1932

Abstract

Glaucoma, a leading cause of irreversible blindness, is characterized by the progressive loss of retinal ganglion cells (RGCs) and subsequent visual field defects. RGCs, as the final output neurons of the retina, perform key computations underpinning human pattern vision, such as contrast coding. Conventionally, glaucoma has been associated with peripheral vision loss, and thus, relatively little attention has been paid to deficits in central vision. However, recent advancements in retinal imaging techniques have significantly bolstered research into glaucomatous damage of the macula, revealing that it is prevalent even in the early stages of glaucoma. Thus, it is an opportune time to explore how glaucomatous damage undermines the perceptual processes associated with central visual function. This review showcases recent studies addressing central dysfunction in the early and moderate stages of glaucoma. It further emphasizes the need to characterize glaucomatous damage in both central and peripheral vision, as they jointly affect an individual's everyday activities.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-110223-123044
2024-09-18
2024-10-03
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-110223-123044.html?itemId=/content/journals/10.1146/annurev-vision-110223-123044&mimeType=html&fmt=ahah

Literature Cited

  1. Altangerel U, Spaeth GL, Steinmann WC. 2006.. Assessment of Function Related to Vision (AFREV). . Ophthalmic Epidemiol. 13::6780
    [Crossref] [Google Scholar]
  2. Aspinall PA, Johnson ZK, Azuara-Blanco A, Montarzino A, Brice R, Vickers A. 2008.. Evaluation of quality of life and priorities of patients with glaucoma. . Investig. Ophthalmol. Vis. Sci. 49::190715
    [Crossref] [Google Scholar]
  3. Avidan G, Harel M, Hendler T, Ben-Bashat D, Zohary E, Malach R. 2002.. Contrast sensitivity in human visual areas and its relationship to object recognition. . J. Neurophysiol. 87::310216
    [Crossref] [Google Scholar]
  4. Ball K, Owsley C. 1993.. The useful field of view test: a new technique for evaluating age-related declines in visual function. . J. Am. Optom. Assoc. 64::7199
    [Google Scholar]
  5. Ball K, Owsley C, Sloane ME, Roenker DL, Bruni JR. 1993.. Visual attention problems as a predictor of vehicle crashes in older drivers. . Investig. Ophthalmol. Vis. Sci. 34::311023
    [Google Scholar]
  6. Ball KK, Beard BL, Roenker DL, Miller RL, Griggs DS. 1988.. Age and visual search: expanding the useful field of view. . J. Opt. Soc. Am. A 5::221019
    [Crossref] [Google Scholar]
  7. Bambo MP, Ferrandez B, Güerri N, Fuertes I, Cameo B, et al. 2016.. Evaluation of contrast sensitivity, chromatic vision, and reading ability in patients with primary open angle glaucoma. . J. Ophthalmol. 2016::7074016
    [Crossref] [Google Scholar]
  8. Barlow HB. 1953.. Summation and inhibition in the frog's retina. . J. Physiol. 119::6988
    [Crossref] [Google Scholar]
  9. Barlow HB. 1958.. Temporal and spatial summation in human vision at different background intensities. . J. Physiol. 141::33750
    [Crossref] [Google Scholar]
  10. Barlow HB, Fitzhugh R, Kuffler SW. 1957.. Change of organization in the receptive fields of the cat's retina during dark adaptation. . J. Physiol. 137::33854
    [Crossref] [Google Scholar]
  11. Bhorade AM, Perlmutter MS, Wilson B, Kambarian J, Chang S, et al. 2013.. Differences in vision between clinic and home and the effect of lighting in older adults with and without glaucoma. . JAMA Ophthalmol. 131::155462
    [Crossref] [Google Scholar]
  12. Bicket AK, Mihailovic A, E J-Y, Nguyen A, Mukherjee MR, et al. 2020.. Gait in elderly glaucoma: impact of lighting conditions, changes in lighting, and fear of falling. . Transl. Vis. Sci. Technol. 9::23
    [Crossref] [Google Scholar]
  13. Bierings RAJM, Overkempe T, van Berkel CM, Kuiper M, Jansonius NM. 2019.. Spatial contrast sensitivity from star- to sunlight in healthy subjects and patients with glaucoma. . Vis. Res. 158::3139
    [Crossref] [Google Scholar]
  14. Blumberg DM, Liebmann JM, Hirji SH, Hood DC. 2019.. Diffuse macular damage in mild to moderate glaucoma is associated with decreased visual function scores under low luminance conditions. . Am. J. Ophthalmol. 208::41520
    [Crossref] [Google Scholar]
  15. Bonneh YS, Sagi D, Polat U. 2007.. Spatial and temporal crowding in amblyopia. . Vis. Res. 47::195062
    [Crossref] [Google Scholar]
  16. Bosworth CF, Sample PA, Weinreb RN. 1997.. Motion perception thresholds in areas of glaucomatous visual field loss. . Vis. Res. 37::35564
    [Crossref] [Google Scholar]
  17. Bouma H. 1970.. Interaction effects in parafoveal letter recognition. . Nature 226::17778
    [Crossref] [Google Scholar]
  18. Bullimore MA, Wood JM, Swenson K. 1993.. Motion perception in glaucoma. . Investig. Ophthalmol. Vis. Sci. 34::352633
    [Google Scholar]
  19. Burton R, Crabb DP, Smith ND, Glen FC, Garway-Heath DF. 2012.. Glaucoma and reading: exploring the effects of contrast lowering of text. . Optom. Vis. Sci. 89::128287
    [Crossref] [Google Scholar]
  20. Byrne JH. 1997.. Neuroscience Online: An Electronic Textbook for the Neurosciences. Houston, TX:: McGovern Med. School UTHealth
    [Google Scholar]
  21. Carandini M, Heeger DJ. 2011.. Normalization as a canonical neural computation. . Nat. Rev. Neurosci. 13::5162
    [Crossref] [Google Scholar]
  22. Cavanaugh JR, Bair W, Movshon JA. 2002.. Nature and interaction of signals from the receptive field center and surround in macaque V1 neurons. . J. Neurophysiol. 88::253046
    [Crossref] [Google Scholar]
  23. Chauhan BC, House PH, McCormick TA, Leblanc RP. 1999.. Comparison of conventional and high-pass resolution perimetry in a prospective study of patients with glaucoma and healthy controls. . Arch. Ophthalmol. 117::2433
    [Crossref] [Google Scholar]
  24. Chauhan BC, Pan J, Archibald ML, Levatte TL, Kelly MEM, Tremblay FO. 2002.. Effect of intraocular pressure on optic disc topography, electroretinography, and axonal loss in a chronic pressure-induced rat model of optic nerve damage. . Investig. Ophthalmol. Vis. Sci. 43::296976
    [Google Scholar]
  25. Cheong AM, Legge GE, Lawrence MG, Cheung SH, Ruff MA. 2008.. Relationship between visual span and reading performance in age-related macular degeneration. . Vis. Res. 48::57788
    [Crossref] [Google Scholar]
  26. Chien L, Liu R, Girkin C, Kwon M. 2017.. Higher contrast requirement for letter recognition and macular RGC+ layer thinning in glaucoma patients and older adults. . Investig. Ophthalmol. Vis. Sci. 58::622131
    [Crossref] [Google Scholar]
  27. Cowan CS, Sabharwal J, Seilheimer RL, Wu SM. 2017.. Distinct subcomponents of mouse retinal ganglion cell receptive fields are differentially altered by light adaptation. . Vis. Res. 131::96105
    [Crossref] [Google Scholar]
  28. Cowey A, Rolls ET. 1974.. Human cortical magnification factor and its relation to visual acuity. . Exp. Brain Res. 21::44754
    [Crossref] [Google Scholar]
  29. Crabb DP. 2016.. A view on glaucoma—are we seeing it clearly?. Eye 30::30413
    [Crossref] [Google Scholar]
  30. Crabb DP, Smith ND, Glen FC, Burton R, Garway-Heath DF. 2013.. How does glaucoma look? Patient perception of visual field loss. . Ophthalmology 120::112026
    [Crossref] [Google Scholar]
  31. Curcio CA, Allen KA. 1990.. Topography of ganglion cells in human retina. . J. Comp. Neurol. 300::525
    [Crossref] [Google Scholar]
  32. de A Moura AL, Raza AS, Lazow MA, de Moraes CG, Hood DC. 2012.. Retinal ganglion cell and inner plexiform layer thickness measurements in regions of severe visual field sensitivity loss in patients with glaucoma. . Eye 26::118893
    [Crossref] [Google Scholar]
  33. de Valois RL, Morgan H, Snodderly DM. 1974.. Psychophysical studies of monkey vision. 3. Spatial luminance contrast sensitivity tests of macaque and human observers. . Vis. Res. 14::7581
    [Crossref] [Google Scholar]
  34. Dougherty RF, Koch VM, Brewer AA, Fischer B, Modersitzki J, Wandell BA. 2003.. Visual field representations and locations of visual areas V1/2/3 in human visual cortex. . J. Vis. 3::58698
    [Crossref] [Google Scholar]
  35. Drasdo N, Millican CL, Katholi CR, Curcio CA. 2007.. The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field. . Vis. Res. 47::290111
    [Crossref] [Google Scholar]
  36. Duke-Elder S. 1969.. Diseases of the lens and vitreous: glaucoma and hypotony. . In System of Ophthalmology, Vol. XI, p. 443. London:: Henry Kimpton
    [Google Scholar]
  37. Dumoulin SO, Wandell BA. 2008.. Population receptive field estimates in human visual cortex. . NeuroImage 39::64760
    [Crossref] [Google Scholar]
  38. Duncan RO, Boynton GM. 2003.. Cortical magnification within human primary visual cortex correlates with acuity thresholds. . Neuron 38::65971
    [Crossref] [Google Scholar]
  39. E J-Y, Mihailovic A, Garzon C, Schrack JA, Li T, et al. 2021.. Association between visual field damage and gait dysfunction in patients with glaucoma. . JAMA Ophthalmol. 139::105360
    [Crossref] [Google Scholar]
  40. el-Gohary A, Siam G. 2009.. Stereopsis and contrast sensitivity binocular summation in early glaucoma. . Res. J. Med. Med. Sci. 4::8588
    [Google Scholar]
  41. Engel SA, Glover GH, Wandell BA. 1997.. Retinotopic organization in human visual cortex and the spatial precision of functional MRI. . Cereb. Cortex 7::18192
    [Crossref] [Google Scholar]
  42. Enroth-Cugell C, Robson JG. 1966.. The contrast sensitivity of retinal ganglion cells of the cat. . J. Physiol. 187::51752
    [Crossref] [Google Scholar]
  43. Fellman RL, Lynn JR, Starita RJ, Swanson WH. 1989.. Clinical Importance of Spatial Summation in Glaucoma. Amsterdam:: Kugler Gedini
    [Google Scholar]
  44. Fileta JB, Huang W, Kwon GP, Filippopoulos T, Ben Y, et al. 2008.. Efficient estimation of retinal ganglion cell number: a stereological approach. . J. Neurosci. Methods 170::18
    [Crossref] [Google Scholar]
  45. Fischer B. 1973.. Overlap of receptive field centers and representation of the visual field in the cat's optic tract. . Vis. Res. 13::211320
    [Crossref] [Google Scholar]
  46. Freed M, Sterling P. 1988.. The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. . J. Neurosci. 8::230320
    [Crossref] [Google Scholar]
  47. Freeman EE, Munoz B, West SK, Jampel HD, Friedman DS. 2008.. Glaucoma and quality of life: the Salisbury Eye Evaluation. . Ophthalmology 115::23338
    [Crossref] [Google Scholar]
  48. Friedman DS, Freeman E, Munoz B, Jampel HD, West SK. 2007.. Glaucoma and mobility performance: the Salisbury Eye Evaluation Project. . Ophthalmology 114::223237
    [Crossref] [Google Scholar]
  49. Fujita K, Yasuda N, Oda K, Yuzawa M. 2006.. Reading performance in patients with central visual field disturbance due to glaucoma. . Nippon Ganka Gakkai Zasshi 110::91418
    [Google Scholar]
  50. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. 2000.. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. . Investig. Ophthalmol. Vis. Sci. 41::177482
    [Google Scholar]
  51. Gattass R, Gross CG, Sandell JH. 1981.. Visual topography of V2 in the macaque. . J. Comp. Neurol. 201::51939
    [Crossref] [Google Scholar]
  52. Gilbert CD, Hirsch JA, Wiesel TN. 1990.. Lateral interactions in visual cortex. . Cold Spring Harb. Symp. Quant. Biol. 55::66377
    [Crossref] [Google Scholar]
  53. Glen FC, Crabb DP, Smith ND, Burton R, Garway-Heath DF. 2012.. Do patients with glaucoma have difficulty recognizing faces?. Investig. Ophthalmol. Vis. Sci. 53::362937
    [Crossref] [Google Scholar]
  54. Glen FC, Smith ND, Crabb DP. 2013.. Saccadic eye movements and face recognition performance in patients with central glaucomatous visual field defects. . Vis. Res. 82::4251
    [Crossref] [Google Scholar]
  55. Glovinsky Y, Quigley HA, Pease ME. 1993.. Foveal ganglion cell loss is size dependent in experimental glaucoma. . Investig. Ophthalmol. Vis. Sci. 34::395400
    [Google Scholar]
  56. Goddin T-L, Yu H, Friedman DS, Owsley C, Kwon M. 2023.. MNREAD reading vision in adults with glaucoma under mesopic and photopic conditions. . Investig. Ophthalmol. Vis. Sci. 64::43
    [Crossref] [Google Scholar]
  57. Greenfield DS, Bagga H, Knighton RW. 2003.. Macular thickness changes in glaucomatous optic neuropathy detected using optical coherence tomography. . Arch. Ophthalmol. 121::4146
    [Crossref] [Google Scholar]
  58. Grüsser OJ. 1995.. Migraine phosphenes and the retino-cortical magnification factor. . Vis. Res. 35::112534
    [Crossref] [Google Scholar]
  59. Hariharan S, Levi DM, Klein SA. 2005.. “Crowding” in normal and amblyopic vision assessed with Gaussian and Gabor C's. . Vis. Res. 45::61733
    [Crossref] [Google Scholar]
  60. Harwerth RS, Carter-Dawson L, Shen F, Smith EL 3rd, Crawford ML. 1999.. Ganglion cell losses underlying visual field defects from experimental glaucoma. . Investig. Ophthalmol. Vis. Sci. 40::224250
    [Google Scholar]
  61. Harwerth RS, Carter-Dawson L, Smith EL 3rd, Barnes G, Holt WF, Crawford ML. 2004.. Neural losses correlated with visual losses in clinical perimetry. . Investig. Ophthalmol. Vis. Sci. 45::315260
    [Crossref] [Google Scholar]
  62. Harwerth RS, Wheat JL, Fredette MJ, Anderson DR. 2010.. Linking structure and function in glaucoma. . Prog. Retin. Eye Res. 29::24971
    [Crossref] [Google Scholar]
  63. Hawkins AS, Szlyk JP, Ardickas Z, Alexander KR, Wilensky JT. 2003.. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. . J. Glaucoma 12::13438
    [Crossref] [Google Scholar]
  64. Haymes SA, Leblanc RP, Nicolela MT, Chiasson LA, Chauhan BC. 2007.. Risk of falls and motor vehicle collisions in glaucoma. . Investig. Ophthalmol. Vis. Sci. 48::114955
    [Crossref] [Google Scholar]
  65. Haymes SA, Leblanc RP, Nicolela MT, Chiasson LA, Chauhan BC. 2008.. Glaucoma and on-road driving performance. . Investig. Ophthalmol. Vis. Sci. 49::303541
    [Crossref] [Google Scholar]
  66. He S, Cavanagh P, Intriligator J. 1996.. Attentional resolution and the locus of visual awareness. . Nature 383::33437
    [Crossref] [Google Scholar]
  67. Hertenstein H, Bach M, Gross NJ, Beisse F. 2016.. Marked dissociation of photopic and mesopic contrast sensitivity even in normal observers. . Graefes Arch. Clin. Exp. Ophthalmol. 254::37384
    [Crossref] [Google Scholar]
  68. Hirji SH, Hood DC, Liebmann JM, Blumberg DM. 2021.. Association of patterns of glaucomatous macular damage with contrast sensitivity and facial recognition in patients with glaucoma. . JAMA Ophthalmol. 139::2732
    [Crossref] [Google Scholar]
  69. Hood DC, Raza AS, de Moraes CG, Johnson CA, Liebmann JM, Ritch R. 2012.. The nature of macular damage in glaucoma as revealed by averaging optical coherence tomography data. . Transl. Vis. Sci. Technol. 1::3
    [Crossref] [Google Scholar]
  70. Hood DC, Raza AS, de Moraes CG, Liebmann JM, Ritch R. 2013.. Glaucomatous damage of the macula. . Prog. Retin Eye Res. 32::121
    [Crossref] [Google Scholar]
  71. Hood DC, Raza AS, de Moraes CG, Odel JG, Greenstein VC, et al. 2011.. Initial arcuate defects within the central 10 degrees in glaucoma. . Investig. Ophthalmol. Vis. Sci. 52::94046
    [Crossref] [Google Scholar]
  72. Hood DC, Slobodnick A, Raza AS, de Moraes CG, Teng CC, Ritch R. 2014.. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. . Investig. Ophthalmol. Vis. Sci. 55::63249
    [Crossref] [Google Scholar]
  73. Horn F, Martus P, Korth M. 1995.. Comparison of temporal and spatiotemporal contrast-sensitivity tests in normal subjects and glaucoma patients. . German J. Ophthalmol. 4::97102
    [Google Scholar]
  74. Horton JC, Hoyt WF. 1991.. The representation of the visual field in human striate cortex. A revision of the classic Holmes map. . Arch. Ophthalmol. 109::81624
    [Crossref] [Google Scholar]
  75. Howarth CI, Lowe G. 1966.. Statistical detection theory of Piper's law. . Nature 212::32426
    [Crossref] [Google Scholar]
  76. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, et al. 1991.. Optical coherence tomography. . Science 254::117881
    [Crossref] [Google Scholar]
  77. Huisingh C, McGwin G, Wood J, Owsley C. 2015.. The driving visual field and a history of motor vehicle collision involvement in older drivers: a population-based examination. . Investig. Ophthalmol. Vis. Sci. 56::13238
    [Crossref] [Google Scholar]
  78. Ichhpujani P, Thakur S, Spaeth GL. 2020.. Contrast sensitivity and glaucoma. . J. Glaucoma 29::7175
    [Crossref] [Google Scholar]
  79. Ikeda MC, Bando AH, Hamada KU, Nakamura VPL, Prata TS, et al. 2021.. Is reading performance impaired in glaucoma patients with preserved central vision?. J. Glaucoma 30::e15358
    [Crossref] [Google Scholar]
  80. Inui T, Mimura O, Kani K. 1981.. Retinal sensitivity and spatial summation in the foveal and parafoveal regions. . J. Opt. Soc. Am. 71::15163
    [Crossref] [Google Scholar]
  81. Issashar Leibovitzh G, Trope GE, Kherani IN, Buys YM, Tarita-Nistor L. 2023.. Atypical responses to faces during binocular rivalry in early glaucoma. . Front. Neurosci. 17::1151278
    [Crossref] [Google Scholar]
  82. Je S, Ennis FA, Woodhouse JM, Sengpiel F, Redmond T. 2018.. Spatial summation across the visual field in strabismic and anisometropic amblyopia. . Sci. Rep. 8::3858
    [Crossref] [Google Scholar]
  83. Joffe KM, Raymond JE, Chrichton A. 1997.. Motion coherence perimetry in glaucoma and suspected glaucoma. . Vis. Res. 37::95564
    [Crossref] [Google Scholar]
  84. Kay KN, Winawer J, Mezer A, Wandell BA. 2013.. Compressive spatial summation in human visual cortex. . J. Neurophysiol. 110::48194
    [Crossref] [Google Scholar]
  85. Kelly DH. 1975.. Spatial frequency selectivity in the retina. . Vis. Res. 15::66572
    [Crossref] [Google Scholar]
  86. Kerrigan-Baumrind LA, Quigley HA, Pease ME, Kerrigan DF, Mitchell RS. 2000.. Number of ganglion cells in glaucoma eyes compared with threshold visual field tests in the same persons. . Investig. Ophthalmol. Vis. Sci. 41::74148
    [Google Scholar]
  87. King WM, Sarup V, Sauve Y, Moreland CM, Carpenter DO, Sharma SC. 2006.. Expansion of visual receptive fields in experimental glaucoma. . Vis. Neurosci. 23::13742
    [Crossref] [Google Scholar]
  88. King-Smith PE, Carden D. 1976.. Luminance and opponent-color contributions to visual detection and adaptation and to temporal and spatial integration. . J. Opt. Soc. Am. 66::70917
    [Crossref] [Google Scholar]
  89. Klein J, Pierscionek BK, Lauritzen J, Derntl K, Grzybowski A, Zlatkova MB. 2015.. The effect of cataract on early stage glaucoma detection using spatial and temporal contrast sensitivity tests. . PLOS ONE 10::e0128681
    [Crossref] [Google Scholar]
  90. Kotecha A, O'Leary N, Melmoth D, Grant S, Crabb DP. 2009.. The functional consequences of glaucoma for eye-hand coordination. . Investig. Ophthalmol. Vis. Sci. 50::20313
    [Crossref] [Google Scholar]
  91. Kulkarni KM, Mayer JR, Lorenzana LL, Myers JS, Spaeth GL. 2012.. Visual field staging systems in glaucoma and the activities of daily living. . Am. J. Ophthalmol. 154::44551.e3
    [Crossref] [Google Scholar]
  92. Kwon M, Huisingh C, Rhodes LA, McGwin G Jr., Wood JM, Owsley C. 2016.. Association between glaucoma and at-fault motor vehicle collision involvement among older drivers: a population-based study. . Ophthalmology 123::10916
    [Crossref] [Google Scholar]
  93. Kwon M, Legge GE, Dubbels BR. 2007.. Developmental changes in the visual span for reading. . Vis. Res. 47::2889900
    [Crossref] [Google Scholar]
  94. Kwon M, Liu R. 2019.. Linkage between retinal ganglion cell density and the nonuniform spatial integration across the visual field. . PNAS 116::382736
    [Crossref] [Google Scholar]
  95. Kwon M, Liu R. 2021.. Identifying and localizing retinal features that predict human contrast sensitivity via deep learning. . J. Vis. 21::2615
    [Google Scholar]
  96. Kwon M, Liu R, Patel BN, Girkin C. 2017.. Slow reading in glaucoma: Is it due to the shrinking visual span in central vision?. Investig. Ophthalmol. Vis. Sci. 58::581018
    [Crossref] [Google Scholar]
  97. Lahav K, Levkovitch-Verbin H, Belkin M, Glovinsky Y, Polat U. 2011.. Reduced mesopic and photopic foveal contrast sensitivity in glaucoma. . Arch. Ophthalmol. 129::1622
    [Crossref] [Google Scholar]
  98. Larson AM, Loschky LC. 2009.. The contributions of central versus peripheral vision to scene gist recognition. . J. Vis. 9::6
    [Crossref] [Google Scholar]
  99. Leat SJ, Woodhouse JM. 1993.. Reading performance with low vision aids: relationship with contrast sensitivity. . Ophthalmic Physiol. Opt. 13::916
    [Crossref] [Google Scholar]
  100. Lee SS, Black AA, Wood JM. 2018.. Scanning behavior and daytime driving performance of older adults with glaucoma. . J. Glaucoma 27::55865
    [Crossref] [Google Scholar]
  101. Lee SSY, Wood JM, Black AA. 2020.. Impact of glaucoma on executive function and visual search. . Ophthalmic Physiol. Opt. 40::33342
    [Crossref] [Google Scholar]
  102. Legge GE. 2006.. Psychophysics of Reading in Normal and Low Vision. Abingdon:: Taylor & Francis
    [Google Scholar]
  103. Legge GE, Ahn SJ, Klitz TS, Luebker A. 1997.. Psychophysics of reading. XVI. The visual span in normal and low vision. . Vis. Res. 37::19992010
    [Crossref] [Google Scholar]
  104. Legge GE, Mansfield JS, Chung ST. 2001.. Psychophysics of reading. XX. Linking letter recognition to reading speed in central and peripheral vision. . Vis. Res. 41::72543
    [Crossref] [Google Scholar]
  105. Legge GE, Rubin GS, Pelli DG, Schleske MM. 1985.. Psychophysics of reading. II. Low vision. . Vis. Res. 25::25365
    [Crossref] [Google Scholar]
  106. Lenoble Q, Lek JJ, McKendrick AM. 2016.. Visual object categorisation in people with glaucoma. . Br. J. Ophthalmol. 100::158590
    [Crossref] [Google Scholar]
  107. Lin S, Mihailovic A, West SK, Johnson CA, Friedman DS, et al. 2018.. Predicting visual disability in glaucoma with combinations of vision measures. . Transl. Vis. Sci. Technol. 7::22
    [Crossref] [Google Scholar]
  108. Liu R, Kwon M. 2020.. Increased equivalent input noise in glaucomatous central vision: Is it due to undersampling of retinal ganglion cells?. Investig. Ophthalmol. Vis. Sci. 61::10
    [Google Scholar]
  109. Liu R, Patel BN, Kwon M. 2017a.. Age-related changes in crowding and reading speed. . Sci. Rep. 7::8271
    [Crossref] [Google Scholar]
  110. Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. 2017b.. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. . PNAS 114::128038
    [Crossref] [Google Scholar]
  111. Mangione CM, Berry S, Spritzer K, Janz NK, Klein R, et al. 1998.. Identifying the content area for the 51-item National Eye Institute Visual Function Questionnaire: results from focus groups with visually impaired persons. . Arch. Ophthalmol. 116::22733
    [Google Scholar]
  112. Marr D, Hildreth E. 1980.. Theory of edge detection. . Proc. R. Soc. B 207::187217
    [Google Scholar]
  113. Mathews PM, Rubin GS, McCloskey M, Salek S, Ramulu PY. 2015.. Severity of vision loss interacts with word-specific features to impact out-loud reading in glaucoma. . Investig. Ophthalmol. Vis. Sci. 56::153745
    [Crossref] [Google Scholar]
  114. McConkie GW, Rayner K. 1975.. The span of the effective stimulus during a fixation in reading. . Percept. Psychophys. 17::57886
    [Crossref] [Google Scholar]
  115. McKean-Cowdin R, Wang Y, Wu J, Azen SP, Varma R, et al. 2008.. Impact of visual field loss on health-related quality of life in glaucoma: the Los Angeles Latino Eye Study. . Ophthalmology 115::94148.e1
    [Crossref] [Google Scholar]
  116. McKendrick AM, Sampson GP, Walland MJ, Badcock DR. 2007.. Contrast sensitivity changes due to glaucoma and normal aging: low-spatial-frequency losses in both magnocellular and parvocellular pathways. . Investig. Ophthalmol. Vis. Sci. 48::211522
    [Crossref] [Google Scholar]
  117. Mihailovic A, Swenor BK, Friedman DS, West SK, Gitlin LN, Ramulu PY. 2017.. Gait implications of visual field damage from glaucoma. . Transl. Vis. Sci. Technol. 6::23
    [Crossref] [Google Scholar]
  118. Moes E, Lombardi KM. 2009.. The relationship between contrast sensitivity, gait, and reading speed in Parkinson's disease. . Neuropsychol. Dev. Cogn. B 16::12132
    [Crossref] [Google Scholar]
  119. Mulholland PJ, Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. 2015.. Spatiotemporal summation of perimetric stimuli in early glaucoma. . Investig. Ophthalmol. Vis. Sci. 56::647382
    [Crossref] [Google Scholar]
  120. Nelson P, Aspinall P, O'Brien C. 1999.. Patients’ perception of visual impairment in glaucoma: a pilot study. . Br. J. Ophthalmol. 83::54652
    [Crossref] [Google Scholar]
  121. Nelson P, Aspinall P, Papasouliotis O, Worton B, O'Brien C. 2003.. Quality of life in glaucoma and its relationship with visual function. . J. Glaucoma 12::13950
    [Crossref] [Google Scholar]
  122. Nguyen AM, van Landingham SW, Massof RW, Rubin GS, Ramulu PY. 2014.. Reading ability and reading engagement in older adults with glaucoma. . Investig. Ophthalmol. Vis. Sci. 55::528490
    [Crossref] [Google Scholar]
  123. Ogata NG, Boer ER, Daga FB, Jammal AA, Stringham JM, Medeiros FA. 2019.. Visual crowding in glaucoma. . Investig. Ophthalmol. Vis. Sci. 60::53843
    [Crossref] [Google Scholar]
  124. Owsley C. 2003.. Contrast sensitivity. . Ophthalmol. Clin. North Am. 16::17177
    [Crossref] [Google Scholar]
  125. Owsley C. 2013.. Visual processing speed. . Vis. Res. 90::5256
    [Crossref] [Google Scholar]
  126. Owsley C, McGwin G Jr. 1999.. Vision impairment and driving. . Surv. Ophthalmol. 43::53550
    [Crossref] [Google Scholar]
  127. Owsley C, Stalvey BT, Wells J, Sloane ME, McGwin G Jr. 2001.. Visual risk factors for crash involvement in older drivers with cataract. . Arch. Ophthalmol. 119::88187
    [Crossref] [Google Scholar]
  128. Pan F, Swanson WH. 2006.. A cortical pooling model of spatial summation for perimetric stimuli. . J. Vis. 6::115971
    [Crossref] [Google Scholar]
  129. Paulun VC, Schütz AC, Michel MM, Geisler WS, Gegenfurtner KR. 2015.. Visual search under scotopic lighting conditions. . Vis. Res. 113::15568
    [Crossref] [Google Scholar]
  130. Pelli DG, Bex P. 2013.. Measuring contrast sensitivity. . Vis. Res. 90::1014
    [Crossref] [Google Scholar]
  131. Pelli DG, Palomares M, Majaj NJ. 2004.. Crowding is unlike ordinary masking: distinguishing feature integration from detection. . J. Vis. 4::113669
    [Google Scholar]
  132. Pelli DG, Tillman KA. 2008.. The uncrowded window of object recognition. . Nat. Neurosci. 11::112935
    [Crossref] [Google Scholar]
  133. Pelli DG, Waugh SJ, Martelli M, Crutch SJ, Primativo S, et al. 2016.. A clinical test for visual crowding. . F1000Research 5::81
    [Crossref] [Google Scholar]
  134. Piper H. 1903.. Uber die abhangigkeit des reizwertes leuchtender objekte von ihrer flachen-bezsw. Winkelgrosse. . Z. Psychol. Physiol. Sinnesorgane 32::98112
    [Google Scholar]
  135. Pons C, Mazade R, Jin J, Dul MW, Zaidi Q, Alonso J-M. 2017.. Neuronal mechanisms underlying differences in spatial resolution between darks and lights in human vision. . J. Vis. 17::5
    [Crossref] [Google Scholar]
  136. Quigley HA, Addicks EM. 1980.. Chronic experimental glaucoma in primates. II. Effect of extended intraocular pressure elevation on optic nerve head and axonal transport. . Investig. Ophthalmol. Vis. Sci. 19::13752
    [Google Scholar]
  137. Quigley HA, Dunkelberger GR, Green WR. 1989.. Retinal ganglion cell atrophy correlated with automated perimetry in human eyes with glaucoma. . Am. J. Ophthalmol. 107::45364
    [Crossref] [Google Scholar]
  138. Ramulu PY, Swenor BK, Jefferys JL, Friedman DS, Rubin GS. 2013.. Difficulty with out-loud and silent reading in glaucoma. . Investig. Ophthalmol. Vis. Sci. 54::66672
    [Crossref] [Google Scholar]
  139. Ramulu PY, West SK, Munoz B, Jampel HD, Friedman DS. 2009.. Glaucoma and reading speed: the Salisbury Eye Evaluation project. . Arch. Ophthalmol. 127::8287
    [Crossref] [Google Scholar]
  140. Ratliff CP, Borghuis BG, Kao YH, Sterling P, Balasubramanian V. 2010.. Retina is structured to process an excess of darkness in natural scenes. . PNAS 107::1736873
    [Crossref] [Google Scholar]
  141. Raza AS, Hood DC. 2015.. Evaluation of the structure-function relationship in glaucoma using a novel method for estimating the number of retinal ganglion cells in the human retina. . Investig. Ophthalmol. Vis. Sci. 56::554856
    [Crossref] [Google Scholar]
  142. Redmond T, Garway-Heath DF, Zlatkova MB, Anderson RS. 2010a.. Sensitivity loss in early glaucoma can be mapped to an enlargement of the area of complete spatial summation. . Investig. Ophthalmol. Vis. Sci. 51::654048
    [Crossref] [Google Scholar]
  143. Redmond T, Zlatkova MB, Garway-Heath DF, Anderson RS. 2010b.. The effect of age on the area of complete spatial summation for chromatic and achromatic stimuli. . Investig. Ophthalmol. Vis. Sci. 51::653339
    [Crossref] [Google Scholar]
  144. Redmond T, Zlatkova MB, Vassilev A, Garway-Heath DF, Anderson RS. 2013.. Changes in Ricco's area with background luminance in the S-cone pathway. . Optom. Vis. Sci. 90::6674
    [Crossref] [Google Scholar]
  145. Riccò A. 1877.. Relazione fra il minimo angolo visuale e l'intensità luminosa. . Mem. R. Acad. Sci. Lett. Arti. Modena 17::47160
    [Google Scholar]
  146. Roux-Sibilon A, Rutgé F, Aptel F, Attye A, Guyader N, et al. 2018.. Scene and human face recognition in the central vision of patients with glaucoma. . PLOS ONE 13::e0193465
    [Crossref] [Google Scholar]
  147. Rovamo J. 1978.. Receptive field density of retinal ganglion cells and cortical magnification factor in man. . Med. Biol. 56::97102
    [Google Scholar]
  148. Rovamo J, Virsu V. 1979.. An estimation and application of the human cortical magnification factor. . Exp. Brain Res. 37::495510
    [Crossref] [Google Scholar]
  149. Sanes JR, Masland RH. 2015.. The types of retinal ganglion cells: current status and implications for neuronal classification. . Annu. Rev. Neurosci. 38::22146
    [Crossref] [Google Scholar]
  150. Schefrin BE, Bieber ML, McLean R, Werner JS. 1998.. The area of complete scotopic spatial summation enlarges with age. . J. Opt. Soc. Am. A 15::34048
    [Crossref] [Google Scholar]
  151. Schotter ER, Angele B, Rayner K. 2012.. Parafoveal processing in reading. . Atten. Percept. Psychophys. 74::535
    [Crossref] [Google Scholar]
  152. Sekuler R, Ball K. 1986.. Visual localization: age and practice. . J. Opt. Soc. Am. A 3::86467
    [Crossref] [Google Scholar]
  153. Sellés-Navarro I, Villegas-Pérez MP, Salvador-Silva M, Ruiz-Gómez JM, Vidal-Sanz M. 1996.. Retinal ganglion cell death after different transient periods of pressure-induced ischemia and survival intervals. A quantitative in vivo study. . Investig. Ophthalmol. Vis. Sci. 37::200214
    [Google Scholar]
  154. Shakarchi AF, Mihailovic A, West SK, Friedman DS, Ramulu PY. 2019.. Vision parameters most important to functionality in glaucoma. . Investig. Ophthalmol. Vis. Sci. 60::455663
    [Crossref] [Google Scholar]
  155. Shamsi F, Chen V, Liu R, Pergher V, Kwon M. 2021.. Functional field of view determined by crowding, aging, or glaucoma under divided attention. . Transl. Vis. Sci. Technol. 10::14
    [Crossref] [Google Scholar]
  156. Shamsi F, Liu R, Kwon M. 2022a.. Binocularly asymmetric crowding in glaucoma and a lack of binocular summation in crowding. . Investig. Ophthalmol. Vis. Sci. 63::36
    [Crossref] [Google Scholar]
  157. Shamsi F, Liu R, Owsley C, Kwon M. 2022b.. Identifying the retinal layers linked to human contrast sensitivity via deep learning. . Investig. Ophthalmol. Vis. Sci. 63::27
    [Crossref] [Google Scholar]
  158. Smith MA. 2006.. Surround suppression in the early visual system. . J. Neurosci. 26::362425
    [Crossref] [Google Scholar]
  159. Smith ND, Crabb DP, Garway-Heath DF. 2011.. An exploratory study of visual search performance in glaucoma. . Ophthalmic Physiol. Opt. 31::22532
    [Crossref] [Google Scholar]
  160. Smith ND, Glen FC, Monter VM, Crabb DP. 2014.. Using eye tracking to assess reading performance in patients with glaucoma: a within-person study. . J. Ophthalmol. 2014::120528
    [Crossref] [Google Scholar]
  161. Sohail M, Hirji SH, Liebmann JM, Glass LD, Blumberg DM. 2023.. Remote contrast sensitivity testing seems to correlate with the degree of glaucomatous macular damage. . J. Glaucoma 32::53339
    [Crossref] [Google Scholar]
  162. Stamper RL. 1984.. The effect of glaucoma on central visual function. . Trans. Am. Ophthalmol. Soc. 82::792826
    [Google Scholar]
  163. Stamper RL. 1989.. Psychophysical changes in glaucoma. . Surv. Ophthalmol. 33:(Suppl):30918
    [Google Scholar]
  164. Stievenard A, Rouland JF, Peyrin C, Warniez A, Boucart M. 2021.. Sensitivity to central crowding for faces in patients with glaucoma. . J. Glaucoma 30::14047
    [Crossref] [Google Scholar]
  165. Stringham J, Jammal AA, Mariottoni EB, Estrela T, Urata C, et al. 2020.. Visual crowding in glaucoma: structural and functional relationships. . Investig. Ophthalmol. Vis. Sci. 61::3214
    [Google Scholar]
  166. Sullivan TJ, De Sa VR. 2006.. A model of surround suppression through cortical feedback. . Neural Netw. 19::56472
    [Crossref] [Google Scholar]
  167. Takagi ST, Kita Y, Yagi F, Tomita G. 2012.. Macular retinal ganglion cell complex damage in the apparently normal visual field of glaucomatous eyes with hemifield defects. . J. Glaucoma 21::31825
    [Crossref] [Google Scholar]
  168. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, et al. 2009.. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. . Ophthalmology 116::230514.e1–2
    [Crossref] [Google Scholar]
  169. Tan O, Li G, Lu AT, Varma R, Huang D. 2008.. Mapping of macular substructures with optical coherence tomography for glaucoma diagnosis. . Ophthalmology 115::94956
    [Crossref] [Google Scholar]
  170. Tatham AJ, Boer ER, Rosen PN, Della Penna M, Meira-Freitas D, et al. 2014.. Glaucomatous retinal nerve fiber layer thickness loss is associated with slower reaction times under a divided attention task. . Am. J. Ophthalmol. 158::100817
    [Crossref] [Google Scholar]
  171. Toet A, Levi DM. 1992.. The two-dimensional shape of spatial interaction zones in the parafovea. . Vis. Res. 32::134957
    [Crossref] [Google Scholar]
  172. Turano R. 1999.. Mobility performance in glaucoma. . Investig. Ophthalmol. Vis. Sci. 40::28039
    [Google Scholar]
  173. Turner MH, Schwartz GW, Rieke F. 2018.. Receptive field center-surround interactions mediate context-dependent spatial contrast encoding in the retina. . eLife 7::e38841
    [Crossref] [Google Scholar]
  174. Vasilev A, Anderson RS, Zlatkova M. 2003.. Invariants of spatial summation for S (short wavelength) cone vision. . Ross. Fiziol. Zh. Im. I M Sechenova 89::125057
    [Google Scholar]
  175. Vassilev A, Ivanov I, Zlatkova MB, Anderson RS. 2005.. Human S-cone vision: relationship between perceptive field and ganglion cell dendritic field. . J. Vis. 5::82333
    [Crossref] [Google Scholar]
  176. Vassilev A, Mihaylova MS, Racheva K, Zlatkova M, Anderson RS. 2003.. Spatial summation of S-cone ON and OFF signals: effects of retinal eccentricity. . Vis. Res. 43::287584
    [Crossref] [Google Scholar]
  177. Viswanathan AC, McNaught AI, Poinoosawmy D, Fontana L, Crabb DP, et al. 1999.. Severity and stability of glaucoma: patient perception compared with objective measurement. . Arch. Ophthalmol. 117::45054
    [Crossref] [Google Scholar]
  178. Vlasiuk A, Asari H. 2021.. Feedback from retinal ganglion cells to the inner retina. . PLOS ONE 16::e0254611
    [Crossref] [Google Scholar]
  179. Volbrecht VJ, Shrago EE, Schefrin BE, Werner JS. 2000a.. Ricco's areas for S- and L-cone mechanisms across the retina. . Color Res. Appl. 26::S3235
    [Crossref] [Google Scholar]
  180. Volbrecht VJ, Shrago EE, Schefrin BE, Werner JS. 2000b.. Spatial summation in human cone mechanisms from 0 degrees to 20 degrees in the superior retina. . J. Opt. Soc. Am. A 17::64150
    [Crossref] [Google Scholar]
  181. Wall M, Lefante J, Conway M. 1991.. Variability of high-pass resolution perimetry in normals and patients with idiopathic intracranial hypertension. . Investig. Ophthalmol. Vis. Sci. 32::309195
    [Google Scholar]
  182. Wang DL, Raza AS, de Moraes CG, Chen M, Alhadeff P, et al. 2015.. Central glaucomatous damage of the macula can be overlooked by conventional OCT retinal nerve fiber layer thickness analyses. . Transl. Vis. Sci. Technol. 4::4
    [Crossref] [Google Scholar]
  183. Wang M, Hood DC, Cho JS, Ghadiali Q, de Moraes CG, et al. 2009.. Measurement of local retinal ganglion cell layer thickness in patients with glaucoma using frequency-domain optical coherence tomography. . Arch. Ophthalmol. 127::87581
    [Crossref] [Google Scholar]
  184. Wässle H, Grünert U, Röhrenbeck J, Boycott BB. 1990.. Retinal ganglion cell density and cortical magnification factor in the primate. . Vis. Res. 30::1897911
    [Crossref] [Google Scholar]
  185. Watson AB. 1987.. Estimation of local spatial scale. . J. Opt. Soc. Am. A 4::157982
    [Crossref] [Google Scholar]
  186. Wiecek E, Pasquale LR, Fiser J, Dakin S, Bex PJ. 2012.. Effects of peripheral visual field loss on eye movements during visual search. . Front. Psychol. 3::472
    [Crossref] [Google Scholar]
  187. Wilensky JT, Hawkins A. 2001.. Comparison of contrast sensitivity, visual acuity, and Humphrey visual field testing in patients with glaucoma. . Trans. Am. Ophthalmol. Soc. 99::21317; discussion 217–18
    [Google Scholar]
  188. Wilson ME. 1970.. Invariant features of spatial summation with changing locus in the visual field. . J. Physiol. 207::61122
    [Crossref] [Google Scholar]
  189. Wolfe B, Dobres J, Rosenholtz R, Reimer B. 2017.. More than the useful field: considering peripheral vision in driving. . Appl. Ergonom. 65::31625
    [Crossref] [Google Scholar]
  190. Wolter JR. 1972.. The visual fields: a textbook and atlas of clinical perimetry. . J. Pediatr. Ophthalmol. 9::190
    [Google Scholar]
  191. Wood JM, Black AA, Mallon K, Thomas R, Owsley C. 2016.. Glaucoma and driving: on-road driving characteristics. . PLOS ONE 11::e0158318
    [Crossref] [Google Scholar]
  192. Wood JM, Owsley C. 2014.. Useful field of view test. . Gerontology 60::31518
    [Crossref] [Google Scholar]
  193. Xiong Y-Z, Kwon M, Bittner AK, Virgili G, Giacomelli G, Legge GE. 2020.. Relationship between acuity and contrast sensitivity: differences due to eye disease. . Investig. Ophthalmol. Vis. Sci. 61::40
    [Crossref] [Google Scholar]
  194. Yantis S. 2014.. Sensation and Perception. New York:: Worth Publ.
    [Google Scholar]
  195. Zaghloul KA, Boahen K, Demb JB. 2003.. Different circuits for ON and OFF retinal ganglion cells cause different contrast sensitivities. . J. Neurosci. 23::264554
    [Crossref] [Google Scholar]
  196. Zhang C, Tatham AJ, Weinreb RN, Zangwill LM, Yang Z, et al. 2014.. Relationship between ganglion cell layer thickness and estimated retinal ganglion cell counts in the glaucomatous macula. . Ophthalmology 121::237179
    [Crossref] [Google Scholar]
  197. Zwierko T, Jedziniak W, Florkiewicz B, Ceylan , Lesiakowski P, et al. 2020.. The consequences of glaucoma on mobility and balance control in the older adults: a cross-sectional study. . J. Aging Phys. Act. 29::37281
    [Crossref] [Google Scholar]
  198. Zwierko T, Jedziniak W, Lesiakowski P, Śliwiak M, Kirkiewicz M, Lubiński W. 2019.. Eye-hand coordination impairment in glaucoma patients. . Int. J. Environ. Res. Public Health 16::4332
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-110223-123044
Loading
/content/journals/10.1146/annurev-vision-110223-123044
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error