuchenbecker JA, Mazzaferri MA, Yearick JN, et al. 2022.. Synaptic inputs to displaced intrinsically-photosensitive ganglion cells in macaque retina. . Sci. Rep. 12::15160
    [Crossref] [Google Scholar]
  15. Bordt AS, Perez D, Tseng L, Liu WS, Neitz J, et al. 2019.. Synaptic inputs from identified bipolar and amacrine cells to a sparsely branched ganglion cell in rabbit retina. . Vis. Neurosci. 36::E004
    [Crossref] [Google Scholar]
  16. Boycott BB, Kolb H. 1973.. The connections between bipolar cells and photoreceptors in the retina of the domestic cat. . J. Comp. Neurol. 148:(1):91114
    [Crossref] [Google Scholar]
  17. Briggman KL, Bock DD. 2012.. Volume electron microscopy for neuronal circuit reconstruction. . Curr. Opin. Neurobiol. 22:(1):15461
    [Crossref] [Google Scholar]
  18. Briggman KL, Helmstaedter M, Denk W. 2011.. Wiring specificity in the direction-selectivity circuit of the retina. . Nature 471:(7337):18388
    [Crossref] [Google Scholar]
  19. Calkins DJ, Sterling P. 1996.. Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina. . Nature 381:(6583):61315
    [Crossref] [Google Scholar]
  20. Calkins DJ, Tsukamoto Y, Sterling P. 1998.. Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. . J. Neurosci. 18:(9):337385
    [Crossref] [Google Scholar]
  21. Cangiano L, Asteriti S. 2021.. Interphotoreceptor coupling: an evolutionary perspective. . Pflugers Arch. 473:(9):153954
    [Crossref] [Google Scholar]
  22. Chapot CA, Behrens C, Rogerson LE, Baden T, Pop S, et al. 2017.. Local signals in mouse horizontal cell dendrites. . Curr. Biol. 27:(23):360315.e5
    [Crossref] [Google Scholar]
  23. Cohen E, Sterling P. 1990.. Demonstration of cell types among cone bipolar neurons of cat retina. . Philos. Trans. R. Soc. Lond. B 330:(1258):30521
    [Crossref] [Google Scholar]
  24. Crook DK, Manookin MB, Packer OS, Dacey DM. 2010.. Excitatory synaptic conductances mediate “blue-yellow” and “red-green” opponency in macaque monkey retinal ganglion cells. Paper presented at the 2010 Meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL:, May 2–6
    [Google Scholar]
  25. Curcio CA, Presley JB, Millican CL, Medeiros NE. 2005.. Basal deposits and drusen in eyes with age-related maculopathy: evidence for solid lipid particles. . Exp. Eye Res. 80:(6):76175
    [Crossref] [Google Scholar]
  26. Dacey DM. 2000.. Parallel pathways for spectral coding in primate retina. . Annu. Rev. Neurosci. 23::74375
    [Crossref] [Google Scholar]
  27. Dacey DM, Lee BB, Stafford DK, Pokorny J, Smith VC. 1996.. Horizontal cells of the primate retina: cone specificity without spectral opponency. . Science 271::65659
    [Crossref] [Google Scholar]
  28. Davenport CM, Detwiler PB, Dacey DM. 2008.. Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: evidence for the proton hypothesis of surround formation. . J. Neurosci. 28:(2):45664
    [Crossref] [Google Scholar]
  29. Ding H, Smith RG, Poleg-Polsky A, Diamond JS, Briggman KL. 2016.. Species-specific wiring for direction selectivity in the mammalian retina. . Nature 535:(7610):10510
    [Crossref] [Google Scholar]
  30. Dunn FA, Wong RO. 2014.. Wiring patterns in the mouse retina: collecting evidence across the connectome, physiology and light microscopy. . J. Physiol. 592:(22):480923
    [Crossref] [Google Scholar]
  31. Euler T, Detwiler PB, Denk W. 2002.. Directionally selective calcium signals in dendrites of starburst amacrine cells. . Nature 418:(6900):84552
    [Crossref] [Google Scholar]
  32. Famiglietti EV. 2008.. Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina. . Vis. Neurosci. 25:(1):5366
    [Crossref] [Google Scholar]
  33. Famiglietti EVJ, Kolb H. 1975.. A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. . Brain Res. 84::293300
    [Crossref] [Google Scholar]
  34. Farzad S, Kosta P, Iseri E, Walston ST, Bouteiller JC, et al. 2023.. Impact of retinal degeneration on response of ON and OFF cone bipolar cells to electrical stimulation. . IEEE Trans. Neural Syst. Rehabil. Eng. 31::242437
    [Crossref] [Google Scholar]
  35. Field GD, Greschner M, Gauthier JL, Rangel C, Shlens J, et al. 2009.. High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. . Nat. Neurosci. 12:(9):115964
    [Crossref] [Google Scholar]
  36. Gamlin CR, Zhang C, Dyer MA, Wong ROL. 2020.. Distinct developmental mechanisms act independently to shape biased synaptic divergence from an inhibitory neuron. . Curr. Biol. 30:(7):125868.e2
    [Crossref] [Google Scholar]
  37. Gauthier JL, Field GD, Sher A, Greschner M, Shlens J, et al. 2009.. Receptive fields in primate retina are coordinated to sample visual space more uniformly. . PLOS Biol. 7:(4):e1000063
    [Crossref] [Google Scholar]
  38. Graydon CW, Lieberman EE, Rho N, Briggman KL, Singer JH, Diamond JS. 2018.. Synaptic transfer between rod and cone pathways mediated by AII amacrine cells in the mouse retina. . Curr. Biol. 28:(17):273951.e3
    [Crossref] [Google Scholar]
  39. Greene MJ, Kim JS, Seung HS, EyeWirers. 2016.. Analogous convergence of sustained and transient inputs in parallel On and Off pathways for retinal motion computation. . Cell Rep. 14:(8):1892900
    [Crossref] [Google Scholar]
  40. Grimes WN, Ayturk DG, Hoon M, Yoshimatsu T, Gamlin C, et al. 2021.. A high-density narrow-field inhibitory retinal interneuron with direct coupling to Muller glia. . J. Neurosci. 41:(28):601837
    [Crossref] [Google Scholar]
  41. Grimes WN, Sedlacek M, Musgrove M, Nath A, Tian H, et al. 2022.. Dendro-somatic synaptic inputs to ganglion cells contradict receptive field and connectivity conventions in the mammalian retina. . Curr. Biol. 32:(2):31528.e4
    [Crossref] [Google Scholar]
  42. Hanson L, Ravi-Chander P, Berson D, Awatramani GB. 2023.. Hierarchical retinal computations rely on hybrid chemical-electrical signaling. . Cell Rep. 42:(2):112030
    [Crossref] [Google Scholar]
  43. Haverkamp S, Wassle H. 2000.. Immunocytochemical analysis of the mouse retina. . J. Comp. Neurol. 424:(1):123
    [Crossref] [Google Scholar]
  44. Hellevik AM, Mardoum P, Hahn J, Kolsch Y, D'Orazi FD, et al. 2023.. Ancient origin of the rod bipolar cell pathway in the vertebrate retina. . bioRxiv 2023.09.12.557433. https://doi.org/10.1101/2023.09.12.557433
  45. Helmstaedter M, Briggman KL, Denk W. 2011.. High-accuracy neurite reconstruction for high-throughput neuroanatomy. . Nat. Neurosci. 14:(8):108188
    [Crossref] [Google Scholar]
  46. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013.. Connectomic reconstruction of the inner plexiform layer in the mouse retina. . Nature 500:(7461):16874
    [Crossref] [Google Scholar]
  47. Herr S, Klug K, Sterling P, Schein S. 2003.. Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. . J. Comp. Neurol. 457:(2):185201
    [Crossref] [Google Scholar]
  48. Hoggarth A, McLaughlin AJ, Ronellenfitch K, Trenholm S, Vasandani R, et al. 2015.. Specific wiring of distinct amacrine cells in the directionally selective retinal circuit permits independent coding of direction and size. . Neuron 86:(1):27691
    [Crossref] [Google Scholar]
  49. Hoshi H, Tian LM, Massey SC, Mills SL. 2011.. Two distinct types of ON directionally selective ganglion cells in the rabbit retina. . J. Comp. Neurol. 519:(13):250921
    [Crossref] [Google Scholar]
  50. Huang X, Rangel M, Briggman KL, Wei W. 2019.. Neural mechanisms of contextual modulation in the retinal direction selective circuit. . Nat. Commun. 10::2431
    [Crossref] [Google Scholar]
  51. Ishibashi M, Keung J, Morgans CW, Aicher SA, Carroll JR, et al. 2022.. Analysis of rod/cone gap junctions from the reconstruction of mouse photoreceptor terminals. . eLife 11::e73039
    [Crossref] [Google Scholar]
  52. Jacobson SG, Cideciyan AV, Aguirre GD, Roman AJ, Sumaroka A, et al. 2015a.. Improvement in vision: a new goal for treatment of hereditary retinal degenerations. . Expert Opin. Orphan Drugs 3:(5):56375
    [Crossref] [Google Scholar]
  53. Jacobson SG, Cideciyan AV, Roman AJ, Sumaroka A, Schwartz SB, et al. 2015b.. Improvement and decline in vision with gene therapy in childhood blindness. . N. Engl. J. Med. 372:(20):192026
    [Crossref] [Google Scholar]
  54. Jain V, Hanson L, Sethuramanujam S, Michaels T, Gawley J, et al. 2022.. Gain control by sparse, ultra-slow glycinergic synapses. . Cell Rep. 38:(8):110410
    [Crossref] [Google Scholar]
  55. Jin N, Zhang Z, Keung J, Youn SB, Ishibashi M, et al. 2020.. Molecular and functional architecture of the mouse photoreceptor network. . Sci. Adv. 6:(28):eaba7232
    [Crossref] [Google Scholar]
  56. Jones BW, Kondo M, Terasaki H, Lin Y, McCall M, Marc RE. 2012.. Retinal remodeling. . Jpn. J. Ophthalmol. 56:(4):289306
    [Crossref] [Google Scholar]
  57. Jones BW, Kondo M, Terasaki H, Watt CB, Rapp K, et al. 2011.. Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. . J. Comp. Neurol. 519:(14):271333
    [Crossref] [Google Scholar]
  58. Jones BW, Marc RE. 2005.. Retinal remodeling during retinal degeneration. . Exp. Eye Res. 81:(2):12337
    [Crossref] [Google Scholar]
  59. Jones BW, Marc RE. 2020.. Retinal connectomics. . In The Senses, ed. B Fritzsch , pp. 32043. Amsterdam:: Elsevier. , 2nd ed..
    [Google Scholar]
  60. Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Marmor M, Marc RE. 2016a.. Retinal remodeling in human retinitis pigmentosa. . Exp. Eye Res. 150::14965
    [Crossref] [Google Scholar]
  61. Jones BW, Pfeiffer RL, Ferrell WD, Watt CB, Tucker J, Marc RE. 2016b.. Retinal remodeling and metabolic alterations in human AMD. . Front. Cell Neurosci. 10::103
    [Google Scholar]
  62. Jones BW, Watt CB, Frederick JM, Baehr W, Chen CK, et al. 2003.. Retinal remodeling triggered by photoreceptor degenerations. . J. Comp. Neurol. 464:(1):116
    [Crossref] [Google Scholar]
  63. Jones BW, Watt CB, Marc RE. 2005.. Retinal remodelling. . Clin. Exp. Optom. 88:(5):28291
    [Crossref] [Google Scholar]
  64. Kanjhan R, Sivyer B. 2010.. Two types of ON direction-selective ganglion cells in rabbit retina. . Neurosci. Lett. 483:(2):1059
    [Crossref] [Google Scholar]
  65. Kantor O, Varga A, Nitschke R, Naumann A, Enzsoly A, et al. 2017.. Bipolar cell gap junctions serve major signaling pathways in the human retina. . Brain Struct. Funct. 222:(6):260324
    [Crossref] [Google Scholar]
  66. Kim JS, Greene MJ, Zlateski A, Lee K, Richardson M, et al. 2014.. Space-time wiring specificity supports direction selectivity in the retina. . Nature 509:(7500):33136
    [Crossref] [Google Scholar]
  67. Kim YJ, Packer O, Pollreisz A, Martin PR, Grunert U, Dacey DM. 2023.. Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina. . PNAS 120:(18):e2300545120
    [Crossref] [Google Scholar]
  68. Kim YJ, Peterson BB, Crook JD, Joo HR, Wu J, et al. 2022.. Origins of direction selectivity in the primate retina. . Nat. Commun. 13::2862
    [Crossref] [Google Scholar]
  69. Klug K, Herr S, Ngo IT, Sterling P, Schein S. 2003.. Macaque retina contains an S-cone OFF midget pathway. . J. Neurosci. 23:(30):988187
    [Crossref] [Google Scholar]
  70. Knupp C, Amin SZ, Munro PM, Luthert PJ, Squire JM. 2002.. Collagen VI assemblies in age-related macular degeneration. . J. Struct. Biol. 139:(3):18189
    [Crossref] [Google Scholar]
  71. Kolb H. 1970.. Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi-impregnated cells. . Philos. Trans. R. Soc. Lond. B 258:(823):26183
    [Crossref] [Google Scholar]
  72. Kolb H, Dekorver L. 1991.. Midget ganglion cells of the parafovea of the human retina: a study by electron microscopy and serial section reconstructions. . J. Comp. Neurol. 303:(4):61736
    [Crossref] [Google Scholar]
  73. Kolb H, Famiglietti EV. 1974.. Rod and cone pathways in the inner plexiform layer of cat retina. . Science 186:(4158):4749
    [Crossref] [Google Scholar]
  74. Kolb H, Fernandez E, Schouten J, Ahnelt P, Linberg KA, Fisher SK. 1994.. Are there three types of horizontal cell in the human retina?. J. Comp. Neurol. 343:(3):37086
    [Crossref] [Google Scholar]
  75. Kolb H, Goede P, Roberts S, McDermott R, Gouras P. 1997.. Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. . J. Comp. Neurol. 386:(3):44360
    [Crossref] [Google Scholar]
  76. Kolb H, Gouras P. 1974.. Electron microscopic observations of human retinitis pigmentosa, dominantly inherited. . Investig. Ophthalmol. 13:(7):48798
    [Google Scholar]
  77. Kolb H, Marshak D. 2003.. The midget pathways of the primate retina. . Doc. Ophthalmol. 106:(1):6781
    [Crossref] [Google Scholar]
  78. Kolb H, Zhang L, Dekorver L, Cuenca N. 2002.. A new look at calretinin-immunoreactive amacrine cell types in the monkey retina. . J. Comp. Neurol. 453:(2):16884
    [Crossref] [Google Scholar]
  79. Kosta P, Iseri E, Loizos K, Paknahad J, Pfeiffer RL, et al. 2021.. Model-based comparison of current flow in rod bipolar cells of healthy and early-stage degenerated retina. . Exp. Eye Res. 207::108554
    [Crossref] [Google Scholar]
  80. Kouyama N, Marshak DW. 1992.. Bipolar cells specific for blue cones in the macaque retina. . J. Neurosci. 12:(4):123352
    [Crossref] [Google Scholar]
  81. Kovacs-Oller T, Ivanova E, Bianchimano P, Sagdullaev BT. 2020.. The pericyte connectome: Spatial precision of neurovascular coupling is driven by selective connectivity maps of pericytes and endothelial cells and is disrupted in diabetes. . Cell Discov. 6::39
    [Crossref] [Google Scholar]
  82. Lauritzen JS, Anderson JR, Jones BW, Watt CB, Mohammed S, et al. 2013a.. ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina. . J. Comp. Neurol. 521:(5):9771000
    [Crossref] [Google Scholar]
  83. Lauritzen JS, Hoang JV, Sigulinsky C, Jones BW, Anderson JR, et al. 2013b.. Tiered cross-class bipolar cell gap junctional coupling in the rabbit retina. . Investig. Ophthalmol. Vis. Sci. 54::1754
    [Google Scholar]
  84. Lauritzen JS, Sigulinsky CL, Anderson JR, Kalloniatis M, Nelson NT, et al. 2019.. Rod-cone crossover connectome of mammalian bipolar cells. . J. Comp. Neurol. 527:(1):87116
    [Crossref] [Google Scholar]
  85. Lebedev DS, Marshak DW. 2007.. Amacrine cell contributions to red-green color opponency in central primate retina: a model study. . Vis. Neurosci. 24:(4):53547
    [Crossref] [Google Scholar]
  86. Lee BB. 2008.. Blue-ON cells. . In The Senses: A Comprehensive Reference, Vol. 1: Vision, ed. RH Masland, T Albright , pp. 43338. Amsterdam:: Elsevier
    [Google Scholar]
  87. Lichtman JW, Livet J, Sanes JR. 2008.. A technicolour approach to the connectome. . Nat. Rev. Neurosci. 9:(6):41722
    [Crossref] [Google Scholar]
  88. Lindell M, Kar D, Sedova A, Kim YJ, Packer OS, et al. 2023.. Volumetric reconstruction of a human retinal pigment epithelial cell reveals specialized membranes and polarized distribution of organelles. . Investig. Ophthalmol. Vis. Sci. 64:(15):35
    [Crossref] [Google Scholar]
  89. Liu PC, Chiao CC. 2007.. Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina. . Investig. Ophthalmol. Vis. Sci. 48:(7):338895
    [Crossref] [Google Scholar]
  90. Loizos K, Cela C, Marc R, Lazzi G. 2016a.. Virtual electrode design for increasing spatial resolution in retinal prosthesis. . Healthc. Technol. Lett. 3:(2):9397
    [Crossref] [Google Scholar]
  91. Loizos K, Lazzi G, Lauritzen JS, Anderson J, Jones BW, Marc R. 2014.. A multi-scale computational model for the study of retinal prosthetic stimulation. . Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2014::61003
    [Google Scholar]
  92. Loizos K, RamRakhyani AK, Anderson J, Marc R, Lazzi G. 2016b.. On the computation of a retina resistivity profile for applications in multi-scale modeling of electrical stimulation and absorption. . Phys. Med. Biol. 61:(12):4491505
    [Crossref] [Google Scholar]
  93. Mani A, Yang X, Zhao TA, Leyrer ML, Schreck D, Berson DM. 2023.. A circuit suppressing retinal drive to the optokinetic system during fast image motion. . Nat. Commun. 14::5142
    [Crossref] [Google Scholar]
  94. Marc RE. 2008.. Functional neuroanatomy of the retina. . In Albert and Jakobiec's Principles and Practice of Ophthalmology, ed. D Albert, J Miller, D Azar, B Blodi , pp. 156592. Amsterdam:: Elsevier. , 3rd ed..
    [Google Scholar]
  95. Marc RE, Anderson JR, Jones BW, Sigulinsky CL, Lauritzen JS. 2014.. The AII amacrine cell connectome: a dense network hub. . Front. Neural Circuits 8::104
    [Crossref] [Google Scholar]
  96. Marc RE, Jones BW. 2003.. Retinal remodeling in inherited photoreceptor degenerations. . Mol. Neurobiol. 28:(2):13947
    [Crossref] [Google Scholar]
  97. Marc RE, Jones BW, Lauritzen JS, Watt CB, Anderson JR. 2012.. Building retinal connectomes. . Curr. Opin. Neurobiol. 22:(4):56874
    [Crossref] [Google Scholar]
  98. Marc RE, Jones BW, Lauritzen JS, Watt CB, Anderson JR. 2013a.. Retinal connectomics: a new era for connectivity analysis. . In The New Visual Neurosciences, ed. JS Werner, LM Chalupa , pp. 10721. Cambridge, MA:: MIT Press
    [Google Scholar]
  99. Marc RE, Jones BW, Sigulinsky C, Anderson JR, Lauritzen JS. 2015.. High-resolution synaptic connectomics. . In New Techniques in Systems Neuroscience, ed. AD Douglass , pp. 128. Berlin:: Springer
    [Google Scholar]
  100. Marc RE, Jones BW, Watt CB, Anderson JR, Sigulinsky C, Lauritzen S. 2013b.. Retinal connectomics: towards complete, accurate networks. . Prog. Retin. Eye Res. 37::14162
    [Crossref] [Google Scholar]
  101. Marc RE, Jones BW, Watt CB, Strettoi E. 2003.. Neural remodeling in retinal degeneration. . Prog. Retin. Eye Res. 22:(5):60755
    [Crossref] [Google Scholar]
  102. Marc RE, Lauritzen JS, Jones BW, Watt CB, Mohammed S, Anderson JR. 2011.. The retinal connectome: amacrine-amacrine networks. Paper presented at the 2011 Meeting of the Association for Research in Vision and Ophthalmology, Fort Lauderdale, FL:, May 1–5
    [Google Scholar]
  103. Marc RE, Liu WL. 1985.. (3H) glycine-accumulating neurons of the human retina. . J. Comp. Neurol. 232:(2):24160
    [Crossref] [Google Scholar]
  104. Marc RE, Sigulinsky CL, Pfeiffer RL, Emrich D, Anderson JR, Jones BW. 2018.. Heterocellular coupling between amacrine cells and ganglion cells. . Front. Neural Circuits 12::90
    [Crossref] [Google Scholar]
  105. Matsumoto A, Briggman KL, Yonehara K. 2019.. Spatiotemporally asymmetric excitation supports mammalian retinal motion sensitivity. . Curr. Biol. 29:(19):327788.e5
    [Crossref] [Google Scholar]
  106. McGuire BA, Stevens JK, Sterling P. 1984.. Microcircuitry of bipolar cells in cat retina. . J. Neurosci. 4:(12):292038
    [Crossref] [Google Scholar]
  107. Merriman DK, Sajdak BS, Li W, Jones BW. 2016.. Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina. . Exp. Eye Res. 150::90105
    [Crossref] [Google Scholar]
  108. Molnar T, Yarishkin O, Iuso A, Barabas P, Jones B, et al. 2016.. Store-operated calcium entry in Muller glia is controlled by synergistic activation of TRPC and Orai channels. . J. Neurosci. 36:(11):318498
    [Crossref] [Google Scholar]
  109. Nath A, Grimes WN, Diamond JS. 2023.. Layers of inhibitory networks shape receptive field properties of AII amacrine cells. . Cell Rep. 42:(11):113390
    [Crossref] [Google Scholar]
  110. Pallotto M, Watkins PV, Fubara B, Singer JH, Briggman KL. 2015.. Extracellular space preservation aids the connectomic analysis of neural circuits. . eLife 4::e08206
    [Crossref] [Google Scholar]
  111. Pan F, Massey SC. 2007.. Rod and cone input to horizontal cells in the rabbit retina. . J. Comp. Neurol. 500:(5):81531
    [Crossref] [Google Scholar]
  112. Park SJ, Lieberman EE, Ke JB, Rho N, Ghorbani P, et al. 2020.. Connectomic analysis reveals an interneuron with an integral role in the retinal circuit for night vision. . eLife 9::e56077
    [Crossref] [Google Scholar]
  113. Patterson SS, Bembry BN, Mazzaferri MA, Neitz M, Rieke F, et al. 2022.. Conserved circuits for direction selectivity in the primate retina. . Curr. Biol. 32:(11):252938.e4
    [Crossref] [Google Scholar]
  114. Patterson SS, Bordt AS, Girresch RJ, Linehan CM, Bauss J, et al. 2020a.. Wide-field amacrine cell inputs to ON parasol ganglion cells in macaque retina. . J. Comp. Neurol. 528:(9):158898
    [Crossref] [Google Scholar]
  115. Patterson SS, Kuchenbecker JA, Anderson JR, Bordt AS, Marshak DW, et al. 2019.. An S-cone circuit for edge detection in the primate retina. . Sci. Rep. 9::11913
    [Crossref] [Google Scholar]
  116. Patterson SS, Kuchenbecker JA, Anderson JR, Neitz M, Neitz J. 2020b.. A color vision circuit for non-image-forming vision in the primate retina. . Curr. Biol. 30:(7):126974.e2
    [Crossref] [Google Scholar]
  117. Patterson SS, Mazzaferri MA, Bordt AS, Chang J, Neitz M, Neitz J. 2020c.. Another Blue-ON ganglion cell in the primate retina. . Curr. Biol. 30:(23):R140910
    [Crossref] [Google Scholar]
  118. Perlman I, Kolb H, Nelson R. 2004.. Anatomy, circuitry, and physiology of vertebrate horizontal cells. . In The Visual Neurosciences, Vol. 1, ed. LM Chalupa, J Werner , pp. 36994. Cambridge, MA:: MIT Press
    [Google Scholar]
  119. Pfeiffer RL, Anderson JR, Dahal J, Garcia JC, Yang JH, et al. 2020a.. A pathoconnectome of early neurodegeneration: network changes in retinal degeneration. . Exp. Eye Res. 199::108196
    [Crossref] [Google Scholar]
  120. Pfeiffer RL, Anderson JR, Emrich DP, Dahal J, Sigulinsky CL, et al. 2019.. Pathoconnectome analysis of Muller cells in early retinal remodeling. . Adv. Exp. Med. Biol. 1185::36570
    [Crossref] [Google Scholar]
  121. Pfeiffer RL, Marc RE, Jones BW. 2020b.. Persistent remodeling and neurodegeneration in late-stage retinal degeneration. . Prog. Retin. Eye Res. 74::100771
    [Crossref] [Google Scholar]
  122. Pfeiffer RL, Marc RE, Kondo M, Terasaki H, Jones BW. 2016.. Muller cell metabolic chaos during retinal degeneration. . Exp. Eye Res. 150::6270
    [Crossref] [Google Scholar]
  123. Protti DA, Flores-Herr N, Li W, Massey SC, Wassle H. 2005.. Light signaling in scotopic conditions in the rabbit, mouse and rat retina: a physiological and anatomical study. . J. Neurophysiol. 93:(6):347988
    [Crossref] [Google Scholar]
  124. Reese B. 2008.. Mosaics, tiling and coverage by retinal neurons. . In The Senses: A Comprehensive Reference, Vol.  1: Vision, ed. RH Masland, T Albright , pp. 43956. Amsterdam:: Elsevier
    [Google Scholar]
  125. Reid RC, Shapley RM. 1992.. Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus. . Nature 356:(6371):71618
    [Crossref] [Google Scholar]
  126. Reid RC, Shapley RM. 2002.. Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus. . J. Neurosci. 22:(14):615875
    [Crossref] [Google Scholar]
  127. Roberts PA, Gaffney EA, Luthert PJ, Foss AJE, Byrne HM. 2016.. Mathematical and computational models of the retina in health, development and disease. . Prog. Retin. Eye Res. 53::4869
    [Crossref] [Google Scholar]
  128. Rogerson LE, Behrens C, Euler T, Berens P, Schubert T. 2017.. Connectomics of synaptic microcircuits: lessons from the outer retina. . J. Physiol. 595:(16):551724
    [Crossref] [Google Scholar]
  129. Saha A, Zuniga J, Mian K, Zhai H, Derr PJ, et al. 2023.. Regional variation in the organization and connectivity of the first synapse in the primate night vision pathway. . iScience 26:(11):108113
    [Crossref] [Google Scholar]
  130. Sawant A, Ebbinghaus BN, Bleckert A, Gamlin C, Yu WQ, et al. 2021.. Organization and emergence of a mixed GABA-glycine retinal circuit that provides inhibition to mouse ON-sustained alpha retinal ganglion cells. . Cell Rep. 34:(11):108858
    [Crossref] [Google Scholar]
  131. Schwartz G. 2021.. Retinal Computation. Amsterdam:: Elsevier
    [Google Scholar]
  132. Sharpe LT, Stockman A, Jagle H, Knau H, Klausen G, et al. 1998.. Red, green, and red-green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities. . J. Neurosci. 18:(23):1005369
    [Crossref] [Google Scholar]
  133. Sigulinsky CL, Anderson JR, Kerzner E, Rapp CN, Pfeiffer RL, et al. 2020.. Network architecture of gap junctional coupling among parallel processing channels in the mammalian retina. . J. Neurosci. 40:(23):4483511
    [Crossref] [Google Scholar]
  134. Sinha R, Grimes WN, Wallin J, Ebbinghaus BN, Luu K, et al. 2021.. Transient expression of a GABA receptor subunit during early development is critical for inhibitory synapse maturation and function. . Curr. Biol. 31:(19):431426.e5
    [Crossref] [Google Scholar]
  135. Sinha R, Siddiqui TJ, Padmanabhan N, Wallin J, Zhang C, et al. 2020.. LRRTM4: a novel regulator of presynaptic inhibition and ribbon synapse arrangements of retinal bipolar cells. . Neuron 105:(6):100717.e5
    [Crossref] [Google Scholar]
  136. Sjöstrand FS. 1958.. Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by three-dimensional reconstructions from serial sections. . J. Ultrastruct. Res. 2:(1):12270
    [Crossref] [Google Scholar]
  137. Srivastava P, de Rosenroll G, Matsumoto A, Michaels T, Turple Z, et al. 2022.. Spatiotemporal properties of glutamate input support direction selectivity in the dendrites of retinal starburst amacrine cells. . eLife 11::e81533
    [Crossref] [Google Scholar]
  138. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM, et al. 2018.. The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. . Neuron 97:(1):15063.e4
    [Crossref] [Google Scholar]
  139. Stevens JK, Davis TL, Friedman N, Sterling P. 1980.. A systematic approach to reconstructing microcircuitry by electron microscopy of serial sections. . Brain Res. 2:(3):26593
    [Crossref] [Google Scholar]
  140. Sun H, Smithson HE, Zaidi Q, Lee BB. 2006.. Specificity of cone inputs to macaque retinal ganglion cells. . J. Neurophysiol. 95:(2):83749
    [Crossref] [Google Scholar]
  141. Thomas CI, Keine C, Okayama S, Satterfield R, Musgrove M, et al. 2019.. Presynaptic mitochondria volume and abundance increase during development of a high-fidelity synapse. . J. Neurosci. 39:(41):79948012
    [Crossref] [Google Scholar]
  142. Torten G, Fisher SK, Linberg KA, Luna G, Perkins G, et al. 2023.. Three-dimensional ultrastructure of the normal rod photoreceptor synapse and degenerative changes induced by retinal detachment. . J. Neurosci. 43:(30):546882
    [Crossref] [Google Scholar]
  143. Tribble JR, Vasalauskaite A, Redmond T, Young RD, Hassan S, et al. 2019.. Midget retinal ganglion cell dendritic and mitochondrial degeneration is an early feature of human glaucoma. . Brain Commun. 1:(1):fcz035
    [Crossref] [Google Scholar]
  144. Tsukamoto Y, Iseki K, Omi N. 2021.. Helical fasciculation of bipolar and horizontal cell neurites for wiring with photoreceptors in macaque and mouse retinas. . Investig. Ophthalmol. Vis. Sci. 62:(1):31
    [Crossref] [Google Scholar]
  145. Tsukamoto Y, Morigiwa K, Ishii M, Takao M, Iwatsuki K, et al. 2007.. A novel connection between rods and ON cone bipolar cells revealed by ectopic metabotropic glutamate receptor 7 (mGluR7) in mGluR6-deficient mouse retinas. . J. Neurosci. 27:(23):626167
    [Crossref] [Google Scholar]
  146. Tsukamoto Y, Morigiwa K, Ueda M, Sterling P. 2001.. Microcircuits for night vision in mouse retina. . J. Neurosci. 21:(21):861623
    [Crossref] [Google Scholar]
  147. Tsukamoto Y, Omi N. 2013.. Functional allocation of synaptic contacts in microcircuits from rods via rod bipolar to AII amacrine cells in the mouse retina. . J. Comp. Neurol. 521:(15):354155
    [Crossref] [Google Scholar]
  148. Tsukamoto Y, Omi N. 2014.. Some OFF bipolar cell types make contact with both rods and cones in macaque and mouse retinas. . Front. Neuroanat. 8::105
    [Crossref] [Google Scholar]
  149. Tsukamoto Y, Omi N. 2015.. OFF bipolar cells in macaque retina: type-specific connectivity in the outer and inner synaptic layers. . Front. Neuroanat. 9::122
    [Google Scholar]
  150. Tsukamoto Y, Omi N. 2016.. ON bipolar cells in macaque retina: type-specific synaptic connectivity with special reference to OFF counterparts. . Front Neuroanat. 10::104
    [Crossref] [Google Scholar]
  151. Tsukamoto Y, Omi N. 2017.. Classification of mouse retinal bipolar cells: type-specific connectivity with special reference to rod-driven AII amacrine pathways. . Front Neuroanat. 11::92
    [Crossref] [Google Scholar]
  152. Tsukamoto Y, Omi N. 2022.. Multiple invagination patterns and synaptic efficacy in primate and mouse rod synaptic terminals. . Investig. Ophthalmol. Vis. Sci. 63:(8):11
    [Crossref] [Google Scholar]
  153. Volland S, Esteve-Rudd J, Hoo J, Yee C, Williams DS. 2015.. A comparison of some organizational characteristics of the mouse central retina and the human macula. . PLOS ONE 10:(4):e0125631
    [Crossref] [Google Scholar]
  154. Ware RW. 1975.. Three-dimensional reconstruction from serial sections. . Int. Rev. Cytol. 40::325440
    [Crossref] [Google Scholar]
  155. Wassle H. 2004.. Parallel processing in the mammalian retina. . Nat. Rev. Neurosci. 5:(10):74757
    [Crossref] [Google Scholar]
  156. Wassle H, Puller C, Muller F, Haverkamp S. 2009.. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. . J. Neurosci. 29:(1):10617
    [Crossref] [Google Scholar]
  157. Wei W. 2018.. Neural mechanisms of motion processing in the mammalian retina. . Annu. Rev. Vis. Sci. 4::16592
    [Crossref] [Google Scholar]
  158. Wisner SR, Saha A, Grimes WN, Mizerska K, Kolarik HJ, et al. 2023.. Sensory deprivation arrests cellular and synaptic development of the night-vision circuitry in the retina. . Curr. Biol. 33:(20):441529.e3
    [Crossref] [Google Scholar]
  159. Wool LE, Packer OS, Zaidi Q, Dacey DM. 2019.. Connectomic identification and three-dimensional color tuning of S-OFF midget ganglion cells in the primate retina. . J. Neurosci. 39:(40):7893909
    [Crossref] [Google Scholar]
  160. Xin D, Bloomfield SA. 1999.. Comparison of the responses of AII amacrine cells in the dark- and light-adapted rabbit retina. . Vis. Neurosci. 16:(4):65365
    [Crossref] [Google Scholar]
  161. Yu WQ, Swanstrom R, Sigulinsky CL, Ahlquist RM, Knecht S, et al. 2023.. Distinctive synaptic structural motifs link excitatory retinal interneurons to diverse postsynaptic partner types. . Cell Rep. 42:(1):112006
    [Crossref] [Google Scholar]
  162. Zhang C, Kim YJ, Silverstein AR, Hoshino A, Reh TA, et al. 2020.. Circuit reorganization shapes the developing human foveal midget connectome toward single-cone resolution. . Neuron 108:(5):90518.e3
    [Crossref] [Google Scholar]
  163. Zucker CL, Bernstein PS, Schalek RL, Lichtman JW, Dowling JE. 2020.. A connectomics approach to understanding a retinal disease. . PNAS 117:(31):1878087
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-102122-110414
Loading
/content/journals/10.1146/annurev-vision-102122-110414
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error