1932

Abstract

Mammalian AMP-activated protein kinase and yeast SNF1 protein kinase are the central components of kinase cascades that are highly conserved between animals, fungi, and plants. The AMP-activated protein kinase cascade acts as a metabolic sensor or “fuel gauge” that monitors cellular AMP and ATP levels because it is activated by increases in the AMP:ATP ratio. Once activated, the enzyme switches off ATP-consuming anabolic pathways and switches on ATP-producing catabolic pathways, such as fatty acid oxidation. The SNF1 complex in yeast is activated in response to the stress of glucose deprivation. In this case the intracellular signal or signals have not been identified; however, SNF1 activation is associated with depletion of ATP and elevation of AMP. The SNF1 complex acts primarily by inducing expression of genes required for catabolic pathways that generate glucose, probably by triggering phosphorylation of transcription factors. SNF1-related protein kinases in higher plants are likely to be involved in the response of plant cells to environmental and/or nutritional stress.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.67.1.821
1998-07-01
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/biochem/67/1/annurev.biochem.67.1.821.html?itemId=/content/journals/10.1146/annurev.biochem.67.1.821&mimeType=html&fmt=ahah

Literature Cited

  1. Beg ZH, Allmann DW, Gibson DM. 1973. Biochem. Biophys. Res. Commun. 54:1362–69 [Google Scholar]
  2. Carlson CA, Kim KH. 1973. J. Biol. Chem. 248:378–80 [Google Scholar]
  3. Carling D, Zammit VA, Hardie DG. 1987. FEBS Lett. 223:217–22 [Google Scholar]
  4. Hardie DG, Carling D, Sim ATR. 1989. Trends Biochem. Sci. 14:20–23 [Google Scholar]
  5. Brown MS, Brunschede GY, Goldstein JL. 1975. J. Biol. Chem. 250:2502–9 [Google Scholar]
  6. Keith ML, Rodwell VW, Rogers DH, Rudney H. 1979. Biochem. Biophys. Res. Commun. 90:969–75 [Google Scholar]
  7. Beg ZH, Stonik JA, Brewer HB. 1978. Proc. Natl. Acad. Sci. USA 75:3678–82 [Google Scholar]
  8. Yeh LA, Lee KH, Kim KH. 1980. J. Biol. Chem. 255:2308–14 [Google Scholar]
  9. Ferrer A, Caelles C, Massot N, Hegardt FG. 1985. Biochem. Biophys. Res. Commun. 132:497–504 [Google Scholar]
  10. Carling D, Clarke PR, Zammit VA, Hardie DG. 1989. Eur. J. Biochem. 186:129–36 [Google Scholar]
  11. Zimmermann FK, Kaufmann I, Rasenberger H, Haussman P. 1977. Mol. Gen. Genet. 1951:95–103 [Google Scholar]
  12. Ciriacy M. 1977. Mol. Gen. Genet. 154:213–20 [Google Scholar]
  13. Carlson M, Osmond BC, Botstein D. 1981. Genetics 98:25–40 [Google Scholar]
  14. Johnston M, Carlson M. 1992. In The Molecular and Cellular Biology of the Yeast Saccharomyces: Gene Expression 2193–281
  15. Simon M, Binder M, Adam G, Hartig A, Ruis H. 1992. Yeast 8:303–9 [Google Scholar]
  16. Thompson-Jaeger S, Francois J, Gaughran JP, Tatchell K. 1991. Genetics 129:697–706 [Google Scholar]
  17. Hubbard EJA, Yang XL, Carlson M. 1992. Genetics 130:71–80 [Google Scholar]
  18. Hardy TA, Huang D, Roach PJ. 1994. J. Biol. Chem. 269:27907–13 [Google Scholar]
  19. Entian KD, Zimmermann FK. 1982. J. Bacteriol. 151:1123–28 [Google Scholar]
  20. Neigeborn L, Carlson M. 1984. Genetics 108:845–58 [Google Scholar]
  21. Beg ZH, Stonik JA, Brewer HB. 1979. Proc. Natl. Acad. Sci. USA 76:4375–79 [Google Scholar]
  22. Shiao M, Drong RF, Porter JW. 1981. Biochem. Biophys. Res. Commun. 98:80–87 [Google Scholar]
  23. Lent B, Kim KH. 1982. J. Biol. Chem. 257:1897–901 [Google Scholar]
  24. Ferrer A, Caelles C, Massot N, Hegardt FG. 1987. J. Biol. Chem. 262:13507–12 [Google Scholar]
  25. Davies SP, Hawley SA, Woods A, Carling D, Haystead TAJ, Hardie DG. 1994. Eur. J. Biochem. 223:351–57 [Google Scholar]
  26. Mitchelhill KI, Stapleton D, Gao G, House C, Michell B. et al. 1994. J. Biol. Chem. 269:2361–64 [Google Scholar]
  27. Michell BJ, Stapleton D, Mitchelhill KI, House CM, Katsis F. et al. 1996. J. Biol. Chem. 271:28445–50 [Google Scholar]
  28. Carling D, Aguan K, Woods A, Verhoeven AJM, Beri RK. et al. 1994. J. Biol. Chem. 269:11442–48 [Google Scholar]
  29. Gao G, Widmer J, Stapleton D, Teh T, Cox T. et al. 1995. Biochim. Biophys. Acta 1266:73–82 [Google Scholar]
  30. Stapleton D, Gao G, Michell BJ, Widmer J, Mitchelhill K. et al. 1994. J. Biol. Chem. 269:29343–46 [Google Scholar]
  31. Gao G, Fernandez CS, Stapleton D, Auster AS, Widmer J. et al. 1996. J. Biol. Chem. 271:8675–81 [Google Scholar]
  32. Woods A, Cheung PCF, Smith FC, Davison MD, Scott J. et al. 1996. J. Biol. Chem. 271:10282–90 [Google Scholar]
  33. Dyck JRB, Gao G, Widmer J, Stapleton D, Fernandez CS. et al. 1996. J. Biol. Chem. 271:17798–803 [Google Scholar]
  34. Woods A, Salt I, Scott J, Hardie DG, Carling D. 1996. FEBS Lett. 397:347–51 [Google Scholar]
  35. Stapleton D, Mitchelhill KI, Gao G, Widmer J, Michell BJ. et al. 1996. J. Biol. Chem. 271:611–14 [Google Scholar]
  36. Thornton C, Snowden MA, Carling D. 1998. J. Biol. Chem. In press [Google Scholar]
  37. Bateman A. 1997. Trends Biochem. Sci. 22:12–13 [Google Scholar]
  38. Kluijtmans LA, Boers GH, Stevens EM, Renier WO, Kraus JP. et al. 1996. J. Clin. Invest. 98:285–89 [Google Scholar]
  39. Sintchak MD, Fleming MA, Futer O, Raybuck SA, Chambers SP. et al. 1996. Cell 85:921–30 [Google Scholar]
  40. Celenza JL, Carlson M. 1986. Science 233:1175–80 [Google Scholar]
  41. Schuller HJ, Entian KD. 1987. Mol. Gen. Genet. 209:366–73 [Google Scholar]
  42. Schuller HJ, Entian KD. 1988. Gene 67:247–57 [Google Scholar]
  43. Celenza JL, Eng FJ, Carlson M. 1989. Mol. Cell. Biol. 9:5045–54 [Google Scholar]
  44. Celenza JL, Carlson M. 1989. Mol. Cell. Biol. 9:5034–44 [Google Scholar]
  45. Wilson WA, Hawley SA, Hardie DG. 1996. Curr. Biol. 6:1426–34 [Google Scholar]
  46. Jiang R, Carlson M. 1997. Mol. Cell. Biol. 17:2099–106 [Google Scholar]
  47. Estruch F, Treitel MA, Yang XL, Carlson M. 1992. Genetics 132:639–50 [Google Scholar]
  48. Fields S, Song OK. 1989. Nature 340:245–46 [Google Scholar]
  49. Woods A, Munday MR, Scott J, Yang XL, Carlson M, Carling D. 1994. J. Biol. Chem. 269:19509–15 [Google Scholar]
  50. Yang X, Hubbard EJA, Carlson M. 1992. Science 257:680–82 [Google Scholar]
  51. Yang X, Jiang R, Carlson M. 1994. EMBO J. 13:5878–86 [Google Scholar]
  52. Matsumoto K, Toh-e A, Oshima Y. 1981. Mol. Cell. Biol. 1:83–93 [Google Scholar]
  53. Erickson JR, Johnston M. 1993. Genetics 135:655–64 [Google Scholar]
  54. Goffrini P, Ficarelli A, Donnini C, Lodi T, Puglisi PP, Ferrero I. 1996. Curr. Genet. 29:316–26 [Google Scholar]
  55. Alderson A, Sabelli PA, Dickinson JR, Cole D, Richardson M. et al. 1991. Proc. Natl. Acad. Sci. USA 88:8602–5 [Google Scholar]
  56. LeGuen L, Thomas M, Bianchi M, Halford NG, Kreis M. 1992. Gene 120:249–54 [Google Scholar]
  57. Hannappel U, Vicente-Carbajosa J, Barker JHA, Shewry PR, Halford NG. 1995. Plant Mol. Biol. 27:1235–40 [Google Scholar]
  58. Halford NG, Vicente-Carbajosa J, Sabelli PA, Shewry PR, Hannappel U, Kreis M. 1992. Plant J. 2:791–97 [Google Scholar]
  59. Muranaka T, Banno H, Machida Y. 1994. Mol. Cell. Biol. 14:2958–65 [Google Scholar]
  60. MacKintosh RW, Davies SP, Clarke PR, Weekes J, Gillespie JG. et al. 1992. Eur. J. Biochem. 209:923–31 [Google Scholar]
  61. Davies SP, Carling D, Hardie DG. 1989. Eur. J. Biochem. 186:123–28 [Google Scholar]
  62. Ball KL, Dale S, Weekes J, Hardie DG. 1994. Eur. J. Biochem. 219:743–50 [Google Scholar]
  63. Dale S, Wilson WA, Edelman AM, Hardie DG. 1995. FEBS Lett. 361:191–95 [Google Scholar]
  64. Ball KL, Barker J, Halford NG, Hardie DG. 1995. FEBS Lett. 377:189–92 [Google Scholar]
  65. Jiang R, Carlson M. 1996. Genes Dev. 10:3105–15 [Google Scholar]
  66. Ingebritsen TS, Lee H, Parker RA, Gibson DM. 1978. Biochem. Biophys. Res. Commun. 81:1268–77 [Google Scholar]
  67. Ingebritsen TS, Parker RA, Gibson DM. 1981. J. Biol. Chem. 256:1138–44 [Google Scholar]
  68. Moore F, Weekes J, Hardie DG. 1991. Eur. J. Biochem. 199:691–97 [Google Scholar]
  69. Weekes J, Hawley SA, Corton J, Shugar D, Hardie DG. 1994. Eur. J. Biochem. 219:751–57 [Google Scholar]
  70. Clarke PR, Moore F, Hardie DG. 1991. Adv. Protein Phosphatases 6:187–209 [Google Scholar]
  71. Davies SP, Helps NR, Cohen PTW, Hardie DG. 1995. FEBS Lett. 377:421–25 [Google Scholar]
  72. Monod J, Wyman J, Changeux JP. 1965. J. Mol. Biol. 12:88–118 [Google Scholar]
  73. Hawley SA, Davison M, Woods A, Davies SP, Beri RK. et al. 1996. J. Biol. Chem. 271:27879–87 [Google Scholar]
  74. Corton JM, Gillespie JG, Hawley SA, Hardie DG. 1995. Eur. J. Biochem. 229:558–65 [Google Scholar]
  75. Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG. 1995. J. Biol. Chem. 270:27186–91 [Google Scholar]
  76. Johnson LN, Noble MEM, Owen DJ. 1996. Cell 85:149–58 [Google Scholar]
  77. Hardie DG, Carling D. 1997. Eur. J. Biochem. 246:259–73 [Google Scholar]
  78. Corton JM, Gillespie JG, Hardie DG. 1994. Curr. Biol. 4:315–24 [Google Scholar]
  79. Sato R, Goldstein JL, Brown MS. 1993. Proc. Natl. Acad. Sci. USA 90:9261–65 [Google Scholar]
  80. Witters LA, Nordlund AC, Marshall L. 1991. Biochem. Biophys. Res. Commun. 181:1486–92 [Google Scholar]
  81. Ritossa FM. 1964. Exp. Cell Res. 35:601–7 [Google Scholar]
  82. Kudo N, Barr AJ, Barr RL, Desai S, Lopaschuk GD. 1995. J. Biol. Chem. 270:17513–20 [Google Scholar]
  83. Kudo N, Gillespie JG, Kung L, Witters LA, Schulz R. et al. 1996. Biochim. Biophys. Acta 1301:67–75 [Google Scholar]
  84. Winder WW, Hardie DG. 1996. Am. J. Physiol. 270:E299–304 [Google Scholar]
  85. Hutber CA, Hardie DG, Winder WW. 1997. Am. J. Physiol. 272:E262–66 [Google Scholar]
  86. Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A. et al. 1997. J. Biol. Chem. 272:13255–61 [Google Scholar]
  87. Arebalo RE, Hardgrave JE, Scallen TJ. 1981. J. Biol. Chem. 256:571–74 [Google Scholar]
  88. Arebalo RE, Hardgrave JE, Noland BJ, Scallen TJ. 1980. Proc. Natl. Acad. Sci. USA 77:6429–33 [Google Scholar]
  89. Beg ZH, Reznikov DC, Avigan J. 1986. Arch. Biochem. Biophys. 244:310–22 [Google Scholar]
  90. Munday MR, Milic MR, Takhar S, Holness MJ, Sugden MC. 1991. Biochem. J. 280:733–37 [Google Scholar]
  91. Witters LA, Kemp BE. 1992. J. Biol. Chem. 267:2864–67 [Google Scholar]
  92. Davies SP, Carling D, Munday MR, Hardie DG. 1992. Eur. J. Biochem. 203:615–23 [Google Scholar]
  93. Neigeborn L, Carlson M. 1987. Genetics 115:247–53 [Google Scholar]
  94. Stark MJ. 1996. Yeast 12:1647–75 [Google Scholar]
  95. Tu JL, Carlson M. 1995. EMBO J. 14:5939–46 [Google Scholar]
  96. Tu JL, Carlson M. 1994. Mol. Cell. Biol. 14:6789–96 [Google Scholar]
  97. Weekes J, Ball KL, Caudwell FB, Hardie DG. 1993. FEBS Lett. 334:335–39 [Google Scholar]
  98. Ching YP, Davies SP, Hardie DG. 1996. Eur. J. Biochem. 237:800–8 [Google Scholar]
  99. Clarke PR, Hardie DG. 1990. EMBO J. 9:2439–46 [Google Scholar]
  100. Gillespie JG, Hardie DG. 1992. FEBS Lett. 306:59–62 [Google Scholar]
  101. Henin N, Vincent MF, Gruber HE, Van den Berghe G. 1995. FASEB J. 9:541–46 [Google Scholar]
  102. Munday MR, Campbell DG, Carling D, Hardie DG. 1988. Eur. J. Biochem. 175:331–38 [Google Scholar]
  103. Davies SP, Sim ATR, Hardie DG. 1990. Eur. J. Biochem. 187:183–90 [Google Scholar]
  104. Lopez-Casillas F, Bai DH, Luo XC, Kong IS, Hermodson MA, Kim KH. 1988. Proc. Natl. Acad. Sci. USA 85:5784–88 [Google Scholar]
  105. Ha J, Daniel S, Broyles SS, Kim KH. 1994. J. Biol. Chem. 269:22162–68 [Google Scholar]
  106. McGarry JD, Takabayashi Y, Foster DW. 1978. J. Biol. Chem. 253:8294–300 [Google Scholar]
  107. Weis BC, Cowan AT, Brown N, Foster DW, McGarry JD. 1994. J. Biol. Chem. 269:26443–48 [Google Scholar]
  108. Abu Elheiga L, Almarza Ortega DB, Baldini A, Wakil SJ. 1997. J. Biol. Chem. 272:10669–77 [Google Scholar]
  109. Ha J, Lee JK, Kim KS, Witters LA, Kim KH. 1996. Proc. Natl. Acad. Sci. USA 93:11466–70 [Google Scholar]
  110. Winder WW, Wilson HA, Hardie DG, Rasmussen BB, Hutber CA. et al. 1997. J. Appl. Physiol. 82:219–25 [Google Scholar]
  111. Merrill GM, Kurth E, Hardie DG, Winder WW. 1997. Am. J. Physiol. 36:E1107–12 [Google Scholar]
  112. Velasco G, Geelen MJH, Guzman M. 1997. Arch. Biochem. Biophys. 337:169–75 [Google Scholar]
  113. Garton AJ, Campbell DG, Cohen P, Yeaman SJ. 1988. FEBS Lett. 229:68–72 [Google Scholar]
  114. Yeaman SJ. 1990. Biochim. Biophys. Acta 1052:128–32 [Google Scholar]
  115. Garton AJ, Campbell DG, Carling D, Hardie DG, Colbran RJ, Yeaman SJ. 1989. Eur. J. Biochem. 179:249–54 [Google Scholar]
  116. Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. 1994. FEBS Lett. 353:33–36 [Google Scholar]
  117. Brooks BJ, Arch JR, Newsholme EA. 1983. Biosci. Rep. 3:263–67 [Google Scholar]
  118. Brown MS, Ho YK, Goldstein JL. 1980. J. Biol. Chem. 255:9344–52 [Google Scholar]
  119. Carling D, Hardie DG. 1989. Biochim. Biophys. Acta 1012:81–86 [Google Scholar]
  120. Flotow H, Roach PJ. 1989. J. Biol. Chem. 264:9126–28 [Google Scholar]
  121. Morrison DK, Cutler RE. 1997. Curr. Opin. Cell Biol. 9:174–79 [Google Scholar]
  122. Morrison DK, Heidecker G, Rapp UR, Copeland TD. 1993. J. Biol. Chem. 268:17309–16 [Google Scholar]
  123. Sprenkle AB, Davies SP, Carling D, Hardie DG, Sturgill TW. 1997. FEBS Lett. 403:254–58 [Google Scholar]
  124. Mischak H, Seitz T, Janosch P, Eulitz M, Steen H. et al. 1996. Mol. Cell. Biol. 16:5409–18 [Google Scholar]
  125. Nehlin JO, Ronne H. 1990. EMBO J. 9:2891–98 [Google Scholar]
  126. Nehlin JO, Carlberg M, Ronne H. 1991. EMBO J. 10:3373–77 [Google Scholar]
  127. Johnston M, Flick JS, Pexton T. 1994. Mol. Cell. Biol. 14:3834–41 [Google Scholar]
  128. Vallier LG, Carlson M. 1994. Genetics 137:49–54 [Google Scholar]
  129. Keleher CA, Redd MJ, Schultz J, Carlson M, Johnson AD. 1992. Cell 68:709–19 [Google Scholar]
  130. Tzamarias D, Struhl K. 1994. Nature 369:758–61 [Google Scholar]
  131. Treitel MA, Carlson M. 1995. Proc. Natl. Acad. Sci. USA 92:3132–36 [Google Scholar]
  132. Tzamarias D, Struhl K. 1995. Genes Dev. 9:821–31 [Google Scholar]
  133. DeVit MJ, Waddle JA, Johnston M. 1997. Mol. Biol. Cell 8:1603–18 [Google Scholar]
  134. Ostling J, Carlberg M, Ronne H. 1996. Mol. Cell. Biol. 16:753–61 [Google Scholar]
  135. Lesage P, Yang XL, Carlson M. 1994. Nucleic Acids Res. 22:597–603 [Google Scholar]
  136. Lesage P, Yang XL, Carlson M. 1996. Mol. Cell. Biol. 16:1921–28 [Google Scholar]
  137. Hedges D, Proft M, Entian KD. 1995. Mol. Cell. Biol. 15:1915–22 [Google Scholar]
  138. Randez-Gil F, Bojunga N, Proft M, Entian KD. 1997. Mol. Cell. Biol. 17:2502–10 [Google Scholar]
  139. Dale S, Arró M, Becerra B, Morrice NG, Boronat A. et al. 1995. Eur. J. Biochem. 233:506–13 [Google Scholar]
  140. Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. 1995. Plant Physiol. 109:1337 [Google Scholar]
  141. McMichael RW Jr, Klein RR, Salvucci ME, Huber SC. 1993. Arch. Biochem. Biophys. 307:248–52 [Google Scholar]
  142. Douglas P, Morrice N, MacKintosh C. 1995. FEBS Lett. 377:113–17 [Google Scholar]
  143. Bachmann M, Shiraishi N, Campbell WH, Yoo BC, Harmon AC, Huber SC. 1996. Plant Cell 8:505–17 [Google Scholar]
  144. Huber SC, Huber JL. 1996. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:431–44 [Google Scholar]
  145. Moorhead G, Douglas P, Morrice N, Scarabel M, Aitken A, MacKintosh C. 1996. Curr. Biol. 6:1104–13 [Google Scholar]
  146. Bachmann M, Huber JL, Liao PC, Gage DA, Huber SC. 1996. FEBS Lett. 387:127–31 [Google Scholar]
  147. McMichael RW Jr, Bachmann M, Huber SC. 1995. Plant Physiol. 108:1077–82 [Google Scholar]
  148. Douglas P, Pigaglio E, MacKintosh C. 1997. Biochem. J. In press [Google Scholar]
  149. Jang JC, Sheen J. 1994. Plant Cell 6:1665–79 [Google Scholar]
  150. Grahame IA, Denby KJ, Leaver CJ. 1994. Plant Cell 6:761–72 [Google Scholar]
  151. Hardie DG, Hanks SK. 1995. The Protein Kinase Factsbook: Protein-Serine Kinases. London: Academic 418 pp.
  152. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N. et al. 1996. EMBO J. 15:6541–51 [Google Scholar]
/content/journals/10.1146/annurev.biochem.67.1.821
Loading
/content/journals/10.1146/annurev.biochem.67.1.821
Loading

Data & Media loading...

  • Article Type: Introduction
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error