1932

Abstract

Visual perception of self-motion is essential for navigation and environmental interaction. This review examines the mechanisms by which we perceive self-motion, highlighting recent progress and significant findings. It first evaluates optic flow and its critical role in the perception of self-motion, then considers nonflow visual cues that contribute to this process. Key aspects of self-motion perception are discussed, including the perception of instantaneous direction (i.e., heading) and future trajectory (i.e., path) of self-motion. It then addresses two closely linked topics: the perception of independent object motion during self-motion and the perception of heading with independent object motion. While these processes occur concurrently, research indicates that they involve separate perceptual mechanisms. In light of recent neurophysiological findings, potential neural mechanisms underlying these two processes are proposed. Finally, it discusses how studies often conflate unreal optic flow with real optic flow, raising questions for future research to better understand how the brain processes optic flow for the perception of self-motion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-vision-121423-013200
2025-09-17
2025-11-20
Loading full text...

Full text loading...

/deliver/fulltext/vision/11/1/annurev-vision-121423-013200.html?itemId=/content/journals/10.1146/annurev-vision-121423-013200&mimeType=html&fmt=ahah

Literature Cited

  1. Albright TD, Desimone R. 1987.. Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. . Exp. Brain Res. 65:(3):58292
    [Crossref] [Google Scholar]
  2. Andersen GJ, Braunstein ML. 1985.. Induced self-motion in central vision. . J. Exp. Psychol. Hum. Percept. Perform. 11:(2):12232
    [Crossref] [Google Scholar]
  3. Anderson KC, Siegel RM. 1999.. Optic flow selectivity in the anterior superior temporal polysensory area, STPa, of the behaving monkey. . J. Neurosci. 19:(7):268192
    [Crossref] [Google Scholar]
  4. Azzopardi P, Fallah M, Gross CG, Rodman HR. 2003.. Response latencies of neurons in visual areas MT and MST of monkeys with striate cortex lesions. . Neuropsychologia 41:(13):173856
    [Crossref] [Google Scholar]
  5. Azzopardi P, Hock HS. 2011.. Illusory motion perception in blindsight. . PNAS 108:(2):87681
    [Crossref] [Google Scholar]
  6. Banks MS, Ehrlich SM, Backus BT, Crowell JA. 1996.. Estimating heading during real and simulated eye movements. . Vis. Res. 36:(3):43143
    [Crossref] [Google Scholar]
  7. Beall AC, Loomis JM. 1996.. Visual control of steering without course information. . Perception 25:(4):48194
    [Crossref] [Google Scholar]
  8. Beusmans JMH. 1998.. Perceived object shape affects the perceived direction of self-movement. . Perception 27:(9):107985
    [Crossref] [Google Scholar]
  9. Beverley KI, Regan D. 1982.. Adaptation to incomplete flow patterns: no evidence for ‘filling-in’ the perception of flow patterns. . Perception 11:(3):27578
    [Crossref] [Google Scholar]
  10. Brandt T, Dichgans J, Koenig E. 1973.. Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. . Exp. Brain Res. 16:(5):47691
    [Crossref] [Google Scholar]
  11. Bravo MJ. 1998.. A global process in motion segregation. . Vis. Res. 38:(6):85363
    [Crossref] [Google Scholar]
  12. Bremmer F, Duhamel J-R, Ben Hamed S, Graf W. 2002.. Heading encoding in the macaque ventral intraparietal area (VIP). . Eur. J. Neurosci. 16:(8):155468
    [Crossref] [Google Scholar]
  13. Britten KH. 2008.. Mechanisms of self-motion perception. . Annu. Rev. Neurosci. 31::389410
    [Crossref] [Google Scholar]
  14. Britten KH, van Wezel RJ. 1998.. Electrical microstimulation of cortical area MST biases heading perception in monkeys. . Nat. Neurosci. 1:(1):5963
    [Crossref] [Google Scholar]
  15. Burlingham CS, Heeger DJ. 2020.. Heading perception depends on time-varying evolution of optic flow. . PNAS 117:(52):3316169
    [Crossref] [Google Scholar]
  16. Burr D. 2000.. Motion vision: Are ‘speed lines’ used in human visual motion?. Curr. Biol. 10:(12):R44043
    [Crossref] [Google Scholar]
  17. Calabro FJ, Vaina LM. 2012.. Interaction of cortical networks mediating object motion detection by moving observers. . Exp. Brain Res. 221:(2):17789
    [Crossref] [Google Scholar]
  18. Calderone JB, Kaiser MK. 1989.. Visual acceleration detection: effect of sign and motion orientation. . Percept. Psychophys. 45::39194
    [Crossref] [Google Scholar]
  19. Cardin V, Hemsworth L, Smith AT. 2012.. Adaptation to heading direction dissociates the roles of human MST and V6 in the processing of optic flow. . J. Neurophysiol. 108:(3):794801
    [Crossref] [Google Scholar]
  20. Cardin V, Smith AT. 2010.. Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. . Cereb. Cortex 20:(8):196473
    [Crossref] [Google Scholar]
  21. Cardin V, Smith AT. 2011.. Sensitivity of human visual cortical area V6 to stereoscopic depth gradients associated with self-motion. . J. Neurophysiol. 106:(3):124049
    [Crossref] [Google Scholar]
  22. Chen A, Gu Y, Liu S, DeAngelis GC, Angelaki DE. 2016.. Evidence for a causal contribution of macaque vestibular, but not intraparietal, cortex to heading perception. . J. Neurosci. 36:(13):378998
    [Crossref] [Google Scholar]
  23. Cheng JCK, Li L. 2012.. Effects of reference objects and extra-retinal information about pursuit eye movements on curvilinear path perception from retinal flow. . J. Vis. 12:(3):12
    [Crossref] [Google Scholar]
  24. Cicchini GM, Mikellidou K, Burr DC. 2024.. Serial dependence in perception. . Annu. Rev. Psychol. 75::12954
    [Crossref] [Google Scholar]
  25. Crowell JA, Banks MS. 1996.. Ideal observer for heading judgments. . Vis. Res. 36:(3):47190
    [Crossref] [Google Scholar]
  26. Cutting JE, Springer K, Braren PA, Johnson SH. 1992.. Wayfinding on foot from information in retinal, not optical, flow. . J. Exp. Psychol. Gen. 121:(1):4172
    [Crossref] [Google Scholar]
  27. Cutting JE, Vishton PM. 1995.. Perceiving layout and knowing distances: the integration, relative potency, and contextual use of different information about depth. . In Perception of Space and Motion: Handbook of Perception and Cognition, ed. W Epstein, S Rogers . Academic Press
    [Google Scholar]
  28. Cutting JE, Vishton PM, Flückiger M, Baumberger B, Gerndt JD. 1997.. Heading and path information from retinal flow in naturalistic environments. . Percept. Psychophys. 59:(3):42641
    [Crossref] [Google Scholar]
  29. d'Avossa G, Kersten D. 1996.. Evidence in human subjects for independent coding of azimuth and elevation for direction of heading from optic flow. . Vis. Res. 36:(18):291524
    [Crossref] [Google Scholar]
  30. DeYoe EA, Van Essen DC. 1988.. Concurrent processing streams in monkey visual cortex. . Trends Neurosci. 11:(5):21926
    [Crossref] [Google Scholar]
  31. Dokka K, DeAngelis GC, Angelaki DE. 2015.. Multisensory integration of visual and vestibular signals improves heading discrimination in the presence of a moving object. . J. Neurosci. 35:(40):13599607
    [Crossref] [Google Scholar]
  32. Dokka K, Park H, Jansen M, DeAngelis GC, Angelaki DE. 2019.. Causal inference accounts for heading perception in the presence of object motion. . PNAS 116:(18):906065
    [Crossref] [Google Scholar]
  33. Duchon AP, Warren WH Jr. 2002.. A visual equalization strategy for locomotor control: of honeybees, robots, and humans. . Psychol. Sci. 13:(3):27278
    [Crossref] [Google Scholar]
  34. Duffy CJ, Wurtz RH. 1991.. Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. . J. Neurophysiol. 65:(6):132945
    [Crossref] [Google Scholar]
  35. Duffy CJ, Wurtz RH. 1993.. An illusory transformation of optic flow fields. . Vis. Res. 33:(11):148190
    [Crossref] [Google Scholar]
  36. Dukelow SP, DeSouza JFX, Culham JC, van den Berg AV, Menon RS, Vilis T. 2001.. Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. . J. Neurophysiol. 86:(4):19912000
    [Crossref] [Google Scholar]
  37. Dyde RT, Harris LR. 2008.. The influence of retinal and extra-retinal motion cues on perceived object motion during self-motion. . J. Vis. 8:(14):5
    [Crossref] [Google Scholar]
  38. Ehrlich SM, Beck DM, Crowell JA, Freeman TCA, Banks MS. 1998.. Depth information and perceived self-motion during simulated gaze rotations. . Vis. Res. 38:(20):312945
    [Crossref] [Google Scholar]
  39. Fajen BR, Matthis JS. 2013.. Visual and non-visual contributions to the perception of object motion during self-motion. . PLOS ONE 8:(2):e55446
    [Crossref] [Google Scholar]
  40. Felleman DJ, Kaas JH. 1984.. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys. . J. Neurophysiol. 52:(3):488513
    [Crossref] [Google Scholar]
  41. ffytche DH, Guy CN, Zeki S. 1995.. The parallel visual motion inputs into areas V1 and V5 of human cerebral cortex. . Brain 118:(6):137594
    [Crossref] [Google Scholar]
  42. Field DT, Wilkie RM, Wann JP. 2007.. Neural systems in the visual control of steering. . J. Neurosci. 27:(30):800210
    [Crossref] [Google Scholar]
  43. Foulkes AJ, Rushton SK, Warren PA. 2013.. Flow parsing and heading perception show similar dependence on quality and quantity of optic flow. . Front. Behav. Neurosci. 7::49
    [Google Scholar]
  44. Furlan M, Wann JP, Smith AT. 2014.. A representation of changing heading direction in human cortical areas pVIP and CSv. . Cereb. Cortex 24:(11):284858
    [Crossref] [Google Scholar]
  45. Gaglianese A, Costagli M, Bernardi G, Ricciardi E, Pietrini P. 2012.. Evidence of a direct influence between the thalamus and hMT+ independent of V1 in the human brain as measured by fMRI. . NeuroImage 60:(2):144047
    [Crossref] [Google Scholar]
  46. Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M. 2001.. The cortical connections of area V6: an occipito-parietal network processing visual information. . Eur. J. Neurosci. 13:(8):157288
    [Crossref] [Google Scholar]
  47. Geisler WS. 1999.. Motion streaks provide a spatial code for motion direction. . Nature 400:(6739):6569
    [Crossref] [Google Scholar]
  48. Gibson JJ. 1950.. The Perception of the Visual World. Houghton Mifflin:
    [Google Scholar]
  49. Gibson JJ. 1954.. The visual perception of objective motion and subjective movement. . Psychol. Rev. 61::30414
    [Crossref] [Google Scholar]
  50. Gogel WC, Tietz J. 1974.. The effect of perceived distance on perceived movement. . Percept. Psychophys. 16:(1):7078
    [Crossref] [Google Scholar]
  51. Goodale MA, Milner AD. 1992.. Separate visual pathways for perception and action. . Trends Neurosci. 15:(1):2025
    [Crossref] [Google Scholar]
  52. Gottsdanker RM. 1956.. The ability of human operators to detect acceleration of target motion. . Psychol. Bull. 53::47787
    [Crossref] [Google Scholar]
  53. Graziano MS, Andersen RA, Snowden RJ. 1994.. Tuning of MST neurons to spiral motions. . J. Neurosci. 14:(1):5467
    [Crossref] [Google Scholar]
  54. Greenlee MW. 2000.. Human cortical areas underlying the perception of optic flow: brain imaging studies. . Int. Rev. Neurobiol. 44::26992
    [Crossref] [Google Scholar]
  55. Grigo A, Lappe M. 1999.. Dynamical use of different sources of information in heading judgments from retinal flow. . J. Opt. Soc. Am. A 16:(9):207991
    [Crossref] [Google Scholar]
  56. Gu Y, DeAngelis GC, Angelaki DE. 2012.. Causal links between dorsal medial superior temporal area neurons and multisensory heading perception. . J. Neurosci. 32:(7):2299313
    [Crossref] [Google Scholar]
  57. Heeger DJ, Jepson A. 1990.. Visual perception of three-dimensional motion. . Neural Comput. 2:(2):12937
    [Crossref] [Google Scholar]
  58. Heuer HW, Britten KH. 2004.. Optic flow signals in extrastriate area MST: comparison of perceptual and neuronal sensitivity. . J. Neurophysiol. 91:(3):131426
    [Crossref] [Google Scholar]
  59. Howard IP, Howard A. 1994.. Vection: the contributions of absolute and relative visual motion. . Perception 23:(7):74551
    [Crossref] [Google Scholar]
  60. Huk AC, Dougherty RF, Heeger DJ. 2002.. Retinotopy and functional subdivision of human areas MT and MST. . J. Neurosci. 22:(16):7195205
    [Crossref] [Google Scholar]
  61. Kim N-G, Turvey MT. 1999.. Eye movements and a rule for perceiving direction of heading. . Ecol. Psychol. 11:(3):23348
    [Crossref] [Google Scholar]
  62. Koenderink JJ. 1986.. Optic flow. . Vis. Res. 26:(1):16179
    [Crossref] [Google Scholar]
  63. Koenderink JJ, van Doorn AJ. 1987.. Facts on optic flow. . Biol. Cybern. 56:(4):24754
    [Crossref] [Google Scholar]
  64. Koyama S, Sasaki Y, Andersen GJ, Tootell RBH, Matsuura M, Watanabe T. 2005.. Separate processing of different global-motion structures in visual cortex is revealed by fMRI. . Curr. Biol. 15:(22):202732
    [Crossref] [Google Scholar]
  65. Kuai S-G, Shan Z, Chen J, Xu Z-X, Li J-M, et al. 2020.. Integration of motion and form cues for the perception of self-motion in the human brain. . J. Neurosci. 40:(5):112032
    [Crossref] [Google Scholar]
  66. Lappe M, Rauschecker JP. 1992.. Computation of heading direction from optic flow in visual cortex. . In Advances in Neural Information Processing Systems 5, ed. S Hanson, J Cowan, C Giles . Morgan Kaufmann
    [Google Scholar]
  67. Lappe M, Rauschecker JP. 1995.. An illusory transformation in a model of optic flow processing. . Vis. Res. 35:(11):161931
    [Crossref] [Google Scholar]
  68. Layton OW, Browning NA. 2014.. A unified model of heading and path perception in primate MSTd. . PLOS Comput. Biol. 10:(2):e1003476
    [Crossref] [Google Scholar]
  69. Layton OW, Fajen BR. 2016.. Sources of bias in the perception of heading in the presence of moving objects: object-based and border-based discrepancies. . J. Vis. 16:(1):9
    [Crossref] [Google Scholar]
  70. Layton OW, Niehorster DC. 2019.. A model of how depth facilitates scene-relative object motion perception. . PLOS Comput. Biol. 15:(11):e1007397
    [Crossref] [Google Scholar]
  71. Lee DN, Lishman R. 1977.. Visual control of locomotion. . Scand. J. Psychol. 18:(1):22430
    [Crossref] [Google Scholar]
  72. Li L, Chen J. 2010.. Relative contributions of optic flow, bearing, and splay angle information to lane keeping. . J. Vis. 10:(11):16
    [Crossref] [Google Scholar]
  73. Li L, Cheng JCK. 2011.. Perceiving path from optic flow. . J. Vis. 11:(1):22
    [Crossref] [Google Scholar]
  74. Li L, Ni L, Lappe M, Niehorster DC, Sun Q. 2018.. No special treatment of independent object motion for heading perception. . J. Vis. 18:(4):19
    [Crossref] [Google Scholar]
  75. Li L, Peli E, Warren WH. 2002.. Heading perception in patients with advanced retinitis pigmentosa. . Optom. Vis. Sci. 79:(9):58189
    [Crossref] [Google Scholar]
  76. Li L, Rushton SK, Chen R, Chen J. 2025a.. Use of target drift in heading judgments. . J. Vis. 25:(7):9
    [Crossref] [Google Scholar]
  77. Li L, Shen X, Kuai S. 2025b.. Distinct detection and discrimination sensitivities in visual processing of real versus unreal optic flow. . Psychon. Bull. Rev. 32::154050
    [Crossref] [Google Scholar]
  78. Li L, Sweet BT, Stone LS. 2006.. Humans can perceive heading without visual path information. . J. Vis. 6:(9):2
    [Crossref] [Google Scholar]
  79. Li L, Warren WH Jr. 2000.. Perception of heading during rotation: sufficiency of dense motion parallax and reference objects. . Vis. Res. 40:(28):387394
    [Crossref] [Google Scholar]
  80. Li L, Warren WH Jr. 2002.. Retinal flow is sufficient for steering during observer rotation. . Psychol. Sci. 13:(5):48590
    [Crossref] [Google Scholar]
  81. Li L, Warren WH Jr. 2004.. Path perception during rotation: Influence of instructions, depth range, and dot density. . Vis. Res. 44:(16):187989
    [Crossref] [Google Scholar]
  82. Li L, Xie M. 2019.. Temporal dynamics of heading perception and identification of scene-relative object motion from optic flow. . J. Vis. 19:(10):236c
    [Crossref] [Google Scholar]
  83. Llewellyn KR. 1971.. Visual guidance of locomotion. . J. Exp. Psychol. 91:(2):24561
    [Crossref] [Google Scholar]
  84. Longuet-Higgins HC, Prazdny K. 1980.. The interpretation of a moving retinal image. . Proc. R. Soc. Lond. B Biol. Sci. 208:(1173):38597
    [Crossref] [Google Scholar]
  85. MacNeilage PR, Zhang Z, DeAngelis GC, Angelaki DE. 2012.. Vestibular facilitation of optic flow parsing. . PLOS ONE 7:(7):e40264
    [Crossref] [Google Scholar]
  86. Manassi M, Murai Y, Whitney D. 2023.. Serial dependence in visual perception: a meta-analysis and review. . J. Vis. 23:(8):18
    [Crossref] [Google Scholar]
  87. Matsumiya K, Ando H. 2009.. World-centered perception of 3D object motion during visually guided self-motion. . J. Vis. 9:(1):15
    [Crossref] [Google Scholar]
  88. Matthis JS, Muller KS, Bonnen KL, Hayhoe MM. 2022.. Retinal optic flow during natural locomotion. . PLOS Comput. Biol. 18:(2):e1009575
    [Crossref] [Google Scholar]
  89. Mineault P, Bakhtiari S, Richards B, Pack C. 2021.. Your head is there to move you around: goal-driven models of the primate dorsal pathway. . In Advances in Neural Information Processing Systems 34, ed. M Ranzato, A Beygelzimer, Y Dauphin, PS Liang, J Wortman Vaughan . Curran Associates, Inc.
    [Google Scholar]
  90. Mishkin M, Ungerleider LG, Macko KA. 1983.. Object vision and spatial vision: two cortical pathways. . Trends Neurosci. 6::41417
    [Crossref] [Google Scholar]
  91. Morrone MC, Tosetti M, Montanaro D, Fiorentini A, Cioni G, Burr DC. 2000.. A cortical area that responds specifically to optic flow, revealed by fMRI. . Nat. Neurosci. 3:(12):132228
    [Crossref] [Google Scholar]
  92. Nakamura D, Gomi H. 2023.. Decoding self-motion from visual image sequence predicts distinctive features of reflexive motor responses to visual motion. . Neural Netw. 162::51630
    [Crossref] [Google Scholar]
  93. Niehorster DC, Cheng JCK, Li L. 2010.. Optimal combination of form and motion cues in human heading perception. . J. Vis. 10:(11):20
    [Crossref] [Google Scholar]
  94. Niehorster DC, Li L. 2017.. Accuracy and tuning of flow parsing for visual perception of object motion during self-motion. . I-Perception 8:(3). https://doi.org/10.1177/2041669517708206
    [Google Scholar]
  95. Orban GA, Lagae L, Raiguel S, Xiao D, Maes H. 1995.. The speed tuning of medial superior temporal (MST) cell responses to optic-flow components. . Perception 24:(3):26985
    [Crossref] [Google Scholar]
  96. Perrone JA, Stone LS. 1994.. A model of self-motion estimation within primate extrastriate visual cortex. . Vis. Res. 34:(21):291738
    [Crossref] [Google Scholar]
  97. Peuskens H, Sunaert S, Dupont P, Van Hecke P, Orban GA. 2001.. Human brain regions involved in heading estimation. . J. Neurosci. 21:(7):245161
    [Crossref] [Google Scholar]
  98. Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, et al. 2010.. Human V6: the medial motion area. . Cereb. Cortex 20:(2):41124
    [Crossref] [Google Scholar]
  99. Pitzalis S, Serra C, Sulpizio V, Committeri G, de Pasquale F, et al. 2020.. Neural bases of self- and object-motion in a naturalistic vision. . Hum. Brain Mapp. 41:(4):1084111
    [Crossref] [Google Scholar]
  100. Read HL, Siegel RM. 1997.. Modulation of responses to optic flow in area 7a by retinotopic and oculomotor cues in monkey. . Cereb. Cortex 7:(7):64761
    [Crossref] [Google Scholar]
  101. Regan D, Beverley KI. 1982.. How do we avoid confounding the direction we are looking and the direction we are moving?. Science 215:(4529):19496. Erratum . 1982.. Science 215:(4535):916
    [Google Scholar]
  102. Regan D, Gray R. 2000.. Visually guided collision avoidance and collision achievement. . Trends Cogn. Sci. 4:(3):99107
    [Crossref] [Google Scholar]
  103. Riddell H, Li L, Lappe M. 2019.. Heading perception from optic flow in the presence of biological motion. . J. Vis. 19:(14):25
    [Crossref] [Google Scholar]
  104. Rieger JH. 1983.. Information in optical flows induced by curved paths of observation. . J. Opt. Soc. Am. 73:(3):33944
    [Crossref] [Google Scholar]
  105. Rieger JH, Lawton DT. 1985.. Processing differential image motion. . J. Opt. Soc. Am. A 2:(2):35459
    [Crossref] [Google Scholar]
  106. Rock I. 1966.. The Nature of Perceptual Adaptation. Basic Books
    [Google Scholar]
  107. Royden CS. 1994.. Analysis of misperceived observer motion during simulated eye rotations. . Vis. Res. 34:(23):321522
    [Crossref] [Google Scholar]
  108. Royden CS. 1997.. Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. . J. Opt. Soc. Am. A 14:(9):212843
    [Crossref] [Google Scholar]
  109. Royden CS, Connors EM. 2010.. The detection of moving objects by moving observers. . Vis. Res. 50:(11):101424
    [Crossref] [Google Scholar]
  110. Royden CS, Hildreth EC. 1996.. Human heading judgments in the presence of moving objects. . Percept. Psychophys. 58:(6):83656
    [Crossref] [Google Scholar]
  111. Royden CS, Moore KD. 2012.. Use of speed cues in the detection of moving objects by moving observers. . Vis. Res. 59::1724
    [Crossref] [Google Scholar]
  112. Rushton SK, Bradshaw MF, Warren PA. 2007.. The pop out of scene-relative object movement against retinal motion due to self-movement. . Cognition 105:(1):23745
    [Crossref] [Google Scholar]
  113. Rushton SK, Chen R, Li L. 2018a.. Ability to identify scene-relative object movement is not limited by, or yoked to, ability to perceive heading. . J. Vis. 18:(6):11
    [Crossref] [Google Scholar]
  114. Rushton SK, Harris JM, Lloyd MR, Wann JP. 1998.. Guidance of locomotion on foot uses perceived target location rather than optic flow. . Curr. Biol. 8:(21):119194
    [Crossref] [Google Scholar]
  115. Rushton SK, Niehorster DC, Warren PA, Li L. 2018b.. The primary role of flow processing in the identification of scene-relative object movement. . J. Neurosci. 38:(7):173743
    [Crossref] [Google Scholar]
  116. Rushton SK, Warren PA. 2005.. Moving observers, relative retinal motion and the detection of object movement. . Curr. Biol. 15:(14):R54243
    [Crossref] [Google Scholar]
  117. Rutschmann RM, Schrauf M, Greenlee MW. 2000.. Brain activation during dichoptic presentation of optic flow stimuli. . Exp. Brain Res. 134:(4):53337
    [Crossref] [Google Scholar]
  118. Saunders JA. 2010.. View rotation is used to perceive path curvature from optic flow. . J. Vis. 10:(13):25
    [Crossref] [Google Scholar]
  119. Schmitt C, Baltaretu BR, Crawford JD, Bremmer F. 2020.. A causal role of area hMST for self-motion perception in humans. . Cereb. Cortex Commun. 1:(1):tgaa042
    [Crossref] [Google Scholar]
  120. Shan Z, Yang Y, Li L. 2024.. Effects of visual cues on flow parsing and simultaneous heading perception. . J. Vis. 24:(10):371
    [Crossref] [Google Scholar]
  121. Shen X, Shan Z, Rushton S, Kuai S, Li L. 2024.. Neural processing of scene-relative object movement during self-movement. . J. Vis. 24:(10):969
    [Crossref] [Google Scholar]
  122. Sincich LC, Park KF, Wohlgemuth MJ, Horton JC. 2004.. Bypassing V1: a direct geniculate input to area MT. . Nat. Neurosci. 7:(10):112328
    [Crossref] [Google Scholar]
  123. Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J. 1998.. The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). . J. Neurosci. 18:(10):381630
    [Crossref] [Google Scholar]
  124. Smith AT, Wall MB, Williams AL, Singh KD. 2006.. Sensitivity to optic flow in human cortical areas MT and MST. . Eur. J. Neurosci. 23:(2):56169
    [Crossref] [Google Scholar]
  125. Snowden RJ, Braddick OJ. 1991.. The temporal integration and resolution of velocity signals. . Vis. Res. 31:(5):90714
    [Crossref] [Google Scholar]
  126. Stone LS, Perrone JA. 1997.. Human heading estimation during visually simulated curvilinear motion. . Vis. Res. 37:(5):57390
    [Crossref] [Google Scholar]
  127. Strong SL, Silson EH, Gouws AD, Morland AB, McKeefry DJ. 2017.. A direct demonstration of functional differences between subdivisions of human V5/MT+. . Cereb. Cortex 27:(1):110
    [Crossref] [Google Scholar]
  128. Sulpizio V, von Gal A, Galati G, Fattori P, Galletti C, Pitzalis S. 2024.. Neural sensitivity to translational self- and object-motion velocities. . Hum. Brain Mapp. 45:(1):e26571
    [Crossref] [Google Scholar]
  129. Sun Q, Zhang H, Alais D, Li L. 2020.. Serial dependence and center bias in heading perception from optic flow. . J. Vis. 20:(10):1
    [Crossref] [Google Scholar]
  130. Swanston MT, Wade NJ. 1988.. The perception of visual motion during movements of the eyes and of the head. . Percept. Psychophys. 43:(6):55966
    [Crossref] [Google Scholar]
  131. Tanaka K, Hikosaka K, Saito H, Yukie M, Fukada Y, Iwai E. 1986.. Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. . J. Neurosci. 6:(1):13444
    [Crossref] [Google Scholar]
  132. Tanaka K, Saito H. 1989.. Analysis of motion of the visual-field by direction, expansion contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. . J. Neurophysiol. 62:(3):62641
    [Crossref] [Google Scholar]
  133. Tcheang L, Gilson SJ, Glennerster A. 2005.. Systematic distortions of perceptual stability investigated using immersive virtual reality. . Vis. Res. 45:(16):217789
    [Crossref] [Google Scholar]
  134. Todd JT. 1995.. The visual perception of three-dimensional structure from motion. . In Perception of Space and Motion: Handbook of Perception and Cognition, ed. W Epstein, S Rogers . Academic Press
    [Google Scholar]
  135. Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G. 2015.. Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. . Brain Struct. Funct. 220:(6):330721
    [Crossref] [Google Scholar]
  136. Uesaki M, Ashida H. 2015.. Optic-flow selective cortical sensory regions associated with self-reported states of vection. . Front. Psychol. 6::775
    [Crossref] [Google Scholar]
  137. van den Berg AV. 1992.. Robustness of perception of heading from optic flow. . Vis. Res. 32:(7):128596
    [Crossref] [Google Scholar]
  138. van den Berg AV, Beintema JA, Frens MA. 2001.. Heading and path percepts from visual flow and eye pursuit signals. . Vis. Res. 41:(25):346786
    [Crossref] [Google Scholar]
  139. von Pföstl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P. 2009.. Motion sensitivity of human V6: a magnetoencephalography study. . NeuroImage 45:(4):125363
    [Crossref] [Google Scholar]
  140. Wada A, Sakano Y, Ando H. 2016.. Differential responses to a visual self-motion signal in human medial cortical regions revealed by wide-view stimulation. . Front. Psychol. 7::309
    [Crossref] [Google Scholar]
  141. Wall MB, Smith AT. 2008.. The representation of egomotion in the human brain. . Curr. Biol. 18:(3):19194
    [Crossref] [Google Scholar]
  142. Wang RF, Cutting JE. 1999.. Where we go with a little good information. . Psychol. Sci. 10:(1):7175
    [Crossref] [Google Scholar]
  143. Wann JP, Land M. 2000.. Steering with or without the flow: Is the retrieval of heading necessary?. Trends Cogn. Sci. 4:(8):31924
    [Crossref] [Google Scholar]
  144. Warren PA, Rushton SK. 2009.. Optic flow processing for the assessment of object movement during ego movement. . Curr. Biol. 19:(18):155560
    [Crossref] [Google Scholar]
  145. Warren PA, Rushton SK, Foulkes AJ. 2012.. Does optic flow parsing depend on prior estimation of heading?. J. Vis. 12:(11):8
    [Crossref] [Google Scholar]
  146. Warren R. 1976.. The perception of egomotion. . J. Exp. Psychol. Hum. Percept. Perform. 2:(3):44856
    [Crossref] [Google Scholar]
  147. Warren WH. 2006.. The dynamics of perception and action. . Psychol. Rev. 113:(2):35889
    [Crossref] [Google Scholar]
  148. Warren WH Jr., Blackwell AW, Kurtz KJ, Hatsopoulos NG, Kalish ML. 1991.. On the sufficiency of the velocity field for perception of heading. . Biol. Cybern. 65::31120
    [Crossref] [Google Scholar]
  149. Warren WH Jr., Hannon DJ. 1988.. Direction of self-motion is perceived from optical flow. . Nature 336:(6195):16263
    [Crossref] [Google Scholar]
  150. Warren WH, Hannon DJ. 1990.. Eye movements and optical flow. . J. Opt. Soc. Am. A 7::16069
    [Crossref] [Google Scholar]
  151. Warren WH, Kurtz KJ. 1992.. The role of central and peripheral vision in perceiving the direction of self-motion. . Percept. Psychophys. 51:(5):44354
    [Crossref] [Google Scholar]
  152. Warren WH, Morris MW, Kalish M. 1988.. Perception of translational heading from optical flow. . J. Exp. Psychol. Hum. Percept. Perform. 14:(4):64660
    [Crossref] [Google Scholar]
  153. Warren WH, Saunders JA. 1995.. Perceiving heading in the presence of moving objects. . Perception 24:(3):31531
    [Crossref] [Google Scholar]
  154. Watamaniuk SNJ, Heinen SJ. 2003.. Perceptual and oculomotor evidence of limitations on processing accelerating motion. . J. Vis. 3:(11):5
    [Crossref] [Google Scholar]
  155. Werkhoven P, Snippe HP, Toet A. 1992.. Visual processing of optic acceleration. . Vis. Res. 32:(12):231329
    [Crossref] [Google Scholar]
  156. Wexler M. 2003.. Voluntary head movement and allocentric perception of space. . Psychol. Sci. 14:(4):34046
    [Crossref] [Google Scholar]
  157. Wilkie RM, Wann JP. 2003.. Eye-movements aid the control of locomotion. . J. Vis. 3:(11):3
    [Crossref] [Google Scholar]
  158. Wilkie RM, Wann JP. 2006.. Judgments of path, not heading, guide locomotion. . J. Exp. Psychol. Hum. Percept. Perform. 32:(1):8896
    [Crossref] [Google Scholar]
  159. Xie M, Niehorster DC, Lappe M, Li L. 2020.. Roles of visual and non-visual information in the perception of scene-relative object motion during walking. . J. Vis. 20:(10):15
    [Crossref] [Google Scholar]
  160. Xing X, Saunders J. 2016.. Center bias in perceived heading from optic flow. . J. Vis. 16:(12):884
    [Crossref] [Google Scholar]
  161. Xing X, Saunders JA. 2022.. Perception of object motion during self-motion: correlated biases in judgments of heading direction and object motion. . J. Vis. 22:(11):8
    [Crossref] [Google Scholar]
  162. Yu X, Gu Y. 2018.. Probing sensory readout via combined choice-correlation measures and microstimulation perturbation. . Neuron 100:(3):71527.e5
    [Crossref] [Google Scholar]
  163. Zemel RS, Sejnowski TJ. 1998.. A model for encoding multiple object motions and self-motion in area MST of primate visual cortex. . J. Neurosci. 18:(1):53147
    [Crossref] [Google Scholar]
  164. Zhang T, Britten KH. 2004.. Clustering of selectivity for optic flow in the ventral intraparietal area. . NeuroReport 15:(12):194145
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-vision-121423-013200
Loading
/content/journals/10.1146/annurev-vision-121423-013200
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error