All chemical transformations pass through an unstable structure called the transition state, which is poised between the chemical structures of the substrates and products. The transition states for chemical reactions are proposed to have lifetimes near 10−13 sec, the time for a single bond vibration. No physical or spectroscopic method is available to directly observe the structure of the transition state for enzymatic reactions. Yet transition state structure is central to understanding catalysis, because enzymes function by lowering activation energy. An accepted view of enzymatic catalysis is tight binding to the unstable transition state structure. Transition state mimics bind tightly to enzymes by capturing a fraction of the binding energy for the transition state species. The identification of numerous transition state inhibitors supports the transition state stabilization hypothesis for enzymatic catalysis. Advances in methods for measuring and interpreting kinetic isotope effects and advances in computational chemistry have provided an experimental route to understand transition state structure. Systematic analysis of intrinsic kinetic isotope effects provides geometric and electronic structure for enzyme-bound transition states. This information has been used to compare transition states for chemical and enzymatic reactions; determine whether enzymatic activators alter transition state structure; design transition state inhibitors; and provide the basis for predicting the affinity of enzymatic inhibitors. Enzymatic transition states provide an understanding of catalysis and permit the design of transition state inhibitors. This article reviews transition state theory for enzymatic reactions. Selected examples of enzymatic transition states are compared to the respective transition state inhibitors.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Radzicka A, Wolfenden R. 1995. Science 267:90–93 [Google Scholar]
  2. Glasstone S, Laidler KJ, Eyring HK. 1941. The Theory of Rate Processes. New York: McGraw-Hill [Google Scholar]
  3. Pauling L. 1948. Am. Sci. 36:50–58 [Google Scholar]
  4. Wolfenden R. 1972. Acc. Chem. Res. 5:10–18 [Google Scholar]
  5. Wolfenden R. 1976. Annu. Rev. Biophys. Bioeng. 5:271–306 [Google Scholar]
  6. Morrison JF, Walsh CT. 1988. Adv. Enzymol. Relat. Areas Mol. Biol. 61:201–301 [Google Scholar]
  7. Radzicka A, Wolfenden R. 1995. Methods Enzymol. 249:284–312 [Google Scholar]
  8. Bigeleisen J, Mayer MG. 1947. J. Chem. Phys. 15:261–67 [Google Scholar]
  9. Bigeleisen J, Wolfsberg M. 1958. Adv. Chem. Phys. 1:15–76 [Google Scholar]
  10. Streitwiser A Jr, Jagow RH, Fahey RC, Suzuki S. 1958. J. Am. Chem. Soc. 80:2326–32 [Google Scholar]
  11. Cleland WW, O'Leary MH, Northrop DB. eds 1977. Isotope Effects on Enzyme-Catalyzed Reactions. Baltimore, MD: Univ. Park Press [Google Scholar]
  12. Gandour RD, Schowen RL. eds 1978. Transition States of Biochemical Processes. New York: Plenum [Google Scholar]
  13. Northrop DB. 1981. Annu. Rev. Biochem. 50:103–31 [Google Scholar]
  14. Cook PF, Cleland WW. 1981. Biochemistry 20:1790–96 [Google Scholar]
  15. Cook PF, Oppenheimer NJ, Cleland WW. 1981. Biochemistry 20:1817–25 [Google Scholar]
  16. Cleland WW. 1982. Methods Enzymol. 87:625–41 [Google Scholar]
  17. Scharschmidt M, Fisher MA, Cleland WW. 1984. Biochemistry 23:5471–78 [Google Scholar]
  18. Bolin JT, Filman DJ, Matthews DA, Hamlin RC, Kraut J. 1982. J. Biol. Chem. 257:13650–62 [Google Scholar]
  19. Kimble E, Hadala J, Ludewig R, Peters P, Greenberg G. et al. 1995. Inflamm. Res. 44:S181–82 [Google Scholar]
  20. Kline PC, Schramm VL. 1993. Biochemistry 32:13212–19 [Google Scholar]
  21. Shan S-O, Herschlag D. 1996. Proc. Natl. Acad. Sci. USA 93:14474–79 [Google Scholar]
  22. Cleland WW, Kreevoy MM. 1994. Science 264:1887–90 [Google Scholar]
  23. Truhlar DG, Hase WL, Hynes JT. 1983. J. Phys. Chem. 87:2664–82 [Google Scholar]
  24. Albery WJ. 1993. Adv. Phys. Org. Chem. 28:139–70 [Google Scholar]
  25. Kurz LC, Weitkamp E, Frieden C. 1987. Biochemistry 26:3027–32 [Google Scholar]
  26. Frick L, Yang C, Marquez VE, Wolfenden R. 1989. Biochemistry 28:9423–30 [Google Scholar]
  27. Wilson DK, Rudolph FB, Quiocho FA. 1991. Science 252:1278–84 [Google Scholar]
  28. Warshel A. 1991. Computer Modeling of Chemical Reactions in Enzymes and Solutions. New York: Wiley & Sons [Google Scholar]
  29. Cleland WW. 1977. Adv. Enzymol. Relat. Areas Mol. Biol. 45:273–387 [Google Scholar]
  30. Parkin DW, Schramm VL. 1995. Biochemistry 34:13961–66 [Google Scholar]
  31. Albery WJ, Knowles JR. 1977. Angew. Chem. 16:285–93 [Google Scholar]
  32. Schowen RL. 1978. In Transition States of Biochemical Processes, ed. RD Gandour, RL Schowen 77–114 New York: Plenum
  33. Melander L, Saunders WJ Jr. 1980. Reaction Rates of Isotopic Molecules. New York: Wiley & Sons [Google Scholar]
  34. Cleland WW. 1995. Methods Enzymol. 249:341–73 [Google Scholar]
  35. Jencks WP. 1987. In Catalysis in Chemistry and Enzymology 170–82 New York: Dover
  36. Hammond GS. 1955. J. Am. Chem. Soc. 77:334–38 [Google Scholar]
  37. Agarwal RP, Spector T, Parks RE Jr. 1977. Biochem. Pharmacol. 26:359–67 [Google Scholar]
  38. Bachovin WW, Wong WYL, Farr-Jones S, Shenvi AB, Kettner CA. 1988. Biochemistry 27:12839–46 [Google Scholar]
  39. Rodgers J, Femec DA, Schowen RL. 1982. J. Am. Chem. Soc. 104:3263–68 [Google Scholar]
  40. Schramm VL, Horenstein BA, Kline PC. 1994. J. Biol. Chem. 269:18259–62 [Google Scholar]
  41. Huskey WP. 1991. See Ref. 116 37–72
  42. Suhnel J, Schowen RL. 1991. See Ref. 116 3–35
  43. Cleland WW. 1987. Bioorg. Chem. 15:282–302 [Google Scholar]
  44. Sunko DE, Szele I, Hehre WJ. 1977. J. Am. Chem. Soc. 99:5000–4 [Google Scholar]
  45. Bennet AJ, Sinnott ML. 1986. J. Am. Chem. Soc. 108:7287–94 [Google Scholar]
  46. Northrop DB. 1975. Biochemistry 14:2644–51 [Google Scholar]
  47. Sims LB, Burton GW, Lewis DE. 1977. BEBOVIB-IV, QCPE No. 337. Bloomington, IN. Quantum Chem. Program Exch., Dep. Chem., Univ. Indiana
  48. Sims LB, Lewis DE. 1984. In Isotopes in Organic Chemistry, ed. E Buncel, CC Lee 6161–259 New York: Elsevier
  49. Stewart JJP. 1989. Comput. Chem. 10:209–20 [Google Scholar]
  50. Frisch MJ, Trucks GW, Schlegel HB, Gill PMW, Johnson BG. et al. 1995. Gaussian 94, Rev. C. 2, 1995. Pittsburgh, PA: Gaussian Inc
  51. Schramm VL. 1976. J. Biol. Chem. 251:3417–24 [Google Scholar]
  52. Schramm VL. 1974. J. Biol. Chem. 249:1729–36 [Google Scholar]
  53. Leung HB, Schramm VL. 1984. J. Biol. Chem. 259:6972–78 [Google Scholar]
  54. Parkin DW, Leung HB, Schramm VL. 1984. J. Biol. Chem. 259:9411–17 [Google Scholar]
  55. Parkin DW, Schramm VL. 1987. Biochemistry 26:913–20 [Google Scholar]
  56. Mentch F, Parkin DW, Schramm VL. 1987. Biochemistry 26:921–30 [Google Scholar]
  57. Srinivasan K, Konstantinidis A, Sinnott ML, Hall BG. 1993. Biochem. J. 291:15–17 [Google Scholar]
  58. Pauling L. 1960. The Nature of the Chemical Bond. Ithaca, NY: Cornell Univ. Press. 3rd ed [Google Scholar]
  59. DeWolf WE Jr, Fullin FA, Schramm VL. 1979. J. Biol. Chem. 254:10868–75 [Google Scholar]
  60. Leung HB, Schramm VL. 1980. J. Biol. Chem. 255:10867–74 [Google Scholar]
  61. Giranda VL, Berman HM, Schramm VL. 1988. Biochemistry 27:5813–18 [Google Scholar]
  62. Ehrlich JI, Schramm VL. 1994. Biochemistry 33:8890–96 [Google Scholar]
  63. Leung HB, Schramm VL. 1981. J. Biol. Chem. 256:12823–29 [Google Scholar]
  64. Parkin DW, Mentch F, Banks GA, Horenstein BA, Schramm VL. 1991. Biochemistry 30:921–30 [Google Scholar]
  65. Parry RJ, Minta A. 1982. J. Am. Chem. Soc. 104:871–72 [Google Scholar]
  66. Markham GD, Hafner EW, Tabor CW, Tabor H. 1980. J. Biol Chem. 255:9082–92 [Google Scholar]
  67. Larsen TM, Laughlin LT, Holden HM, Rayment I, Reed GH. 1994. Biochemistry 33:6301–9 [Google Scholar]
  68. Markham GD, Parkin DW, Mentch F, Schramm VL. 1987. J. Biol. Chem. 262:5609–15 [Google Scholar]
  69. Rose IW. 1980. Methods Enzymol. 64:47–59 [Google Scholar]
  70. Carey FA, Sundberg RF. 1990. Advanced Organic Chemistry. Part A: Structure and Mechanism,579–83 New York: Plenum. 3rd ed [Google Scholar]
  71. Merkler DJ, Wali AS, Taylor J, Schramm VL. 1989. J. Biol. Chem. 264:21422–30 [Google Scholar]
  72. Lowenstein JM. 1972. Physiol. Rev. 52:382–414 [Google Scholar]
  73. Sabina RL, Holmes EW. 1995. See Ref. 117 1769–80
  74. Xia Y, Khatchikian G, Zweier JL. 1996. J. Biol. Chem. 271:10096–102 [Google Scholar]
  75. Hershfield MS, Mitchell BS. 1995. See Ref. 117 1725–68
  76. Frieden C, Kurz LC, Gilbert HR. 1980. Biochemistry 19:5303–9 [Google Scholar]
  77. Kati WM, Wolfenden R. 1989. Science 243:1591–93 [Google Scholar]
  78. Merkler DJ, Brenowitz M, Schramm VL. 1990. Biochemistry 29:8358–64 [Google Scholar]
  79. Merkler DJ, Kline PC, Weiss P, Schramm VL. 1993. Biochemistry 32:12993–3001 [Google Scholar]
  80. Weiss PM, Cook PF, Hermes JD, Cleland WW. 1987. Biochemistry 26:7378–84 [Google Scholar]
  81. Merkler DJ, Schramm VL. 1993. Biochemistry 32:5792–99 [Google Scholar]
  82. Kline PC, Schramm VL. 1994. Biochemistry 34:1153–62 [Google Scholar]
  83. Hammond DJ, Gutteridge WE. 1984. Mol. Biochem. Parasitol. 13:243–61 [Google Scholar]
  84. Parkin DW, Horenstein BA, Abdulah DR, Estupiñán B, Schramm VL. 1991. J. Biol. Chem. 266:20658–65 [Google Scholar]
  85. Estupiñán B, Schramm VL. 1994. J. Biol. Chem. 269:23068–73 [Google Scholar]
  86. Parkin DW. 1996. J. Biol. Chem. 271:21713–19 [Google Scholar]
  87. Horenstein BA, Parkin DW, Estupiñán B, Schramm VL. 1991. Biochemistry 30:10788–95 [Google Scholar]
  88. Pelle R, Schramm VL, Parkin DW. 1998. J. Biol. Chem. 273:2118–26 [Google Scholar]
  89. Horenstein BA, Schramm VL. 1993. Biochemistry 32:7089–97 [Google Scholar]
  90. Horenstein BA, Schramm VL. 1993. Biochemistry 32:9917–25 [Google Scholar]
  91. Degano M, Almo SC, Sacchettini JC, Schramm VL. 1998. Biochemistry. In press [Google Scholar]
  92. Horenstein BA, Zabinski RF, Schramm VL. 1993. Tetrahedron Lett. 34:7213–16 [Google Scholar]
  93. Boutellier M, Horenstein BA, Semenyaka A, Schramm VL, Ganem B. 1994. Biochemistry 33:3994–4000 [Google Scholar]
  94. Parkin DW, Schramm VL. 1995. Biochemistry 34:13961–66 [Google Scholar]
  95. Furneaux RH, Limberg G, Tyler PC, Schramm VL. 1997. Tetrahedron 53:2915–30 [Google Scholar]
  96. Deng H, Chan AWY, Bagdassarian CK, Estupiñán B, Ganem B. et al. 1996. Biochemistry 35:6037–47 [Google Scholar]
  97. Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR. et al. 1997. Hum. Mutat. 9:118–21 [Google Scholar]
  98. Kline PC, Schramm VL. 1992. Biochemistry 31:5964–73 [Google Scholar]
  99. Kline PC, Schramm VL. 1995. Biochemistry 34:1153–62 [Google Scholar]
  100. Goiten RK, Chelsky D, Parsons SM. 1978. J. Biol. Chem. 253:2963–71 [Google Scholar]
  101. Tao W, Grubmeyer C, Blanchard JS. 1996. Biochemistry 35:14–21 [Google Scholar]
  102. Scapin G, Grubmeyer C, Sacchettini JC. 1994. Biochemistry 33:1287–94 [Google Scholar]
  103. Scapin G, Ozturk DH, Grubmeyer C, Sacchettini JC. 1995. Biochemistry 34:10744–54 [Google Scholar]
  104. Bull HG, Ferraz JP, Cordes EH, Ribbi A, Apitz-Castro R. 1978. J. Biol. Chem. 253:5186–92 [Google Scholar]
  105. Ferraz JP, Bull HG, Cordes EH. 1978. Arch. Biochem. Biophys. 191:431–36 [Google Scholar]
  106. Rising KA, Schramm VL. 1994. J. Am. Chem. Soc. 116:6531–36 [Google Scholar]
  107. Moss J, Vaughan M. eds 1990. ADP-Ribosylating Toxins and G-Proteins. Insights into Signal Transduction. Washington, DC: Am. Soc. Microbiol [Google Scholar]
  108. Rising KA, Schramm VL. 1997. J. Am. Chem. Soc. 119:27–37 [Google Scholar]
  109. Berti PJ, Schramm VL. 1997. J. Am. Chem. Soc. 119:12069–78 [Google Scholar]
  110. Scheuring J, Schramm VL. 1997. Biochemistry 36:4526–34 [Google Scholar]
  111. Berti PJ, Blanke SR, Schramm VL. 1997. J. Am. Chem. Soc. 119:12079–88 [Google Scholar]
  112. Scheuring J, Schramm VL. 1997. Biochemistry 36:8215–23 [Google Scholar]
  113. Scheuring J, Berti PJ, Schramm VL. 1998. Biochemistry. 37:2748–58 [Google Scholar]
  114. Bell CE, Eisenberg D. 1996. Biochemistry 35:1137–49 [Google Scholar]
  115. Bagdassarian CK, Braunheim BB, Schramm VL, Schwartz DD. 1996. Int. J. Quantum Chem. 60:73–80 [Google Scholar]
  116. Bagdassarian CK, Schramm VL, Schwartz SD. 1996. J. Am. Chem. Soc. 118:8825–36 [Google Scholar]
  117. Cook PF. ed 1991. Enzyme Mechanism from Isotope Effects. Boca Raton, FL: CRC [Google Scholar]
  118. Scriver CR, Beaudet AL, Sly WS, Valle D. eds 1995. The Metabolic and Molecular Basis of Inherited Disease. New York: McGraw-Hill. 7th ed [Google Scholar]

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error