1932

Abstract

This autobiographical article describes my experiences in developing chemically based, biological technologies for deciphering biological information: DNA, RNA, proteins, interactions, and networks. The instruments developed include protein and DNA sequencers and synthesizers, as well as ink-jet technology for synthesizing DNA chips. Diverse new strategies for doing biology also arose from novel applications of these instruments. The functioning of these instruments can be integrated to generate powerful new approaches to cloning and characterizing genes from a small amount of protein sequence or to using gene sequences to synthesize peptide fragments so as to characterize various properties of the proteins. I also discuss the five paradigm changes in which I have participated: the development and integration of biological instrumentation; the human genome project; cross-disciplinary biology; systems biology; and predictive, personalized, preventive, and participatory (P4) medicine. Finally, I discuss the origins, the philosophy, some accomplishments, and the future trajectories of the Institute for Systems Biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.anchem.1.031207.113113
2008-07-19
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ac/1/1/annurev.anchem.1.031207.113113.html?itemId=/content/journals/10.1146/annurev.anchem.1.031207.113113&mimeType=html&fmt=ahah

Literature Cited

  1. Dyson FJ. 1.  1998. Imagined Worlds Cambridge, MA: Harvard Univ. Press [Google Scholar]
  2. Hood LE, Gray WR, Dreyer WJ. 2.  1966. On the mechanism of antibody synthesis: a species comparison of l-chains. Proc. Natl. Acad. Sci. USA 55:826–32 [Google Scholar]
  3. Hood L, Gray WR, Dreyer WJ. 3.  1966. On the evolution of antibody light chains. J. Mol. Biol. 22:179–82 [Google Scholar]
  4. Gray WR, Dreyer WJ, Hood L. 4.  1967. Mechanism of antibody synthesis: size differences between mouse kappa chains. Science 155:465–67 [Google Scholar]
  5. Hood L, Gray WR, Sanders BG, Dreyer WJ. 5.  1967. Light chain evolution. Cold Spring Harbor Symp. Quant. Biol. 32:133–46 [Google Scholar]
  6. Silver J, Hood L. 6.  1975. Automated microsequence analysis by use of radioactive phenylisothiocyanate. Anal. Biochem. 67:392–96 [Google Scholar]
  7. Hunkapiller MW, Hood L. 7.  1980. New protein sequenator with increased sensitivity. Science 207:523–25 [Google Scholar]
  8. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ. 8.  1981. A gas-liquid-solid-phase peptide and protein sequenator. J. Biol. Chem. 256:7990–97 [Google Scholar]
  9. Doolittle RF, Hunkapiller MW, Hood LE, Devare SG, Robbins KC et al.9.  1983. Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–77 [Google Scholar]
  10. Prusiner SB, Groth DF, Bolton DC, Kent S, Hood LE. 10.  1984. Purification and structural studies of a major scrapie prion protein. Cell 38:127–34 [Google Scholar]
  11. Desch B, Westaway D, Walchli M, McKinley MP, Kent SBH et al.11.  1985. A cellular gene encodes scrapie PrP 27–30 protein. Cell 40:735–46 [Google Scholar]
  12. Raftery MA, Hunkapiller MW, Strader CD, Hood L. 12.  1980. Acetylcholine receptor: complex of homologous subunits. Science 208:1454–57 [Google Scholar]
  13. Hunkapiller MW, Hood LE. 13.  1980. Human fibroblast interferon: amino acid analysis and amino terminal amino acid sequence. Science 207:525–26 [Google Scholar]
  14. Zoon KC, Smith ME, Bridgen PJ, Anfinsen CB, Hunkapiller MW, Hood LE. 14.  1980. Amino terminal sequence of the major component of human lymphoblastoid interferon. Science 207:527–28 [Google Scholar]
  15. Goldstein AS, Tachibana L, Lowney I, Hunkapiller MW, Hood LE. 15.  1979. Dynorphin (1–13), an extraordinarily potent opioid peptide. Proc. Natl. Acad. Sci. USA 76:6666–70 [Google Scholar]
  16. Schally AV, Huang WY, Chang RCC, Arimura A, Redding TW et al.16.  1980. Isolation and structure of pro-somatostatin: a putative somatostatin precursor from pig hypothalamus. Proc. Natl. Acad. Sci. USA 77:4489–93 [Google Scholar]
  17. Heller EL, Kaczmarek K, Hunkapiller MW, Hood LE, Strumwasser F. 17.  1980. Purification and primary structure of two neuroactive peptides that cause bag cell after discharge and egg-laying in Aplysia. Proc. Natl. Acad. Sci. USA 77:2328–32 [Google Scholar]
  18. Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L. 18.  1981. Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc. Natl. Acad. Sci. USA 78:7219–23 [Google Scholar]
  19. Horvath SJ, Firca JR, Hunkapiller T, Hunkapiller MW, Hood L. 19.  1987. An automated DNA synthesizer employing deoxynucleoside 3′ phosphoramidites. Methods Enzymol. 154:314–26 [Google Scholar]
  20. Strauss EC, Kobori JA, Siu G, Hood LE. 20.  1986. Specific primer-directed DNA sequencing. Anal. Biochem. 154:353–60 [Google Scholar]
  21. Kent SB, Hood LE, Beilan H, Marriot M, Meister S, Geiser T. 21.  1984. A novel approach to automated peptide synthesis based on new insights into solid phase chemistry. In Proceedings of the Japanese Peptide Symposium N. Isymiya pp. 217–22 Osaka: Protein Res. Found. [Google Scholar]
  22. Miller M, Schneider J, Sathyanarayana BK, Toth MV, Marshall GR et al.22.  1989. Structure of a complex of synthetic HIV-1 protease with a substrate-based inhibitor at 2.3 A resolution. Science 246:1149–52 [Google Scholar]
  23. Clark-Lewis I, Hood LE, Kent SB. 23.  1988. Role of disulfide bridges in determining the biological activity of interleukin 3. Proc. Natl. Acad. Sci. USA 85:7897–901 [Google Scholar]
  24. Clark-Lewis I, Lopez A, Luen B, Vadas M, Schrader JW et al.24.  1989. Structure-function studies of human granulocyte-macrophage colony-stimulating factor: identification of amino acids required for activity, and an 84-residue active fragment. J. Immunol. 141:881–89 [Google Scholar]
  25. Pärraga G, Horvath SJ, Eisen A, Taylor WE, Hood L et al.25.  1988. Zinc-dependent structure of a single-finger domain of yeast ADM. Science 241:1489–92 [Google Scholar]
  26. Maxam AM, Gilbert W. 26.  1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74:560–64 [Google Scholar]
  27. Sanger F, Coulson AR. 27.  1975. A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. J. Mol. Biol. 94:441–48 [Google Scholar]
  28. Smith LM, Sanders JZ, Kaiser RJ, Hughes P, Dodd C et al.28.  1986. Fluorescence detection in automated DNA sequence analysis. Nature 321:674–79 [Google Scholar]
  29. Kaiser RJ, MacKellar SL, Vinayak RS, Sanders JZ, Saavedra RA, Hood LE. 29.  1989. Specific-primer-directed DNA sequencing using automated fluorescence detection. Nucleic Acids Res. 17:6087–102 [Google Scholar]
  30. 30. Int. Hum. Genome Seq. Consort. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  31. Hood L, Rowen L. 31.  1997. The impact of genomics on 21st century medicine. Contemp. Urol. 9:86–98 [Google Scholar]
  32. Hood L. 32.  2002. A personal view of molecular technology and how it has changed biology. J. Proteome Res. 1:399–409 [Google Scholar]
  33. Hunkapiller M, Kent S, Caruthers M, Dreyer W, Firca J et al.33.  1984. A microchemical facility for the analysis and synthesis of genes and proteins. Nature 310:105–11 [Google Scholar]
  34. Olson M, Hood L, Cantor C, Botstein D. 34.  1989. A common language for physical mapping of the human genome. Science 245:1434–35 [Google Scholar]
  35. Wang K, Koop BF, Hood L. 35.  1994. A simple method using T4 DNA polymerase to clone polymerase chain reaction products. Benchmarks 17:2236–38 [Google Scholar]
  36. Wilson R, Chen C, Hood L. 36.  1990. Optimization of asymmetric polymerase chain reaction for rapid fluorescent DNA sequencing. BioTechniques 8:184–89 [Google Scholar]
  37. Lai E, Wang K, Avdalovic N, Hood L. 37.  1991. Rapid restriction map constructions using a modified pWE15 cosmid vector and a robotic workstation. BioTechniques 11:212–17 [Google Scholar]
  38. Huang GM, Wang K, Kuo C, Paeper B, Hood L. 38.  1994. A high-throughput plasmid DNA preparation method. Anal. Biochem. 223:35–38 [Google Scholar]
  39. Wang K, Gan L, Boysen C, Hood L. 39.  1995. A microtiter plate–based high-throughput DNA purification method. Anal. Biochem. 226:85–90 [Google Scholar]
  40. Suzuki M, Baskin D, Hood L, Loeb LA. 40.  1996. Random mutagenesis of Thermus aquaticus DNA polymerase I: concordance of immutable sites in vivo with the crystal structure. Proc. Natl. Acad. Sci. USA 93:9670–75 [Google Scholar]
  41. Wang K, Boysen C, Shizuya H, Simon MI, Hood L. 41.  1997. Complete nucleotide sequence of two generations of a bacterial artificial chromosome cloning vector. Benchmarks 23:992–93 [Google Scholar]
  42. Guo Z, Gatterman MS, Hood L, Hansen JA, Petersdorf EW. 42.  2002. Oligonucleotide arrays for high-throughput SNPs detection in the MHC class I genes: HLA-B as a model system. Genome Res. 12:447–57 [Google Scholar]
  43. Hunkapiller MW, Hood LE. 43.  1978. Direct microsequence analysis of polypeptides using an improved sequenator, a nonprotein carrier (polybrene), and high-pressure liquid chromatography. Biochemistry 17:2124–33 [Google Scholar]
  44. Hunkapiller MW, Lujan F, Ostrander F, Hood L. 44.  1983. Isolation of microgram quantities of proteins from polyacrylamide gels for amino acid sequence analysis. Methods Enzymol. 91:227–36 [Google Scholar]
  45. Aebersold RH, Teplow DB, Hood LE, Kent SBH. 45.  1986. Electroblotting onto activated glass: high efficiency preparation of proteins from analytical sodium dodecyl sulfate–polyacrylamide gels for direct sequence analysis. J. Biol. Chem. 261:4229–38 [Google Scholar]
  46. Aebersold R, Teplow DB, Hood LE, Kent SBH. 46.  1986. Electroblotting from immobiline isoelectric focusing gels for direct protein sequence determination. Peptides Biol. Fluids 34:715–18 [Google Scholar]
  47. Kent S, Hood L, Aebersold R, Teplow D, Smith L et al.47.  1987. Approaches to sub-picomole protein sequencing. BioTechniques 5:314–21 [Google Scholar]
  48. Aebersold R, Pipes GD, Wettenhall REH, Mika H, Hood LE. 48.  1990. Covalent attachment of peptides for high-sensitivity solid-phase sequence analysis. Anal. Biochem. 187:56–65 [Google Scholar]
  49. Wettenhall REH, Aebersold RH, Hood LE. 49.  1991. Solid-phase sequencing of 32P-labeled phosphopeptides at picomole and subpicomole levels. Methods Enzymol. 201:186–99 [Google Scholar]
  50. Tempst P, Woo DL, Teplow DB, Aebersold R, Hood L, Kent SBH. 50.  1986. Microscale structure analysis of a high-molecular-weight, hydrophobic membrane glycoprotein fraction with platelet-derived growth factor–dependent kinase activity. J. Chromatogr. 359:403–12 [Google Scholar]
  51. Aebersold RH, Pipes G, Hood LE, Kent SBH. 51.  1988. N-terminal and internal sequence determination of microgram amounts of proteins separated by isoelectric focusing in immobilized pH gradients. Electrophoresis 9:520–30 [Google Scholar]
  52. Harrington MG, Gudeman D, Zewert T, Hood L. 52.  1991. Analytical and micropreparative two-dimensional electrophoresis of proteins. METHODS: Companion Methods Enzymol. 3:98–108 [Google Scholar]
  53. Harrington MG, Hood L, Puckett C. 53.  1991. Simultaneous analysis of phosphoproteins and total cellular proteins from PC12 cells. METHODS: Companion Methods Enzymol. 3:135–41 [Google Scholar]
  54. Mononen I, Heisterkamp N, Kaartinen V, Williams JC, Yates JR III et al.54.  1991. Aspartylglycosaminuria in the Finnish population: identification of two point mutations in the heavy chain of glycoasparaginase. Proc. Natl. Acad. Sci. USA 88:2941–45 [Google Scholar]
  55. Kaartinen V, Williams J, Tomich J, Yates JR III, Hood L, Mononen I. 55.  1991. Glycosaparaginase from human leukocytes. Inactivation and covalent modification with diazo-oxoriorvaline. J. Biol. Chem. 266:5860–69 [Google Scholar]
  56. Griffin PR, Coffman JA, Hood LE, Yates JR III. 56.  1991. Structural analysis of proteins by capillary HPLC electrospray tandem mass spectrometry. Int. J. Mass Spectrom. Ion Process. 111:131–49 [Google Scholar]
  57. Yates JR III, Zhou J, Griffin PR, Hood LE. 57.  1991. Computer aided interpretation of low energy MS/MS mass spectra of peptides. Tech. Protein Chem. II 46:477–85 [Google Scholar]
  58. Lai E, Davi NA, Hood LE. 58.  1989. Effect of electric field switching on the electrophoretic mobility of single-stranded DNA molecules in polyacrylamide gels. Electrophoresis 10:65–67 [Google Scholar]
  59. Birren BW, Hood L, Lai E. 59.  1989. Pulsed field gel electrophoresis: studies of DNA migration made with the programmable, autonomously controlled electrode (PACE) apparatus. Electrophoresis 10:302–9 [Google Scholar]
  60. Landegren U, Kaiser R, Sanders J, Hood L. 60.  1988. A ligase-mediated gene detection technique. Science 241:1077–80 [Google Scholar]
  61. Nickerson DA, Kaiser R, Lappin S, Stewart J, Hood L, Landegren U. 61.  1990. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87:8923–27 [Google Scholar]
  62. Roach JC, Boysen C, Wang K, Hood L. 62.  1995. Pairwise end sequencing: a unified approach to genomic mapping and sequencing. Genomics 26:345–53 [Google Scholar]
  63. Rowen L, Koop BF, Hood L. 63.  1996. The complete 685-kb DNA sequence of the human β T cell receptor locus. Science 272:1755–62 [Google Scholar]
  64. Boysen C, Simon MI, Hood L. 64.  1997. Analysis of the 1.1-Mb human α/δ T-cell receptor locus with bacterial artificial chromosome clones. Genome Res. 7:330–38 [Google Scholar]
  65. 65. MHC Consortium 1999. Complete sequence and gene map of a human major histocompatibility complex: the MHC sequencing consortium. Nature 401:921–23 [Google Scholar]
  66. Glusman G, Rowen L, Lee I, Boysen C, Roach JC et al.66.  2001. Review: comparative genomics of the human and mouse T-cell receptor loci. Immunity 15:337–49 [Google Scholar]
  67. Shizuya H, Birren B, Kim UJ, Mancino V, Slepak T et al.67.  1992. Cloning and stable maintenance of 300-kb-pair fragments of human DNA in Escherichia coli using an F-factor-based vector. Proc. Natl. Acad. Sci. USA 89:8794–97 [Google Scholar]
  68. Boysen C, Simon MI, Hood L. 68.  1997. Fluorescence-based sequencing directly from bacterial and P1-derived artificial chromosomes. Benchmarks 23:978–82 [Google Scholar]
  69. Venter JC, Smith HO, Hood L. 69.  1996. A new strategy for genome sequencing. Nature 381:364–66 [Google Scholar]
  70. Mahairas GG, Wallace JC, Smith K, Swartzell S, Holzman T et al.70.  1999. Sequence-tagged connectors: a sequence approach to mapping and scanning the human genome. Proc. Natl. Acad. Sci. USA 96:9739–44 [Google Scholar]
  71. Hood L. 71.  1992. Biology and medicine in the twenty-first century. In The Code of Codes: Scientific and Social Issues in the Human Genome Project DJ Kevles, L Hood pp. 136–63 Cambridge, MA: Harvard Univ. Press [Google Scholar]
  72. Koop BF, Hood L. 72.  1994. Striking sequence similarity over almost 100 kilobases of human and mouse T-cell receptor DNA. Nat. Genet. 7:48–53 [Google Scholar]
  73. Heilig R, Eckenberg R, Petit JL, Fonknechten N, Da Silva C et al.73.  2003. The DNA sequence and analysis of human chromosome 14. Nature 421:601–7 [Google Scholar]
  74. Zody MC, Garber M, Sharpe T, Young SK, Rowen L et al.74.  1006. Analysis of the DNA sequence and duplication history of human chromosome 15. Nature 440:671–75 [Google Scholar]
  75. 75. Int. Hum. Genome Seq. Consort. 2004. Finishing the euchromatic sequence of the human genome. Nature 431:931–45 [Google Scholar]
  76. Davidson EH, Rost JP, Oliveri P, Ransick A, Calestani C et al.76.  2002. A genomic regulatory network for development. Science 295:1669–78 [Google Scholar]
  77. Davidson EH, McClay DR, Hood L. 77.  2003. Regulatory gene networks and the properties of the developmental process. Proc. Natl. Acad. Sci. USA 100:1475–80 [Google Scholar]
  78. Blanchard AP, Kaiser RJ, Hood LE. 78.  1996. High-density oligonucleotide arrays. Biosens. Bioelectron. 11:687–90 [Google Scholar]
  79. Blanchard AP, Hood L. 79.  1996. Sequence to array: probing the genome's secrets. Nat. BioTechnol. 14:1649 [Google Scholar]
  80. Lausted C, Dahl T, Warren C, King K, Smith K et al.80.  2004. POSaM: a fast, flexible, open source, ink-jet oligonucleotide synthesizer and microarrayer. Genome Biol. 5:R58 [Google Scholar]
  81. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R. 81.  1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17:994–99 [Google Scholar]
  82. Eng JK, McCormack AL, Yates JR III. 82.  1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976–89 [Google Scholar]
  83. Ewing B, Hillier L, Wendl MC, Green P. 83.  1998. Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res. 8:175–85 [Google Scholar]
  84. Ideker T, Galitski T, Hood L. 84.  2001. A new approach to decoding life: systems biology. Annu. Rev. Genomics Hum. Genet. 2:343–72 [Google Scholar]
  85. Hood L, Galas DJ. 85.  2003. The digital code of DNA. Nature 421:444–48 [Google Scholar]
  86. Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J et al.86.  2001. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292:929–34 [Google Scholar]
  87. Weston AD, Baliga NS, Bonneau R, Hood L. 87.  2003. Systems approaches applied to the study of Saccharomyces cerevisiae and Halobacterium sp. Cold Spring Harbor Symp. Quant. Biol. 68:345–57 [Google Scholar]
  88. Hood L, Galas DJ, Dewey G, Wilson J, Veras R. 88.  2008. Biology as an Informational Science and the Emergence of Systems Biology Greenwood Village, CO: Roberts & Co. In preparation [Google Scholar]
  89. Ramsey SA, Smith JJ, Orrell D, Marelli M, Petersen TW et al.89.  2006. Dual feedback loops in the GAL regulon suppress cellular heterogeneity in yeast. Nat. Genet. 38:1082–87 [Google Scholar]
  90. Gilchrist M, Thorsson V, Li B, Rust AG, Korb M et al.90.  2006. Systems biology approaches identify ATF3 as a negative regulator of Toll-like receptor 4. Nature 441:173–78 [Google Scholar]
  91. Taylor RJ, Siegel AF, Galitski T. 91.  2007. Network motif analysis of a multi-mode genetic-interaction network. Genome Biol. 8:R160 [Google Scholar]
  92. Bonneau R, Facciotti MT, Reiss DJ, Schmid AK, Pan M et al.92.  2007. A predictive model for transcriptional control of physiology in a free living cell. Cell 131:1354–65 [Google Scholar]
  93. Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M et al.93.  2007. General transcription factor specified global gene regulation in archaea. Proc. Natl. Acad. Sci. USA 104:4630–35 [Google Scholar]
  94. Nesvizhskii AI, Vitek O, Aebersold R. 94.  2007. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4:787–97 [Google Scholar]
  95. Klimek J, Eddes JS, Hohmann L, Jackson J, Peterson A et al.95.  2008. The standard protein mix database: a diverse data set to assist in the production of improved peptide and protein identification software tools. J. Proteome Res. 7:196–103 [Google Scholar]
  96. Zhou Y, Aebersold R, Zhang H. 96.  2007. Isolation of N-linked glycopeptides from plasma. Anal. Chem. 79:5826–37 [Google Scholar]
  97. Mallick P, Schirle M, Chen SS, Flory MR, Lee H et al.97.  2007. Computational prediction of proteotypic peptides for quantitative proteomics. Nat. Biotechnol. 25:125–31 [Google Scholar]
  98. Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L et al.98.  2006. The inferelator: an algorithm for learning parsimonious regulatory networks from systems biology data sets de novo. Genome Biol. 7:R36 [Google Scholar]
  99. Shannon PT, Reiss DJ, Bonneau R, Baliga NS. 99.  2006. The Gaggle: an open-source software system for integrating bioinformatics software and data sources. BMC Bioinformatics 7:176 [Google Scholar]
  100. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT et al.100.  2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–504 [Google Scholar]
  101. Reiss DJ, Baliga NS, Bonneau R. 101.  2006. Integrated biclustering of heterogeneous genome-wide datasets for the inference of global regulatory networks. BMC Bioinformatics 7:280 [Google Scholar]
  102. Longabaugh WJ, Davidson EH, Bolouri H. 102.  2005. Computational representation of developmental genetic regulatory networks. Dev. Biol. 283:1–16 [Google Scholar]
  103. Ng WV, Ciufo SA, Smith TM, Bumgarner RE, Baskin D et al.103.  1998. Snapshot of a large dynamic replicon in a halophilic archaeon: megaplasmid or minichromosome?. Genome Res. 8:1131–41 [Google Scholar]
  104. Hood L, Heath JR, Phelps ME, Lin B. 104.  2004. Systems biology and new technologies enable predictive and preventative medicine. Science 306:640–43 [Google Scholar]
  105. Heath JR, Phelps ME, Hood L. 105.  2003. Nanosystems biology. Mol. Imaging Biol. Official Publ. Acad. Mol. Imaging 5:312–25 [Google Scholar]
  106. Weston AD, Hood L. 106.  2004. Systems biology, proteomics, and the future of health care: toward predictive, preventative, and personalized medicine. J. Proteome Res. 3:179–96 [Google Scholar]
  107. Lin B, White JT, Lu W, Xie T, Utleg AG et al.107.  2005. Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res. 65:3081–91 [Google Scholar]
  108. Price ND, Edelman LB, Lee I, Yoo H, Hwang D et al.108.  2007. Systems biology and the emergence of systems medicine. In Genomic and Personalized Medicine: From Principles to Practice G Ginsburg, H Willard San Diego: Academic In press [Google Scholar]
  109. Nelson PR, Goulter AB, Davis RJ. 109.  2005. Effective analysis of genomic data. Methods Mol. Med. 104:285–312 [Google Scholar]
  110. Sun B, Ranish JA, Utleg AG, White JT, Yan X et al.110.  2006. Shotgun glycopeptide capture approach coupled with mass spectrometry for comprehensive glycoproteomics. Mol. Cell. Proteomics 6:141–49 [Google Scholar]
  111. Griffin TJ, Gygi SP, Ideker T, Rist B, Eng J et al.111.  2002. Complementary profiling of gene expression at the transcriptome and proteome levels in Saccharomyces cerevisiae. Mol. Cell. Proteomics 4:323–33 [Google Scholar]
  112. Hwang D, Smith JJ, Leslie DM, Weston AD, Rust AG et al.112.  2005. A data integration methodology for systems biology: experimental verification. Proc. Natl. Acad. Sci. USA 102:17302–7 [Google Scholar]
  113. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM et al.113.  2005. A data integration methodology for systems biology. Proc. Natl. Acad. Sci. USA 102:17296–301 [Google Scholar]
  114. Glusman G, Qin S, Raafat El-Gewely M, Siegel AF, Roach JC et al.114.  2006. A third approach to gene prediction suggests thousands of additional human transcribed regions. PLoS Comput. Biol. 2:e18 [Google Scholar]
  115. Price ND, Trent J, El-Naggar AK, Cogdell D, Taylor E et al.115.  2007. Highly accurate two-gene classifier for differentiating gastrointestinal stromal tumors and leiomyosarcomas. Proc. Natl. Acad. Sci. USA 104:3414–19 [Google Scholar]
  116. Huang GM, Farkas J, Hood L. 116.  1996. High-throughput cDNA screening utilizing a low order neural network filter. BioTechniques 21:1110–14 [Google Scholar]
  117. Smith TM, Abajian C, Hood L. 117.  1997. Hopper: software for automating data tracking and flow in DNA sequencing. CABIOS 13:175–82 [Google Scholar]
  118. Smith TM, Hood L. 118.  1999. What are biologists going to do with all these data?. Math. Model. Sci. Comput. 9:155–62 [Google Scholar]
  119. Siegel AF, van den Engh G, Hood L, Trask B, Roach JC. 119.  2000. Modeling the feasibility of whole genome shotgun sequencing using a pairwise end strategy. Genomics 68:237–46 [Google Scholar]
  120. Bonneau R, Baliga NS, Deutsch EW, Shannon P, Hood L. 120.  2004. Comprehensive de novo structure prediction in a systems-biology context for the archaea Halobacterium sp. NRC-1. Genome Biol. 5:R52 [Google Scholar]
  121. Facciotti MT, Bonneau R, Hood L, Baliga NS. 121.  2004. Systems biology experimental design—considerations for building predictive gene regulatory network models for prokaryotic systems. Curr. Genomics 5:1389–2029 [Google Scholar]
  122. Ideker T, Thorsson V, Seigel AF, Hood L. 122.  2000. Testing for differentially expressed genes by maximum-likelihood analysis of microarray data. J. Comput. Biol. 7:805–17 [Google Scholar]
  123. Thorsson V, Hörnquist M, Siegel AF, Hood L. 123.  2005. Reverse engineering galactose regulation in yeast through model selection. Stat. Appl. Genet. Mol. Biol. 4:article 28 [Google Scholar]
  124. Davidson EH, McClay DR, Hood L. 124.  2003. Regulatory gene networks and the properties of the developmental process. Proc. Natl. Acad. Sci. USA 100:1475–80 [Google Scholar]
  125. McIndoe RA, Stanford JL, Gibbs M, Jarvik GP, Brandzel S et al.125.  1997. Linkage analysis of 49 high-risk families does not support a common familial prostate cancer–susceptibility gene at 1q24–25. Am. J. Hum. Genet. 61:347–353 [Google Scholar]
  126. Jarvik G, Stanford JL, Goode EL, Hood L, Ostrander EA. 126.  1999. Confirmation of prostate cancer susceptibility genes using high-risk families. J. Natl. Cancer Inst. 26:81–87 [Google Scholar]
  127. Gibbs M, Stanford JL, McIndoe RA, Jarvik GP, Kolb S et al.127.  1999. Evidence for a rare prostate cancer–susceptibility locus at chromosome 1p36. Am. J. Hum. Genet. 64:776–87 [Google Scholar]
  128. Goode E, Stanford JL, Chakrabarti L, Gibbs M, Kolb S et al.128.  2000. Linkage analysis of 150 high-risk prostate cancer families at 1q24–25. Genet. Epidemiol. 18:251–75 [Google Scholar]
  129. Gibbs M, Stanford JL, Jarvik GP, Janer M, Badzioch M et al.129.  2000. A genomic scan of families with prostate cancer identifies multiple regions of interest. Am. J. Hum. Genet. 67:100–9 [Google Scholar]
  130. Janer M, Friedrichsen DM, Stanford JL, Badzioch MD, Kolb S et al.130.  2003. Genomic scan of 254 hereditary prostate cancer families. Prostate 57:309–19 [Google Scholar]
  131. Friedrichsen DM, Stanford JL, Isaacs SD, Janer M, Chang BL et al.131.  2004. Identification of a prostate cancer susceptibility locus on chromosome 7q11–21 in Jewish families. Proc. Natl. Acad. Sci. USA 101:1939–44 [Google Scholar]
  132. Pierce BL, Friedrichsen-Karyadi DM, McIntosh L, Deutsch K, Hood L et al.132.  2007. Genomic scan of 12 hereditary prostate cancer families having an occurrence of pancreas cancer. Prostate 67:410–15 [Google Scholar]
  133. Johanneson B, Deutsch K, McIntosh L, Friedrichsen-Karyadi DM, Janer M et al.133.  2007. Suggestive genetic linkage to chromosome 11p11.2-q12.2 in hereditary prostate cancer families with primary kidney cancer. Prostate 67:732–42 [Google Scholar]
  134. Hood L, Lange PH. 134.  1997. The coming revolution in urology. Contemp. Urol. 9:33–50 [Google Scholar]
  135. Hood L, Lange PH. 135.  1997. Preparing for the urologic revolution. Contemp. Urol. 9:39–58 [Google Scholar]
  136. Liu AY, True LD, LaTray L, Nelson PS, Ellis WJ et al.136.  1997. Cell-cell interaction in prostate gene regulation and cytodifferentiation. Proc. Natl. Acad. Sci. USA 94:10705–10 [Google Scholar]
  137. Liu AY, Corey E, Vessella RL, Lange PH, True LD et al.137.  1997. Identification of differentially expressed prostate genes: increased expression of transcription factor ETS-2 in prostate cancer. Prostate 30:145–53 [Google Scholar]
  138. Nelson P, Ng W-L, Schummer M, True LD, Liu AY et al.138.  1998. An expressed-sequence-tag database of the human prostate: sequence analysis of 1,168 cDNA clones. Genomics 47:12–25 [Google Scholar]
  139. Hawkins V, Doll D, Bumgarner R, Smith T, Abajian C et al.139.  1999. PEDB: the prostate expression database. Nucleic Acids Res. 27:204–8 [Google Scholar]
  140. Nelson PS, Hawkins V, Schummer M, Bumgarner R, Ng W et al.140.  1999. Negative selection: a method for obtaining low-abundance cDNAs using high-density cDNA clone arrays. Genet. Anal. Biomol. Eng. 15:209–15 [Google Scholar]
  141. Lin B, White JT, Ferguson C, Bumgarner R, Friedman C et al.141.  2000. PART-1: a novel human prostate–specific, androgen-regulated gene that maps to chromosome 5q121. Cancer Res. 60:858–63 [Google Scholar]
  142. Liu AY, Nelson PS, van den Engh G, Hood L. 142.  2002. Human prostate epithelial cell-type cDNA libraries and prostate expression patterns. Prostate 50:92–103 [Google Scholar]
  143. Nelson PS, Clegg N, Arnold H, Ferguson C, Bonham M et al.143.  2002. The program of androgen-responsive genes in neoplastic prostate epithelium. Proc. Natl. Acad. Sci. USA 99:11890–95 [Google Scholar]
  144. Lin B, White JT, Lu W, Xie T, Utleg AG et al.144.  2005. Evidence for the presence of disease-perturbed networks in prostate cancer cells by genomic and proteomic analyses: a systems approach to disease. Cancer Res. 65:3081–91 [Google Scholar]
  145. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR. 145.  2007. DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J. Am. Chem. Soc. 129:1959–67 [Google Scholar]
/content/journals/10.1146/annurev.anchem.1.031207.113113
Loading
/content/journals/10.1146/annurev.anchem.1.031207.113113
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error