1932

Abstract

The ventral visual pathway transforms retinal images into neural representations that support object understanding, including exquisite appreciation of precise 2D pattern shape and 3D volumetric shape. We articulate a framework for understanding the goals of this transformation and how they are achieved by neural coding at successive ventral pathway stages. The critical goals are () radical compression to make shape information communicable across axonal bundles and storable in memory, () explicit coding to make shape information easily readable by the rest of the brain and thus accessible for cognition and behavioral control, and () representational stability to maintain consistent perception across highly variable viewing conditions. We describe how each transformational step in ventral pathway vision serves one or more of these goals. This three-goal framework unifies discoveries about ventral shape processing into a neural explanation for our remarkable experience of shape as a vivid, richly detailed aspect of the natural world.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-112823-031607
2024-09-18
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/vision/10/1/annurev-vision-112823-031607.html?itemId=/content/journals/10.1146/annurev-vision-112823-031607&mimeType=html&fmt=ahah

Literature Cited

  1. Adams DL, Horton JC. 2003.. A precise retinotopic map of primate striate cortex generated from the representation of angioscotomas. . J. Neurosci. 23::377189
    [Crossref] [Google Scholar]
  2. Afraz S-R, Kiani R, Esteky H. 2006.. Microstimulation of inferotemporal cortex influences face categorization. . Nature 442::69295
    [Crossref] [Google Scholar]
  3. Attneave F. 1954.. Some informational aspects of visual perception. . Psychol. Rev. 61::18393
    [Crossref] [Google Scholar]
  4. Attneave F, Reid KW. 1968.. Voluntary control of frame of reference and slope equivalence under head rotation. . J. Exp. Psychol. 78::15359
    [Crossref] [Google Scholar]
  5. Baker C, Behrmann M, Olson C. 2002.. Impact of learning on representation of parts and wholes in monkey inferotemporal cortex. . Nat. Neurosci. 5::121016
    [Crossref] [Google Scholar]
  6. Bao P, She L, McGill M, Tsao DY. 2020.. A map of object space in primate inferotemporal cortex. . Nature 583::1038
    [Crossref] [Google Scholar]
  7. Barlow HB. 1961.. Possible principles underlying the transformation of sensory messages. . In Sensory Communication, ed. WA Rosenblith , pp. 21733. Cambridge, MA:: MIT Press
    [Google Scholar]
  8. Bashivan P, Kar K, DiCarlo JJ. 2019.. Neural population control via deep image synthesis. . Science 364::eaav9436
    [Crossref] [Google Scholar]
  9. Biederman I. 1987.. Recognition-by-components: a theory of human image understanding. . Psychol. Rev. 94::11547
    [Crossref] [Google Scholar]
  10. Brincat SL, Connor CE. 2004.. Underlying principles of visual shape selectivity in posterior inferotemporal cortex. . Nat. Neurosci. 7::88086
    [Crossref] [Google Scholar]
  11. Brincat SL, Connor CE. 2006.. Dynamic shape synthesis in posterior inferotemporal cortex. . Neuron 49::1724
    [Crossref] [Google Scholar]
  12. Cadena SA, Willeke KF, Restivo K, Denfield G, Sinz FH, et al. 2024.. Diverse task-driven modeling of macaque V4 reveals functional specialization towards semantic tasks. . PLOS Comput. Biol. 20(5):e1012056
    [Google Scholar]
  13. Carlson ET, Rasquinha RJ, Zhang K, Connor CE. 2011.. A sparse object coding scheme in area V4. . Curr. Biol. 21::28893
    [Crossref] [Google Scholar]
  14. Cheng A, Sokol S, Connor CE. 2024.. An inferotemporal coding strategy robust to partial object occlusion. . bioRxiv 2024.04.09.588746. https://doi.org/10.1101/2024.04.09.588746
  15. Connor CE, Knierim JJ. 2017.. Integration of objects and space in perception and memory. . Nat. Neurosci. 20::1493503
    [Crossref] [Google Scholar]
  16. Cumming BG, Parker AJ. 1999.. Binocular neurons in V1 of awake monkeys are selective for absolute, not relative, disparity. . J. Neurosci. 19::560218
    [Crossref] [Google Scholar]
  17. Curcio CA, Allen KA. 1990.. Topography of ganglion cells in human retina. . J. Comp. Neurol. 300::525
    [Crossref] [Google Scholar]
  18. Curcio CA, Sloan KR, Packer O, Hendrickson AE, Kalina RE. 1987.. Distribution of cones in human and monkey retina: individual variability and radial asymmetry. . Science 236::57982
    [Crossref] [Google Scholar]
  19. De Valois RL, Albrecht DG, Thorell LG. 1982.. Spatial frequency selectivity of cells in macaque visual cortex. . Vis. Res. 22::54559
    [Crossref] [Google Scholar]
  20. Emonds AMX, Srinath R, Nielsen KJ, Connor CE. 2023.. Object representation in a gravitational reference frame. . eLife 12::e81701
    [Crossref] [Google Scholar]
  21. Farah MJ, Hammond KM. 1988.. Mental rotation and orientation-invariant object recognition: dissociable processes. . Cognition 29::2946
    [Crossref] [Google Scholar]
  22. Farah MJ, Rochlin R, Klein KL. 1994.. Orientation invariance and geometric primitives in shape recognition. . Cogn. Sci. 18::32544
    [Crossref] [Google Scholar]
  23. Fawzi A, Frossard P. 2016.. Measuring the effect of nuisance variables on classifiers. . In Proceedings of the British Machine Vision Conference (BMVC), York, UK, Sept. 19–22, art. 137 . Durham, UK:: Br. Mach. Vis. Assoc.
    [Google Scholar]
  24. Felleman DJ, Van Essen DC. 1991.. Distributed hierarchical processing in the primate cerebral cortex. . Cereb. Cortex 1::147
    [Crossref] [Google Scholar]
  25. Field GD, Chichilnisky EJ. 2007.. Information processing in the primate retina: circuitry and coding. . Annu. Rev. Neurosci. 30::130
    [Crossref] [Google Scholar]
  26. Freedman DJ, Riesenhuber M, Poggio T, Miller EK. 2001.. Categorical representation of visual stimuli in the primate prefrontal cortex. . Science 291::31216
    [Crossref] [Google Scholar]
  27. Gallant JL, Braun J, Van Essen DC. 1993.. Selectivity for polar, hyperbolic, and Cartesian gratings in macaque visual cortex. . Science 259::1003
    [Crossref] [Google Scholar]
  28. Gallant JL, Connor CE, Lewis J, Rakshit S, Van Essen DC. 1996.. Neural responses to polar, hyperbolic, and Cartesian gratings in area V4 of the macaque monkey. . J. Neurophysiol. 76::271839
    [Crossref] [Google Scholar]
  29. Gallant JL, Shoup RE, Mazer JA. 2000.. A human extrastriate area functionally homologous to macaque V4. . Neuron 27::22735
    [Crossref] [Google Scholar]
  30. Gattass R, Sousa A, Rosa M. 1987.. Visual topography of V1 in the Cebus monkey. . J. Comp. Neurol. 259::52948
    [Crossref] [Google Scholar]
  31. Gattass R, Sousa AP, Gross CG. 1988.. Visuotopic organization and extent of V3 and V4 of the macaque. . J. Neurosci. 8:(6):183145
    [Crossref] [Google Scholar]
  32. Gross CG. 2002.. Genealogy of the “grandmother cell. .” Neuroscientist 8::51218
    [Crossref] [Google Scholar]
  33. Gross CG, Rocha-Miranda CE, Bender DB. 1972.. Visual properties of neurons in inferotemporal cortex of the macaque. . J. Neurophysiol. 35::96111
    [Crossref] [Google Scholar]
  34. Halberstadt AG, Saitta MB. 1987.. Gender, nonverbal behavior, and perceived dominance: a test of the theory. . J. Personal. Soc. Psychol. 53::25772
    [Crossref] [Google Scholar]
  35. Hansen KA, Kay KN, Gallant JL. 2007.. Topographic organization in and near human visual area V4. . J. Neurosci. 27::11896911
    [Crossref] [Google Scholar]
  36. Hegdé J, Van Essen DC. 2005.. Role of primate visual area V4 in the processing of 3-D shape characteristics defined by disparity. . J. Neurophysiol. 94::285666
    [Crossref] [Google Scholar]
  37. Hegdé J, Van Essen DC. 2007.. A comparative study of shape representation in macaque visual areas V2 and V4. . Cereb. Cortex 17::110016
    [Crossref] [Google Scholar]
  38. Hesse JK, Tsao DY. 2020.. The macaque face patch system: a turtle's underbelly for the brain. . Nat. Rev. Neurosci. 21::695716
    [Crossref] [Google Scholar]
  39. Hinkle DA, Connor CE. 2002.. Three-dimensional orientation tuning in macaque area V4. . Nat. Neurosci. 5::66570
    [Crossref] [Google Scholar]
  40. Hubel DH, Wiesel TN. 1962.. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. . J. Physiol. 160::10654
    [Crossref] [Google Scholar]
  41. Hubel DH, Wiesel TN. 1968.. Receptive fields and functional architecture of monkey striate cortex. . J. Physiol. 195::21543
    [Crossref] [Google Scholar]
  42. Hung C-C, Carlson ET, Connor CE. 2012.. Medial axis shape coding in macaque inferotemporal cortex. . Neuron 74::1099113
    [Crossref] [Google Scholar]
  43. Hung CP, Kreiman G, Poggio T, DiCarlo JJ. 2005.. Fast readout of object identity from macaque inferior temporal cortex. . Science 310::86366
    [Crossref] [Google Scholar]
  44. Isik L, Leibo J, Poggio T. 2012.. Learning and disrupting invariance in visual recognition with a temporal association rule. . Front. Comput. Neurosci. 6::37
    [Crossref] [Google Scholar]
  45. Ito M, Tamura H, Fujita I, Tanaka K. 1995.. Size and position invariance of neuronal responses in monkey inferotemporal cortex. . J. Neurophysiol. 73::21826
    [Crossref] [Google Scholar]
  46. Janssen P, Vogels R, Orban GA. 1999.. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes. . PNAS 96::821722
    [Crossref] [Google Scholar]
  47. Janssen P, Vogels R, Orban GA. 2000a.. Selectivity for 3D shape that reveals distinct areas within macaque inferior temporal cortex. . Science 288::205456
    [Crossref] [Google Scholar]
  48. Janssen P, Vogels R, Orban GA. 2000b.. Three-dimensional shape coding in inferior temporal cortex. . Neuron 27::38597
    [Crossref] [Google Scholar]
  49. Kobatake E, Tanaka K. 1994.. Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. . J. Neurophysiol. 71::85667
    [Crossref] [Google Scholar]
  50. Koenderink J. 1993.. What is a “feature”?. J. Intell. Syst. 3::4982
    [Google Scholar]
  51. Koenderink JJ, Van Doorn AJ, Kappers AML, Todd JT. 1997.. The visual contour in depth. . Percept. Psychophys. 59::82838
    [Crossref] [Google Scholar]
  52. Kortylewski A, He J, Liu Q, Cosgrove C, Yang C, Yuille AL. 2021.. Compositional generative networks and robustness to perceptible image changes. Paper presented at the 55th Annual Conference on Information Sciences and Systems (CISS), Baltimore, MD:, March 24–26
    [Google Scholar]
  53. Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, et al. 2008.. Matching categorical object representations in inferior temporal cortex of man and monkey. . Neuron 60::112641
    [Crossref] [Google Scholar]
  54. Krizhevsky A, Sutskever I, Hinton GE. 2012.. ImageNet classification with deep convolutional neural networks. . Adv. Neural Inform. Proc. Syst. 25::1097105
    [Google Scholar]
  55. Krumhuber E, Manstead ASR, Kappas A. 2007.. Temporal aspects of facial displays in person and expression perception: the effects of smile dynamics, head-tilt, and gender. . J. Nonverbal Behav. 31::3956
    [Crossref] [Google Scholar]
  56. Kuffler SW. 1952.. Neurons in the retina: organization, inhibition and excitation problems. . Cold Spring Harb. Symp. Quant. Biol. 17::28192
    [Crossref] [Google Scholar]
  57. Li N, DiCarlo JJ. 2008.. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. . Science 321::15027
    [Crossref] [Google Scholar]
  58. Li SZ, Hou XW, Zhang HJ, Cheng QS. 2001.. Learning spatially localized, parts-based representation. Paper presented at the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Kauai, HI:, Dec. 8–14
    [Google Scholar]
  59. Logothetis NK, Pauls J. 1995.. Psychophysical and physiological evidence for viewer-centered object representations in the primate. . Cereb. Cortex 5::27088
    [Crossref] [Google Scholar]
  60. Mara M, Appel M. 2015.. Effects of lateral head tilt on user perceptions of humanoid and android robots. . Comput. Hum. Behav. 44::32634
    [Crossref] [Google Scholar]
  61. Marois R, Yi D-J, Chun MM. 2004.. The neural fate of consciously perceived and missed events in the attentional blink. . Neuron 41::46572
    [Crossref] [Google Scholar]
  62. Marr D, Nishihara HK. 1978.. Representation and recognition of the spatial organization of three-dimensional shapes. . Proc. R. Soc. Lond. B 200::26994
    [Crossref] [Google Scholar]
  63. Mignault A, Chaudhuri A. 2003.. The many faces of a neutral face: head tilt and perception of dominance and emotion. . J. Nonverbal Behav. 27::11132
    [Crossref] [Google Scholar]
  64. Miller EF. 1962.. Counterrolling of the human eyes produced by head tilt with respect to gravity. . Acta Otolaryngol. 54::479501
    [Crossref] [Google Scholar]
  65. Moeller S, Crapse T, Chang L, Tsao DY. 2017.. The effect of face patch microstimulation on perception of faces and objects. . Nat. Neurosci. 20::74352
    [Crossref] [Google Scholar]
  66. Nandy AS, Sharpee TO, Reynolds JH, Mitchell JF. 2013.. The fine structure of shape tuning in area V4. . Neuron 78::110215
    [Crossref] [Google Scholar]
  67. Nelissen K, Joly O, Durand J-B, Todd JT, Vanduffel W, Orban GA. 2009.. The extraction of depth structure from shading and texture in the macaque brain. . PLOS ONE 4::e8306
    [Crossref] [Google Scholar]
  68. Olshausen BA, Field DJ. 1996.. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. . Nature 381::6079
    [Crossref] [Google Scholar]
  69. Pasupathy A, Connor CE. 1999.. Responses to contour features in macaque area V4. . J. Neurophysiol. 82::2490502
    [Crossref] [Google Scholar]
  70. Pasupathy A, Connor CE. 2001.. Shape representation in area V4: position-specific tuning for boundary conformation. . J. Neurophysiol. 86::250519
    [Crossref] [Google Scholar]
  71. Pasupathy A, Connor CE. 2002.. Population coding of shape in area V4. . Nat. Neurosci. 5::133238
    [Crossref] [Google Scholar]
  72. Pasupathy A, Popovkina DV, Kim T. 2020.. Visual functions of primate area V4. . Annu. Rev. Vis. Sci. 6::36385
    [Crossref] [Google Scholar]
  73. Peterhans E, von der Heydt R. 1989.. Mechanisms of contour perception in monkey visual cortex. II. Contours bridging gaps. . J. Neurosci. 9::174963
    [Crossref] [Google Scholar]
  74. Poggio GF, Motter BC, Squatrito S, Trotter Y. 1985.. Responses of neurons in visual cortex (V1 and V2) of the alert macaque to dynamic random-dot stereograms. . Vis. Res. 25::397406
    [Crossref] [Google Scholar]
  75. Pospisil DA, Pasupathy A, Bair W. 2018.. “ Artiphysiology” reveals V4-like shape tuning in a deep network trained for image classification. . eLife 7::e38242
    [Crossref] [Google Scholar]
  76. Pouget A, Dayan P, Zemel RS. 2003.. Inference and computation with population codes. . Annu. Rev. Neurosci. 26::381410
    [Crossref] [Google Scholar]
  77. Pouget A, Deneve S, Duhamel J-R. 2002.. A computational perspective on the neural basis of multisensory spatial representations. . Nat. Rev. Neurosci. 3::74147
    [Crossref] [Google Scholar]
  78. Quian Quiroga R, Kreiman G, Koch C, Fried I. 2008.. Sparse but not “grandmother-cell” coding in the medial temporal lobe. . Trends Cogn. Sci. 12::8791
    [Crossref] [Google Scholar]
  79. Quian Quiroga R, Reddy L, Kreiman G, Koch C, Fried I. 2005.. Invariant visual representation by single neurons in the human brain. . Nature 435::11027
    [Crossref] [Google Scholar]
  80. Reid RC, Alonso JM. 1995.. Specificity of monosynaptic connections from thalamus to visual cortex. . Nature 378::28184
    [Crossref] [Google Scholar]
  81. Rosenberg A, Cowan NJ, Angelaki DE. 2013.. The visual representation of 3D object orientation in parietal cortex. . J. Neurosci. 33::1935261
    [Crossref] [Google Scholar]
  82. Rosenberg A, Thompson LW, Doudlah R, Chang T-Y. 2023.. Neuronal representations supporting three-dimensional vision in nonhuman primates. . Annu. Rev. Vis. Sci. 9::33759
    [Crossref] [Google Scholar]
  83. Sasikumar D, Emeric E, Stuphorn V, Connor CE. 2018.. First-pass processing of value cues in the ventral visual pathway. . Curr. Biol. 28::53848.e3
    [Crossref] [Google Scholar]
  84. Schworm HD, Ygge J, Pansell T, Lennerstrand G. 2002.. Assessment of ocular counterroll during head tilt using binocular video oculography. . Investig. Ophthalmol. Vis. Sci. 43::66267
    [Google Scholar]
  85. Selfridge O. 1959.. Pandemonium: a paradigm for learning. . In Mechanisation of Thought Processes: Proceedings of a Symposium Held at the National Physical Laboratory, November 1958, pp. 51326. London:: HMSO
    [Google Scholar]
  86. Sharpee TO, Kouh M, Reynolds JH. 2013.. Trade-off between curvature tuning and position invariance in visual area V4. . PNAS 110::1161823
    [Crossref] [Google Scholar]
  87. Sheinberg DL, Logothetis NK. 1997.. The role of temporal cortical areas in perceptual organization. . PNAS 94::340813
    [Crossref] [Google Scholar]
  88. Sigala N, Logothetis NK. 2002.. Visual categorization shapes feature selectivity in the primate temporal cortex. . Nature 415::31820
    [Crossref] [Google Scholar]
  89. Srinath R, Emonds A, Wang Q, Lempel AA, Dunn-Weiss E, et al. 2021.. Early emergence of solid shape coding in natural and deep network vision. . Curr. Biol. 31::5165
    [Crossref] [Google Scholar]
  90. Tanaka K. 1993.. Column structure of inferotemporal cortex: “visual alphabet” or “differential amplifiers”? Paper presented at the 1993 International Conference on Neural Networks (IJCNN-93), Nagoya, Japan:, Oct. 25–29
    [Google Scholar]
  91. Tanaka K. 1996.. Inferotemporal cortex and object vision. . Annu. Rev. Neurosci. 19::10939
    [Crossref] [Google Scholar]
  92. Tanaka K, Saito H, Fukada Y, Moriya M. 1991.. Coding visual images of objects in the inferotemporal cortex of the macaque monkey. . J. Neurophysiol. 66::17089
    [Crossref] [Google Scholar]
  93. Tong F, Nakayama K, Vaughan JT, Kanwisher N. 1998.. Binocular rivalry and visual awareness in human extrastriate cortex. . Neuron 21::75359
    [Crossref] [Google Scholar]
  94. Vaziri S, Carlson ET, Wang Z, Connor CE. 2014.. A channel for 3D environmental shape in anterior inferotemporal cortex. . Neuron 84::5562
    [Crossref] [Google Scholar]
  95. Vaziri S, Connor CE. 2016.. Representation of gravity-aligned scene structure in ventral pathway visual cortex. . Curr. Biol. 26::76674
    [Crossref] [Google Scholar]
  96. Verhoef B-E, Vogels R, Janssen P. 2012.. Inferotemporal cortex subserves three-dimensional structure categorization. . Neuron 73::17182
    [Crossref] [Google Scholar]
  97. Vetter T, Hurlbert A, Poggio T. 1995.. View-based models of 3D object recognition: invariance to imaging transformations. . Cereb. Cortex 5::26169
    [Crossref] [Google Scholar]
  98. Vinje W, Gallant JL. 2000.. Sparse coding and decorrelation in primary visual cortex during natural vision. . Science 287::127376
    [Crossref] [Google Scholar]
  99. Vogels R. 1999.. Categorization of complex visual images by rhesus monkeys. Part 2: single-cell study. . Eur. J. Neurosci. 11::123955
    [Crossref] [Google Scholar]
  100. von der Heydt R, Peterhans E. 1989.. Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. . J. Neurosci. 9::173148
    [Crossref] [Google Scholar]
  101. von der Heydt R, Peterhans E, Baumgartner G. 1984.. Illusory contours and cortical neuron responses. . Science 224::126062
    [Crossref] [Google Scholar]
  102. von der Heydt R, Zhou H, Friedman HS. 2000.. Representation of stereoscopic edges in monkey visual cortex. . Vis. Res. 40::195567
    [Crossref] [Google Scholar]
  103. Wang G, Obama S, Yamashita W, Sugihara T, Tanaka K. 2005.. Prior experience of rotation is not required for recognizing objects seen from different angles. . Nat. Neurosci. 8::156875
    [Crossref] [Google Scholar]
  104. Watanabe H, Pollick FE, Koenderink JJ, Kawato M. 1999.. Using motor tasks to quantitatively judge 3-D surface curvatures. . Percept. Psychophys. 61::111639
    [Crossref] [Google Scholar]
  105. Watson AB. 2014.. A formula for human retinal ganglion cell receptive field density as a function of visual field location. . J. Vis. 14::15
    [Crossref] [Google Scholar]
  106. Wilkinson F, James TW, Wilson HR, Gati JS, Menon RS, Goodale MA. 2000.. An fMRI study of the selective activation of human extrastriate form vision areas by radial and concentric gratings. . Curr. Biol. 10::145558
    [Crossref] [Google Scholar]
  107. Yamaguchi R, Okamura J, Wang G. 2016.. Dynamics of population coding for object views following object discrimination training. . Neuroscience 330::10920
    [Crossref] [Google Scholar]
  108. Yamane Y, Carlson E, Bowman K, Wang Z, Connor CE. 2008.. A neural code for three-dimensional object shape in macaque inferotemporal cortex. . Nat. Neurosci. 11::135260
    [Crossref] [Google Scholar]
  109. Yamins DLK, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ. 2014.. Performance-optimized hierarchical models predict neural responses in higher visual cortex. . PNAS 111::861924
    [Crossref] [Google Scholar]
  110. Zhao C, Wang RH, Wang G. 2018.. Long-term object discrimination at several viewpoints develops neural substrates of view-invariant object recognition in inferotemporal cortex. . Neuroscience 392::190202
    [Crossref] [Google Scholar]
  111. Zhou H, Friedman HS, von der Heydt R. 2000.. Coding of border ownership in monkey visual cortex. . J. Neurosci. 20::6594611
    [Crossref] [Google Scholar]
  112. Zhu H, Tang P, Park J, Park S, Yuille A. 2019.. Robustness of object recognition under extreme occlusion in humans and computational models. Paper presented at the 41st Annual Meeting of the Cognitive Science Society, Montreal, Can:., July 24–27
    [Google Scholar]
  113. Zhuang C, Yan S, Nayebi A, Schrimpf M, Frank MC, et al. 2021.. Unsupervised neural network models of the ventral visual stream. . PNAS 118::e2014196118
    [Crossref] [Google Scholar]
  114. Zikovitz DC, Harris LR. 1999.. Head tilt during driving. . Ergonomics 42::74046
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-112823-031607
Loading
/content/journals/10.1146/annurev-vision-112823-031607
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error