1932

Abstract

Glycosyltransferases catalyze glycosidic bond formation using sugar donors containing a nucleoside phosphate or a lipid phosphate leaving group. Only two structural folds, GT-A and GT-B, have been identified for the nucleotide sugar-dependent enzymes, but other folds are now appearing for the soluble domains of lipid phosphosugar-dependent glycosyl transferases. Structural and kinetic studies have provided new insights. Inverting glycosyltransferases utilize a direct displacement S2-like mechanism involving an enzymatic base catalyst. Leaving group departure in GT-A fold enzymes is typically facilitated via a coordinated divalent cation, whereas GT-B fold enzymes instead use positively charged side chains and/or hydroxyls and helix dipoles. The mechanism of retaining glycosyltransferases is less clear. The expected two-step double-displacement mechanism is rendered less likely by the lack of conserved architecture in the region where a catalytic nucleophile would be expected. A mechanism involving a short-lived oxocarbenium ion intermediate now seems the most likely, with the leaving phosphate serving as the base.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.76.061005.092322
2008-07-07
2024-12-06
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.biochem.76.061005.092322
Loading
/content/journals/10.1146/annurev.biochem.76.061005.092322
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error