1932

Abstract

Everybody loves illusions. At times, the content on the internet seems to be mostly about illusions—shoes, dresses, straight lines looking bent. This attraction has a long history. Almost 2,000 years ago, Ptolemy marveled at how the sail of a distant boat could appear convex or concave. This sense of marvel continues to drive our fascination with illusions; indeed, few other corners of science can boast of such a large reach. However, illusions not only draw in the crowds; they also offer insights into visual processes. This review starts with a simple definition of illusions as conflicts between perception and cognition, where what we see does not agree with what we believe we should see. This mismatch can be either because cognition has misunderstood how perception works or because perception has misjudged the visual input. It is the perceptual errors that offer the chance to track the development of perception across visual regions. Unfortunately, the effects of illusions in different brain regions cannot be isolated in any simple way: Top-down projections from attention broadcast the expected perceptual properties everywhere, obscuring the critical evidence of where the illusion and perception emerge. The second part of this review then highlights the roadblocks to research raised by attention and describes current solutions for accessing what illusions can offer.

Keyword(s): attentionillusionsperception
Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-103023-012730
2024-09-15
2025-06-17
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-103023-012730.html?itemId=/content/journals/10.1146/annurev-vision-103023-012730&mimeType=html&fmt=ahah

Literature Cited

  1. Adamian N, Anstis S, Cavanagh P. 2023.. Motion induced distortion of shape. . J. Vis. 23:(12):10
    [Crossref] [Google Scholar]
  2. Adelson EH. 1995.. Checker shadow illusion. Rep. , Percept. Sci. Group, Mass. Inst. Technol., Cambridge:. http://persci.mit.edu/gallery/checkershadow
    [Google Scholar]
  3. Anstis S, Duncan K. 1983.. Separate motion aftereffects from each eye and from both eyes. . Vis. Res. 23:(2):16169
    [Crossref] [Google Scholar]
  4. Anstis SM, Rogers BJ. 1975.. Illusory reversal of visual depth and movement during changes of contrast. . Vis. Res. 15:(8–9):95761
    [Crossref] [Google Scholar]
  5. Awh E, Armstrong KM, Moore T. 2006.. Visual and oculomotor selection: links, causes and implications for spatial attention. . Trends Cogn. Sci. 10::12430
    [Crossref] [Google Scholar]
  6. Bannert MM, Bartels A. 2013.. Decoding the yellow of a gray banana. . Curr. Biol. 23:(22):226972
    [Crossref] [Google Scholar]
  7. Battaje A, Brock O, Rolfs M. 2023.. An interactive motion perception tool for kindergarteners (and vision scientists). . I-Perception 14:(2):20416695231159182
    [Crossref] [Google Scholar]
  8. Bonneh YS, Cooperman A, Sagi D. 2001.. Motion-induced blindness in normal observers. . Nature 411:(6839):798801
    [Crossref] [Google Scholar]
  9. Braddick O. 2018.. Illusion research: an infantile disorder?. Perception 47:(8):8056
    [Crossref] [Google Scholar]
  10. Bruno N. 2012.. Illusions that we should have (but don't). . See Calabi 2012b , pp. 4458
  11. Calabi C. 2012a.. Introduction. . See Calabi 2012b , pp. 124
  12. Calabi C, ed. 2012b.. Perceptual Illusions: Philosophical and Psychological Essays. London:: Palgrave Macmillan
    [Google Scholar]
  13. Campbell FW, Maffei L. 1979.. Stopped visual motion. . Nature 278:(5700):192
    [Crossref] [Google Scholar]
  14. Casati R, Cavanagh P. 2019.. The Visual World of Shadows. Cambridge, MA:: MIT Press
    [Google Scholar]
  15. Cavanagh P. 2011.. Visual cognition. . Vis. Res. 51:(13):153851
    [Crossref] [Google Scholar]
  16. Cavanagh P. 2021.. The language of vision. . Perception 50:(3):195215
    [Crossref] [Google Scholar]
  17. Cavanagh P, Anstis S. 2013.. The flash grab effect. . Vis. Res. 91::820
    [Crossref] [Google Scholar]
  18. Cavanagh P, Anstis S. 2018.. Diamond patterns: cumulative Cornsweet effects and motion-induced brightening. . I-Perception 9:(4):2041669518770690
    [Crossref] [Google Scholar]
  19. Cavanagh P, Anstis S, Lisi M, Wexler M, Maechler M, et al. 2022.. Exploring the frame effect. . J. Vis. 22:(12):5
    [Crossref] [Google Scholar]
  20. Cavanagh P, Caplovitz GP, Lytchecnko TK, Maechler MR, Tse PU, Sheinberg DR. 2023.. The architecture of object-based attention. . Psychon. Bull. Rev. 30::164367
    [Crossref] [Google Scholar]
  21. Cavanagh P, Tse PU. 2019.. The vector combination underlying the double-drift illusion is based on motion in world coordinates: evidence from smooth pursuit. . J. Vis. 19:(14):2
    [Crossref] [Google Scholar]
  22. Cavanagh P, Tyler CW, Favreau OE. 1984.. Perceived velocity of moving chromatic gratings. . J. Opt. Soc. Am. A 1::89399
    [Crossref] [Google Scholar]
  23. Chong E, Familiar AM, Shim WM. 2016.. Reconstructing representations of dynamic visual objects in early visual cortex. . PNAS 113:(5):145358
    [Crossref] [Google Scholar]
  24. Cohen MA, Cavanagh P, Chun MM, Nakayama K. 2012.. The attentional requirements of consciousness. . Trends Cogn. Sci. 16::41117
    [Crossref] [Google Scholar]
  25. Coren S, Girgus J. 2020.. Seeing is Deceiving: The Psychology of Visual Illusions. London:: Routledge
    [Google Scholar]
  26. Cox MA, Schmid MC, Peters AJ, Saunders RC, Leopold DA, Maier A. 2013.. Receptive field focus of visual area V4 neurons determines responses to illusory surfaces. . PNAS 110:(42):17095100
    [Crossref] [Google Scholar]
  27. Cutler A, Rivest J, Cavanagh P. 2024.. The role of memory color in visual attention. . Atten. Percept. Psychophys. 86::2835
    [Crossref] [Google Scholar]
  28. Cutter B. 2021.. Perceptual illusionism. . Anal. Philos. 62:(4):396417
    [Crossref] [Google Scholar]
  29. De Valois RL, De Valois KK. 1991.. Vernier acuity with stationary moving Gabors. . Vis. Res. 31:(9):161926
    [Crossref] [Google Scholar]
  30. de'Sperati C, Baud-Bovy G. 2008.. Blind saccades: an asynchrony between seeing and looking. . J. Neurosci. 28:(17):431721
    [Crossref] [Google Scholar]
  31. Dwarakanath A, Kapoor V, Werner J, Safavi S, Fedorov LA, et al. 2023.. Bistability of prefrontal states gates access to consciousness. . Neuron 111:(10):166683
    [Crossref] [Google Scholar]
  32. Eagleman DM. 2001.. Visual illusions and neurobiology. . Nat. Rev. Neurosci. 2:(12):92026
    [Crossref] [Google Scholar]
  33. Eagleman DM, Sejnowski TJ. 2007.. Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. . J. Vis. 7:(4):3
    [Crossref] [Google Scholar]
  34. Firestone C, Scholl BJ. 2016.. Cognition does not affect perception: evaluating the evidence for “top-down” effects. . Behav. Brain Sci. 39::e229
    [Crossref] [Google Scholar]
  35. Frisby J. 1979.. Seeing: Illusion, Brain and Mind. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  36. Ge Y, Zhou H, Qian C, Zhang P, Wang L, He S. 2020.. Adaptation to feedback representation of illusory orientation produced from flash grab effect. . Nat. Commun. 11::3925
    [Crossref] [Google Scholar]
  37. Gillam B. 1998.. Illusions at century's end. . In Perception and Cognition at Century's End, ed. J Hochberg , pp. 95136. New York:: Academic
    [Google Scholar]
  38. Gregory RL. 1997a.. Eye and Brain: The Psychology of Seeing. Princeton, NJ:: Princeton Univ. Press. , 5th ed..
    [Google Scholar]
  39. Gregory RL. 1997b.. Visual illusions classified. . Trends Cogn. Sci. 1:(5):19094
    [Crossref] [Google Scholar]
  40. Gross CG, Rocha-Miranda CD, Bender DB. 1972.. Visual properties of neurons in inferotemporal cortex of the macaque. . J. Neurophysiol. 35:(1):96111
    [Crossref] [Google Scholar]
  41. Haladjian HH, Lisi M, Cavanagh P. 2018.. Motion and position shifts induced by the double-drift stimulus are unaffected by attentional load. . Atten. Percept. Psychophys. 80::88493
    [Crossref] [Google Scholar]
  42. Heller NH, Patel N, Faustin V, Cavanagh P, Tse PU. 2021.. Effects of internal and external velocity on the perceived direction of the double-drift illusion. . J. Vis. 21:(8):2
    [Crossref] [Google Scholar]
  43. Ho ML, Schwarzkopf DS. 2022.. The human primary visual cortex (V1) encodes the perceived position of static but not moving objects. . Commun. Biol. 5::181
    [Crossref] [Google Scholar]
  44. Hogendoorn H. 2022.. Perception in real-time: predicting the present, reconstructing the past. . Trends Cogn. Sci. 26:(2):12841
    [Crossref] [Google Scholar]
  45. Hogendoorn H, Verstraten FA, Cavanagh P. 2015.. Strikingly rapid neural basis of motion-induced position shifts revealed by high temporal-resolution EEG pattern classification. . Vis. Res. 113::110
    [Crossref] [Google Scholar]
  46. Iyengar R. 2015.. The dress that broke the internet, and the woman who started it all. . Time, Feb. 27. https://time.com/3725628/the-dress-caitlin-mcneill-post-tumblr-viral/
    [Google Scholar]
  47. Jeon H-J, Yun Y, Kwon O-S. 2020.. Integration of position and predictive motion signals in aging vision. . Sci. Rep. 10::8783
    [Crossref] [Google Scholar]
  48. Kanwisher N, McDermott J, Chun MM. 1997.. The fusiform face area: a module in human extrastriate cortex specialized for face perception. . J. Neurosci. 17:(11):430211
    [Crossref] [Google Scholar]
  49. Kemmerer D. 2000.. Selective impairment of knowledge underlying prenominal adjective order: evidence for the autonomy of grammatical semantics. . J. Neurolinguist. 13:(1):5782
    [Crossref] [Google Scholar]
  50. Kohler PJ, Cavanagh P, Tse PU. 2017.. Motion-induced position shifts activate early visual cortex. . Front. Neurosci. 11::168
    [Crossref] [Google Scholar]
  51. Kok P, Bains LJ, van Mourik T, Norris DG, de Lange FP. 2016.. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. . Curr. Biol. 26::37176
    [Crossref] [Google Scholar]
  52. Kosovicheva AA, Maus GW, Anstis S, Cavanagh P, Tse PU, Whitney D. 2012.. The motion-induced shift in the perceived location of a grating also shifts its aftereffect. . J. Vis. 12:(8):7
    [Crossref] [Google Scholar]
  53. Kourtzi Z, Kanwisher N. 2001.. Representation of perceived object shape by the human lateral occipital complex. . Science 293:(5534):15069
    [Crossref] [Google Scholar]
  54. Kuriki I, Ashida H, Murakami I, Kitaoka A. 2008.. Functional brain imaging of the Rotating Snakes illusion by fMRI. . J. Vis. 8:(10):16
    [Crossref] [Google Scholar]
  55. Lisi M, Cavanagh P. 2015.. Dissociation between the perceptual and saccadic localization of moving objects. . Curr. Biol. 25::253540
    [Crossref] [Google Scholar]
  56. Liu S, Yu Q, Tse PU, Cavanagh P. 2019.. Neural correlates of the conscious perception of visual location lie outside the visual cortex. . Curr. Biol. 29:(23):403644
    [Crossref] [Google Scholar]
  57. Matsumiya K, Uchikawa K. 2001.. Apparent size of an object remains uncompressed during presaccadic compression of visual space. . Vis. Res. 41:(23):303950
    [Crossref] [Google Scholar]
  58. Maus GW, Fischer J, Whitney D. 2013.. Motion-dependent representation of space in area MT+. . Neuron 78::55462
    [Crossref] [Google Scholar]
  59. Meng M, Remus DA, Tong F. 2005.. Filling-in of visual phantoms in the human brain. . Nat. Neurosci. 8::124854
    [Crossref] [Google Scholar]
  60. Morgan MJ. 1996.. Visual illusions. . In Unsolved Mysteries of the Mind: Tutorial Essays in Cognition, ed. V Bruce , pp. 2958. Hove, UK:: Taylor & Francis
    [Google Scholar]
  61. Muckli L, De Martino F, Vizioli L, Petro LS, Smith FW, et al. 2015.. Contextual feedback to superficial layers of V1. . Curr. Biol. 25::269095
    [Crossref] [Google Scholar]
  62. Muckli L, Kohler A, Kriegeskorte N, Singer W. 2005.. Primary visual cortex activity along the apparent-motion trace reflects illusory perception. . PLOS Biol. 3::e265
    [Crossref] [Google Scholar]
  63. Murray SO, Boyaci H, Kersten D. 2006.. The representation of perceived angular size in human primary visual cortex. . Nat. Neurosci. 9:(3):42934
    [Crossref] [Google Scholar]
  64. Ni AM, Murray SO, Horwitz GD. 2014.. Object-centered shifts of receptive field positions in monkey primary visual cortex. . Curr. Biol. 24:(14):165358
    [Crossref] [Google Scholar]
  65. Nieder A. 2002.. Seeing more than meets the eye: processing of illusory contours in animals. . J. Comp. Physiol. A 188::24960
    [Crossref] [Google Scholar]
  66. Nijhawan R. 1994.. Motion extrapolation in catching. . Nature 370:(6487):25657
    [Crossref] [Google Scholar]
  67. Ninio J. 2014.. Geometrical illusions are not always where you think they are: a review of some classical and less classical illusions, and ways to describe them. . Front. Hum. Neurosci. 8::856
    [Crossref] [Google Scholar]
  68. Ninio J, Stevens KA. 2000.. Variations on the Hermann grid: an extinction illusion. . Perception 29:(10):120917
    [Crossref] [Google Scholar]
  69. Olkkonen M, Hansen T, Gegenfurtner KR. 2008.. Color appearance of familiar objects: effects of object shape, texture, and illumination changes. . J. Vis. 8:(5):13
    [Crossref] [Google Scholar]
  70. Özkan M, Anstis S, ’ t Hart BM, Wexler M, Cavanagh P. 2021.. Paradoxical stabilization of relative position in moving frames. . PNAS 118:(25):e2102167118
    [Crossref] [Google Scholar]
  71. Perdreau F, Cavanagh P. 2011.. Do artists see their retinas?. Front. Hum. Neurosci. 5::171
    [Crossref] [Google Scholar]
  72. Purves D, Wojtach WT, Howe C. 2008.. Visual illusions: an empirical explanation. . Scholarpedia 3:(6):3706
    [Crossref] [Google Scholar]
  73. Pylyshyn Z. 1999.. Is vision continuous with cognition? The case for cognitive impenetrability of visual perception. . Behav. Brain Sci. 22:(3):34165
    [Crossref] [Google Scholar]
  74. Robinson JO. 2013.. The Psychology of Visual Illusion. Chelmsford, MA:: Courier Corp.
    [Google Scholar]
  75. Rogers B. 2022.. When is an illusion not an illusion? An alternative view of the illusion concept. . Front. Hum. Neurosci. 16::957740
    [Crossref] [Google Scholar]
  76. Rose D. 2018.. Review of The Oxford Compendiumof Visual Illusions. , by AG Shapiro, D Todorović, eds. Perception 47:(8):89298
    [Crossref] [Google Scholar]
  77. Ross J, Morrone MC, Burr DC. 1997.. Compression of visual space before saccades. . Nature 386:(6625):598601
    [Crossref] [Google Scholar]
  78. Schafer RJ, Moore T. 2007.. Attention governs action in the primate frontal eye field. . Neuron 56:(3):54151
    [Crossref] [Google Scholar]
  79. Schubert TM, Rothlein D, Brothers T, Coderre EL, Ledoux K, et al. 2020.. Lack of awareness despite complex visual processing: evidence from event-related potentials in a case of selective metamorphopsia. . PNAS 117:(27):1605564
    [Crossref] [Google Scholar]
  80. Schwartz R. 2012.. The illusion of visual illusions. . See Calabi 2012b , pp. 2543
  81. Sergent J, Ohta S, MacDonald B. 1992.. Functional neuroanatomy of face and object processing: a positron emission tomography study. . Brain 115:(1):1536
    [Crossref] [Google Scholar]
  82. Shapiro A. 2018.. Visual illusions: nothing to lose but your chains—a reply to Oliver Braddick. . Perception 47:(9):9014
    [Crossref] [Google Scholar]
  83. Shapiro A. 2021.. Hybrid motion illusions as examples of perceptual conflict. . J. Illusion 2::7084
    [Crossref] [Google Scholar]
  84. Shapiro A, Lu Z-L, Huang C-B, Knight E, Ennis R. 2010.. Transitions between central and peripheral vision create spatial/temporal distortions: a hypothesis concerning the perceived break of the curveball. . PLOS ONE 5:(10):e13296
    [Crossref] [Google Scholar]
  85. Shapiro AG, Todorović D, eds. 2016.. The Oxford Compendium of Visual Illusions. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  86. Shepard RN. 1990.. Mind Sights: Original Visual Illusions, Ambiguities, and Other Anomalies. New York:: WH Freeman & Co.
    [Google Scholar]
  87. Silver MA, Ress D, Heeger DJ. 2007.. Neural correlates of sustained spatial attention in human early visual cortex. . J. Neurophysiol. 97:(1):22937
    [Crossref] [Google Scholar]
  88. Subramaniyan M, Ecker AS, Patel SS, Cotton RJ, Bethge M, et al. 2018.. Faster processing of moving compared with flashed bars in awake macaque V1 provides a neural correlate of the flash lag illusion. . J. Neurophysiol. 120:(5):243052
    [Crossref] [Google Scholar]
  89. Suchow JW, Alvarez GA. 2011.. Motion silences awareness of visual change. . Curr. Biol. 21:(2):14043
    [Crossref] [Google Scholar]
  90. Sundberg KA, Fallah M, Reynolds JH. 2006.. A motion-dependent distortion of retinotopy in area V4. . Neuron 49:(3):44757
    [Crossref] [Google Scholar]
  91. ’t Hart BM, Henriques D, Cavanagh P. 2022.. Measuring the double-drift illusion and its resets with hand trajectories. . J. Vis. 22:(2):16
    [Crossref] [Google Scholar]
  92. Takao S, Sarado A, Anstis S, Watanabe K, Cavanagh P. 2022.. Motion-induced position shift depends on motion both before and after the test probe. . J. Vis. 22:(12):19
    [Crossref] [Google Scholar]
  93. Todorović D. 2002.. Constancies and illusions in visual perception. . Psihologija 35:(3–4):125207
    [Crossref] [Google Scholar]
  94. Todorović D. 2018.. In defence of illusions: a reply to Braddick 2018. . Perception 47:(9):9058
    [Crossref] [Google Scholar]
  95. Todorović D. 2020.. What are visual illusions?. Perception 49:(11):112899
    [Crossref] [Google Scholar]
  96. Tse PU, Hsieh P-J. 2006.. The infinite regress illusion reveals faulty integration of local and global motion signals. . Vis. Res. 46:(22):388185
    [Crossref] [Google Scholar]
  97. Tyler CW. 2022.. The nature of illusions: a new synthesis based on verifiability. . Front. Hum. Neurosci. 16::875829
    [Crossref] [Google Scholar]
  98. Valenti JJ, Firestone C. 2019.. Finding the “odd one out”: Memory color effects and the logic of appearance. . Cognition 191::103934
    [Crossref] [Google Scholar]
  99. van Buren B, Scholl BJ. 2018.. Visual illusions as a tool for dissociating seeing from thinking: a reply to Braddick 2018. . Perception 47:(10–11):9991001
    [Crossref] [Google Scholar]
  100. van Heusden E, Rolfs M, Cavanagh P, Hogendoorn H. 2018.. Motion extrapolation for eye movements predicts perceived motion-induced position shifts. . J. Neurosci. 38:(38):824350
    [Crossref] [Google Scholar]
  101. Vandenbroucke ARE, Fahrenfort JJ, Meuwese JDI, Scholte HS, Lamme VAF. 2016.. Prior knowledge about objects determines neural color representation in human visual cortex. . Cereb. Cortex 26:(4):14018
    [Crossref] [Google Scholar]
  102. Wade NJ. 2005.. The twentieth century—the multiplication of illusion. . In Perception and Illusion: Historical Perspectives, ed. NJ Wade , pp. 18399. Libr. Hist. Psychol . Theor. Berlin:: Springer
    [Google Scholar]
  103. Wallisch P. 2017.. Illumination assumptions account for individual differences in the perceptual interpretation of a profoundly ambiguous stimulus in the color domain: “the dress. .” J. Vis. 17:(4):5
    [Crossref] [Google Scholar]
  104. Weilnhammer V, Fritsch M, Chikermane M, Eckert AL, Kanthak K, et al. 2021.. An active role of inferior frontal cortex in conscious experience. . Curr. Biol. 31:(13):286880
    [Crossref] [Google Scholar]
  105. Whitney D, Cavanagh P. 2000.. Motion distorts visual space: shifting the perceived position of remote stationary objects. . Nat. Neurosci. 3::95459
    [Crossref] [Google Scholar]
  106. Wong E, Mack A. 1981.. Saccadic programming and perceived location. . Acta Psychol. 48::12331
    [Crossref] [Google Scholar]
  107. Zimmermann E, Morrone MC, Burr D. 2012.. Visual motion distorts visual and motor space. . J. Vis. 12:(2):10
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-103023-012730
Loading
/content/journals/10.1146/annurev-vision-103023-012730
Loading

Data & Media loading...

Supplemental Video 1

Supplemental Video 2

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error