1932

Abstract

Norman Davidson’s training as a physical chemist led him to make key early contributions to the chemistry of DNA. He described the details of DNA denaturation and renaturation, concepts that still form the basis for understanding hybridization. He also applied the single-molecule resolution of the electron microscope to describing the chemistry of circular DNA, mapping specific genes, and characterizing heteroduplexes. The latter became a dominant tool for the study of nucleic acids and contributed to our knowledge of transcription, polyadenylation, and retroviral structure. The advent of cDNA cloning and restriction enzymes enabled Davidson to describe the diversity of Drosophila actin genes and to isolate the gene encoding cAMP phosphodiesterase. Davidson then turned his attention to neuroscience and participated in cDNA cloning, oocyte expression, and structure-function studies of nicotinic acetylcholine receptors, voltage-gated sodium channels, a GABA transporter, a G protein-gated potassium channel, and calcium channels. His interests also extended to synaptic plasticity, and he helped to define the role of neuronal nitric oxide synthase and of trkB receptors. His final experiments concerned the role of protein kinase A in long-term potentiation. (The abstract was written posthumously by a colleague.)

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.72.121801.161905
2002-07-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/biochem/71/1/annurev.biochem.72.121801.161905.html?itemId=/content/journals/10.1146/annurev.biochem.72.121801.161905&mimeType=html&fmt=ahah

Literature Cited

  1. Carrington T, Davidson N. 1953. J. Phys. Chem. 57:418–43 [Google Scholar]
  2. Dove WF, Davidson N. 1962. J. Mol. Biol. 5:467–78 [Google Scholar]
  3. Yamane T, Davidson N. 1961. J. Am. Chem. Soc. 83:2599–607 [Google Scholar]
  4. Davidson N. et al. 1965. Proc. Natl. Acad. Sci. USA 53:111–14 [Google Scholar]
  5. Wang JC, Davidson N. 1996. J. Mol. Biol. 15:111–23 [Google Scholar]
  6. Wetmur JG, Davidson N. 1968. J. Mol. Biol. 31:349–70 [Google Scholar]
  7. Sharp PA. et al. 1972. J. Mol. Biol. 71:491–97 [Google Scholar]
  8. Wu M, Davidson N. 1973. J. Mol. Biol. 78:23–34 [Google Scholar]
  9. Davis RW, Davidson N. 1968. Proc. Natl. Acad. Sci. USA 60:243–50 [Google Scholar]
  10. Westmoreland B. et al. 1968. Science 60:243–48 [Google Scholar]
  11. Kung H-J. et al. 1974. J. Virol. 14:170–73 [Google Scholar]
  12. Bender W, Davidson N. 1976. Cell 7:609–20 [Google Scholar]
  13. Fyrberg EA, Kindle KL, Davidson M. 1980. Cell 19:365–78 [Google Scholar]
  14. Fyrberg EA, Bond BJ, Hershey ND, Mixter KS, Davidson N. 1981. Cell 24:107–11 [Google Scholar]
  15. Davis RL, Davidson N. 1983. Mol. Cell. Biol. 4:358–67 [Google Scholar]
  16. Qiu YH. et al. 1991. J. Mol. Biol. 222:553–65 [Google Scholar]
  17. LaPolla RJ. et al. 1981. Proc. Natl. Acad. Sci. USA 81:7970–74 [Google Scholar]
  18. White MM. et al. 1985. Proc. Natl. Acad. Sci. USA 82:449–53 [Google Scholar]
  19. Guastella JG. et al. 1990. Science 249:1303–6 [Google Scholar]
  20. Pachalcyzk T. et al. 1991. Nature 350:350–59 [Google Scholar]
  21. Hu M-CT, Davidson N. 1987. Cell 48:556–66 [Google Scholar]
  22. Auld VJ, Goldin AL, Krafte KS, Marshall J, Dunn JM. et al. 1988. Neuron 1:449–61 [Google Scholar]
  23. Noda M. et al. 1986. Nature 322:826–88 [Google Scholar]
  24. Ahmed CMI, Auld VJ, Lester HA, Dunn R, Davidson N. 1990. Nucleic Acids Res. 18:5907 [Google Scholar]
  25. Dascal N, Schreibmayer W, Lim NF, Wang W, Chavkin C. 1993. Proc. Natl. Acad. Sci. USA 90:10235–39 [Google Scholar]
  26. Kubo Y, Reuveny E, Slesinger PA, Jan YN, Yan LY. 1993. Nature 364:758–59 [Google Scholar]
  27. Lim NF. et al. 1995. J. Gen. Physiol. 105:421–39 [Google Scholar]
  28. Reuveny E, Slesinger PA, Inglese J, Morales JM, Iniguez-Lluhi JA. et al. 1994. Nature 370:143–46 [Google Scholar]
  29. Takao K, Yoshi M, Kanda A, Kokubun S, Nukada T. 1994. Neuron 13:747–55 [Google Scholar]
  30. Dascal N, Doupnik CA, Ivanina T, Bausch S, Wang W. 1995. Proc. Natl. Acad. Sci. USA 92:6758–62 [Google Scholar]
  31. Schuman EM, Madison DV. 1994. Science 263:532–35 [Google Scholar]
  32. Kantor DB. et al. 1996. Science 274:1744–48 [Google Scholar]
  33. Lobo AM, Poo MM. 1993. Nature 363:350–53 [Google Scholar]
  34. Kang H, Schuman EM. 1995. Science 267:1658–62 [Google Scholar]
  35. Li Y-X, Zhang Y, Lester HA, Schuman EM, Davidson N. 1998. J. Neurosci. 18:10231–40 [Google Scholar]
  36. Li YX, Xu YF, Ju DS, Lester HA, Davidson M, Schuman EM. 1998. Proc. Natl. Acad. Sci. USA 95:10884–89 [Google Scholar]
  37. Frey U. et al. 1993. Science 260:1661–64 [Google Scholar]
  38. Yu T-P, McKinney S, Lester HA, Davidson M. 2001. Proc. Natl. Acad. Sci. USA 98:5264–69 [Google Scholar]
/content/journals/10.1146/annurev.biochem.72.121801.161905
Loading
/content/journals/10.1146/annurev.biochem.72.121801.161905
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error