1932

Abstract

SNAREs are essential components of the machinery for Ca2+-triggered fusion of synaptic vesicles with the plasma membrane, resulting in neurotransmitter release into the synaptic cleft. Although much is known about their biophysical and structural properties and their interactions with accessory proteins such as the Ca2+ sensor synaptotagmin, their precise role in membrane fusion remains an enigma. Ensemble studies of liposomes with reconstituted SNAREs have demonstrated that SNAREs and accessory proteins can trigger lipid mixing/fusion, but the inability to study individual fusion events has precluded molecular insights into the fusion process. Thus, this field is ripe for studies with single-molecule methodology. In this review, we discuss applications of single-molecule approaches to observe reconstituted SNAREs, their complexes, associated proteins, and their effect on biological membranes. Some of the findings are provocative, such as the possibility of parallel and antiparallel SNARE complexes or of vesicle docking with only syntaxin and synaptobrevin, but have been confirmed by other experiments.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.77.070306.103621
2009-07-07
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/biochem/78/1/annurev.biochem.77.070306.103621.html?itemId=/content/journals/10.1146/annurev.biochem.77.070306.103621&mimeType=html&fmt=ahah

Literature Cited

  1. Heuser JE, Reese TE. 1.  1977. The structure of the synapse. Cellular Biology of Neurons ER Kandel, SR Geiger, VB Mountcastle, JM Brookhart 261–94 Bethesda, MD: Am. Physiol. Soc. [Google Scholar]
  2. Schikorski T, Stevens CF. 2.  1997. Quantitative ultrastructural analysis of hippocampal excitatory synapses. J. Neurosci. 17:5858–67 [Google Scholar]
  3. Harlow ML, Ress D, Stoschek A, Marshall RM, McMahan UJ. 3.  2001. The architecture of active zone material at the frog's neuromuscular junction. Nature 409:479–84 [Google Scholar]
  4. Rosenmund C, Rettig J, Brose N. 4.  2003. Molecular mechanisms of active zone function. Curr. Opin. Neurobiol. 13:509–19 [Google Scholar]
  5. Li C, Ullrich B, Zhang JZ, Anderson RG, Brose N, Südhof TC. 5.  1995. Ca(2+)-dependent and -independent activities of neural and non-neural synaptotagmins. Nature 375:594–99 [Google Scholar]
  6. Martin TF. 6.  2003. Tuning exocytosis for speed: fast and slow modes. Biochim. Biophys. Acta 1641:157–65 [Google Scholar]
  7. Dobrunz LE, Stevens CF. 7.  1997. Heterogeneity of release probability, facilitation, and depletion at central synapses. Neuron 18:995–1008 [Google Scholar]
  8. Südhof TC. 8.  2000. The synaptic vesicle cycle revisited. Neuron 28:317–20 [Google Scholar]
  9. Ferro-Novick S, Jahn R. 9.  1994. Vesicle fusion from yeast to man. Nature 370:191–93 [Google Scholar]
  10. Rothman JE. 10.  1994. Mechanisms of intracellular protein transport. Nature 372:55–63 [Google Scholar]
  11. Jahn R, Scheller RH. 11.  2006. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7:631–43 [Google Scholar]
  12. Sorensen JB, Matti U, Wei SH, Nehring RB, Voets T. 12.  et al. 2002. The SNARE protein SNAP-25 is linked to fast calcium triggering of exocytosis. Proc. Natl. Acad. Sci. USA 99:1627–32 [Google Scholar]
  13. Sakaba T, Stein A, Jahn R, Neher E. 13.  2005. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage. Science 309:491–94 [Google Scholar]
  14. Tang J, Maximov A, Shin OH, Dai H, Rizo J, Südhof TC. 14.  2006. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126:1175–87 [Google Scholar]
  15. Fernandez-Chacon R, Konigstorfer A, Gerber SH, Garcia J, Matos MF. 15.  et al. 2001. Synaptotagmin I functions as a calcium regulator of release probability. Nature 410:41–49 [Google Scholar]
  16. Arac D, Murphy T, Rizo J. 16.  2003. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy. Biochemistry 42:2774–80 [Google Scholar]
  17. Shin OH, Rhee JS, Tang J, Sugita S, Rosenmund C, Südhof TC. 17.  2003. Sr2+ binding to the Ca2+ binding site of the synaptotagmin 1 C2B domain triggers fast exocytosis without stimulating SNARE interactions. Neuron 37:99–108 [Google Scholar]
  18. Weimer RM, Jorgensen EM. 18.  2003. Controversies in synaptic vesicle exocytosis. J. Cell Sci. 116:3661–66 [Google Scholar]
  19. Bai J, Wang CT, Richards DA, Jackson MB, Chapman ER. 19.  2004. Fusion pore dynamics are regulated by synaptotagmin*t-SNARE interactions. Neuron 41:929–42 [Google Scholar]
  20. Tucker WC, Weber T, Chapman ER. 20.  2004. Reconstitution of Ca2+-regulated membrane fusion by synaptotagmin and SNAREs. Science 304:435–38 [Google Scholar]
  21. Arac D, Chen X, Khant HA, Ubach J, Ludtke SJ. 21.  et al. 2006. Close membrane-membrane proximity induced by Ca2+-dependent multivalent binding of synaptotagmin-1 to phospholipids. Nat. Struct. Mol. Biol. 13:209–17 [Google Scholar]
  22. Stein A, Radhakrishnan A, Riedel D, Fasshauer D, Jahn R. 22.  2007. Synaptotagmin activates membrane fusion through a Ca2+-dependent trans interaction with phospholipids. Nat. Struct. Mol. Biol. 14:904–11 [Google Scholar]
  23. Holt M, Riedel D, Stein A, Schuette C, Jahn R. 23.  2008. Synaptic vesicles are constitutively active fusion machines that function independently of Ca2+. Curr. Biol. 18:715–22 [Google Scholar]
  24. Borgia A, Williams PM, Clarke J. 24.  2008. Single-molecule studies of protein folding. Annu. Rev. Biochem. 77:101–25 [Google Scholar]
  25. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T. 25.  2008. Advances in single-molecule fluorescence methods for molecular biology. Annu. Rev. Biochem. 77:51–76 [Google Scholar]
  26. Marshall RA, Aitken CE, Dorywalska M, Puglisi JD. 26.  2008. Translation at the single-molecule level. Annu. Rev. Biochem. 77:177–203 [Google Scholar]
  27. Roy R, Hohng S, Ha T. 27.  2008. A practical guide to single-molecule FRET. Nat. Methods 5:507–16 [Google Scholar]
  28. Xie XS, Choi PJ, Li GW, Lee NK, Lia G. 28.  2008. Single-molecule approach to molecular biology in living bacterial cells. Annu. Rev. Biophys. 37:417–44 [Google Scholar]
  29. Weninger K, Bowen ME, Choi UB, Chu S, Brunger AT. 29.  2008. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16:308–20 [Google Scholar]
  30. Li Y, Augustine GJ, Weninger K. 29a.  2007. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys. J. 93:2178–87 [Google Scholar]
  31. Antonik M, Felekyan S, Gaiduk A, Seidel CA. 29b.  2006. Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. J. Phys. Chem. B 110:6970–78 [Google Scholar]
  32. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J. 29c.  et al. 2005. Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. Biophys. J. 88:2939–53 [Google Scholar]
  33. Kapanidis A, Margeat E, Laurence T, Doose S, Ho S. 29d.  et al. 2006. Retention of transcription initiation factor σ in transcription elongation: single-molecule analysis. Mol. Cell 20:347–56 [Google Scholar]
  34. Watkins LP, Chang H, Yang H. 29e.  2006. Quantitative single-molecule conformational distributions: a case study with poly-(L-proline). 2006. J. Phys. Chem. 110:5191–203 [Google Scholar]
  35. Schuler B, Lipman EA, Steinbach PJ, Kumke M, Eaton WA. 29f.  2005. Polyproline and the “spectroscopic ruler” revisited with single-molecule fluorescence. Proc. Natl. Acad. Sci. USA 102:2754–59 [Google Scholar]
  36. Wozniak AK, Schröder GF, Grubmüller H, Seidel CA, Oesterhelt F. 29g.  2008. Single-molecule FRET measures bends and kinks in DNA. Proc. Natl. Acad. Sci. USA 105:18337–42 [Google Scholar]
  37. Bowen ME, Weninger K, Brunger AT, Chu S. 30.  2004. Single molecule observation of liposome-bilayer fusion thermally induced by SNAREs. Biophys. J. 87:3569–84 [Google Scholar]
  38. Yoon TY, Okumus B, Zhang F, Shin YK, Ha T. 31.  2006. Multiple intermediates in SNARE-induced membrane fusion. Proc. Natl. Acad. Sci. USA 103:19731–36 [Google Scholar]
  39. Wagner ML, Tamm LK. 32.  2001. Reconstituted syntaxin1a/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers. Biophys. J. 81:266–75 [Google Scholar]
  40. Chen X, Arac D, Wang TM, Gilpin CJ, Zimmerberg J, Rizo J. 33.  2006. SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys. J. 90:2062–74 [Google Scholar]
  41. Zhuang X, Ha T, Kim HD, Centner T, Labeit S, Chu S. 34.  2000. Fluorescence quenching: a tool for single-molecule protein-folding study. Proc. Natl. Acad. Sci. USA 97:14241–44 [Google Scholar]
  42. Bustamante C, Chemla YR, Forde NR, Izhaky D. 35.  2004. Mechanical processes in biochemistry. Annu. Rev. Biochem. 73:705–48 [Google Scholar]
  43. Uemura S, Dorywalska M, Lee TH, Kim HD, Puglisi JD, Chu S. 36.  2007. Peptide bond formation destabilizes Shine-Dalgarno interaction on the ribosome. Nature 446:454–57 [Google Scholar]
  44. Herbert KM, Greenleaf WJ, Block SM. 37.  2008. Single-molecule studies of RNA polymerase: motoring along. Annu. Rev. Biochem. 77:149–76 [Google Scholar]
  45. Liu W, Montana V, Bai J, Chapman ER, Mohideen U, Parpura V. 38.  2006. Single molecule mechanical probing of the SNARE protein interactions. Biophys. J. 91:744–58 [Google Scholar]
  46. Liu W, Montana V, Parpura V, Mohideen U. 39.  2008. Comparative energy measurements in single molecule interactions. Biophys. J. 95:419–25 [Google Scholar]
  47. Brunger AT. 40.  2006. Structure and function of SNARE and SNARE-interacting proteins. Q. Rev. Biophys. 38:1–47 [Google Scholar]
  48. Dulubova I, Sugita S, Hill S, Hosaka M, Fernandez I. 41.  et al. 1999. A conformational switch in syntaxin during exocytosis: role of munc18. EMBO J. 18:4372–82 [Google Scholar]
  49. Misura KM, Scheller RH, Weis WI. 42.  2000. Three-dimensional structure of the neuronal-Sec1-syntaxin 1a complex. Nature 404:355–62 [Google Scholar]
  50. Margittai M, Widengren J, Schweinberger E, Schroder GF, Felekyan S. 43.  et al. 2003. Single-molecule fluorescence resonance energy transfer reveals a dynamic equilibrium between closed and open conformations of syntaxin 1. Proc. Natl. Acad. Sci. USA 100:15516–21 [Google Scholar]
  51. Chen X, Lu J, Dulubova I, Rizo J. 44.  2008. NMR analysis of the closed conformation of syntaxin-1. J. Biomol. NMR 41:43–54 [Google Scholar]
  52. Fasshauer D, Otto H, Eliason WK, Jahn R, Brunger AT. 45.  1997. Structural changes are associated with soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptor complex formation. J. Biol. Chem. 272:28036–41 [Google Scholar]
  53. Hazzard J, Südhof TC, Rizo J. 46.  1999. NMR analysis of the structure of synaptobrevin and of its interaction with syntaxin. J. Biomol. NMR 14:203–7 [Google Scholar]
  54. Fasshauer D, Bruns D, Shen B, Jahn R, Brunger AT. 47.  1997. A structural change occurs upon binding of syntaxin to SNAP-25. J. Biol. Chem. 272:4582–90 [Google Scholar]
  55. Nagy G, Milosevic I, Mohrman R, Wiederhold K, Walter AM, Sorensen JB. 48.  2008. The SNAP-25 linker as an adaptation towards fast exocytosis. Mol. Biol. Cell 19:3769–81 [Google Scholar]
  56. Sutton RB, Fasshauer D, Jahn R, Brunger AT. 49.  1998. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 395:347–53 [Google Scholar]
  57. Pobbati AV, Stein A, Fasshauer D. 50.  2006. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 313:673–76 [Google Scholar]
  58. Margittai M, Fasshauer D, Pabst S, Jahn R, Langen R. 51.  2001. Homo- and heterooligomeric SNARE complexes studied by site-directed spin labeling. J. Biol. Chem. 276:13169–77 [Google Scholar]
  59. Xiao W, Poirier MA, Bennett MK, Shin YK. 52.  2001. The neuronal t-SNARE complex is a parallel four-helix bundle. Nat. Struct. Biol. 8:308–11 [Google Scholar]
  60. Michalet X, Weiss S, Jager M. 53.  2006. Single-molecule fluorescence studies of protein folding and conformational dynamics. Chem. Rev. 106:1785–813 [Google Scholar]
  61. Greenleaf WJ, Woodside MT, Block SM. 54.  2007. High-resolution, single-molecule measurements of biomolecular motion. Annu. Rev. Biophys. Biomol. Struct. 36:171–90 [Google Scholar]
  62. Liu T, Tucker WC, Bhalla A, Chapman ER, Weisshaar JC. 55.  2005. SNARE-driven, 25-millisecond vesicle fusion in vitro. Biophys. J. 89:2458–72 [Google Scholar]
  63. Woodbury DJ, Rognlien K. 56.  2000. The t-SNARE syntaxin is sufficient for spontaneous fusion of synaptic vesicles to planar membranes. Cell Biol. Int. 24:809–18 [Google Scholar]
  64. Li F, Pincet F, Perez E, Eng WS, Melia TJ. 57.  et al. 2007. Energetics and dynamics of SNAREpin folding across lipid bilayers. Nat. Struct. Mol. Biol. 14:890–96 [Google Scholar]
  65. Dennison SM, Bowen ME, Brunger AT, Lentz BR. 58.  2006. Neuronal SNAREs do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys. J. 90:1661–75 [Google Scholar]
  66. Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR. 59.  et al. 2002. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat. Neurosci. 5:19–26 [Google Scholar]
  67. Sorensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N. 60.  et al. 2003. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 114:75–86 [Google Scholar]
  68. Otto H, Hanson PI, Jahn R. 61.  1997. Assembly and disassembly of a ternary complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic vesicles. Proc. Natl. Acad. Sci. USA 94:6197–201 [Google Scholar]
  69. Ernst JA, Brunger AT. 62.  2003. High resolution structure, stability, and synaptotagmin binding of a truncated neuronal SNARE complex. J. Biol. Chem. 278:8630–36 [Google Scholar]
  70. Antonin W, Fasshauer D, Becker S, Jahn R, Schneider TR. 63.  2002. Crystal structure of the endosomal SNARE complex reveals common structural principles of all SNAREs. Nat. Struct. Biol. 9:107–11 [Google Scholar]
  71. Zwilling D, Cypionka A, Pohl WH, Fasshauer D, Walla PJ. 64.  et al. 2007. Early endosomal SNAREs form a structurally conserved SNARE complex and fuse liposomes with multiple topologies. EMBO J. 26:9–18 [Google Scholar]
  72. Strop P, Kaiser SE, Vrljic M, Brunger AT. 65.  2008. The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities. J. Biol. Chem. 283:1113–19 [Google Scholar]
  73. Weninger K, Bowen ME, Chu S, Brunger AT. 66.  2003. Single-molecule studies of SNARE complex assembly reveal parallel and antiparallel configurations. Proc. Natl. Acad. Sci. USA 100:14800–5 [Google Scholar]
  74. Lin RC, Scheller RH. 67.  1997. Structural organization of the synaptic exocytosis core complex. Neuron 19:1087–94 [Google Scholar]
  75. Hohl TM, Parlati F, Wimmer C, Rothman JE, Söllner TH, Engelhardt H. 68.  1998. Arrangement of subunits in 20 S particles consisting of NSF, SNAPs, and SNARE complexes. Mol. Cell 2:539–48 [Google Scholar]
  76. Bai J, Pagano RE. 69.  1997. Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36:8840–48 [Google Scholar]
  77. Hanson PI, Heuser JE, Jahn R. 70.  1997. Neurotransmitter release—four years of SNARE complexes. Curr. Opin. Neurobiol. 7:310–15 [Google Scholar]
  78. Fasshauer D, Sutton RB, Brunger AT, Jahn R. 71.  1998. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-SNAREs. Proc. Natl. Acad. Sci. USA 95:15781–86 [Google Scholar]
  79. Fiebig KM, Rice LM, Pollock E, Brunger AT. 72.  1999. Folding intermediates of SNARE complex assembly. Nat. Struct. Biol. 6:117–23 [Google Scholar]
  80. Parlati F, Weber T, McNew JA, Westermann B, Söllner TH, Rothman JE. 73.  1999. Rapid and efficient fusion of phospholipid vesicles by the alpha-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 96:12565–70 [Google Scholar]
  81. Han X, Wang CT, Bai J, Chapman ER, Jackson MB. 74.  2004. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304:289–92 [Google Scholar]
  82. Xu Y, Zhang F, Su Z, McNew JA, Shin YK. 75.  2005. Hemifusion in SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 12:417–22 [Google Scholar]
  83. Xu T, Binz T, Niemann H, Neher E. 76.  1998. Multiple kinetic components of exocytosis distinguished by neurotoxin sensitivity. Nat. Neurosci. 1:192–200 [Google Scholar]
  84. Xu T, Rammner B, Margittai M, Artalejo AR, Neher E, Jahn R. 77.  1999. Inhibition of SNARE complex assembly differentially affects kinetic components of exocytosis. Cell 99:713–22 [Google Scholar]
  85. Chen YA, Scales SJ, Scheller RH. 78.  2001. Sequential SNARE assembly underlies priming and triggering of exocytosis. Neuron 30:161–70 [Google Scholar]
  86. Zhang Y, Su Z, Zhang F, Chen Y, Shin YK. 79.  2005. A partially zipped SNARE complex stabilized by the membrane. J. Biol. Chem. 280:15595–600 [Google Scholar]
  87. Foran P, Shone CC, Dolly JO. 80.  1994. Differences in the protease activities of tetanus and botulinum B toxins revealed by the cleavage of vesicle-associated membrane protein and various sized fragments. Biochemistry 33:15365–74 [Google Scholar]
  88. Hua SY, Charlton MP. 81.  1999. Activity-dependent changes in partial VAMP complexes during neurotransmitter release. Nat. Neurosci. 2:1078–83 [Google Scholar]
  89. Blas GA, Roggero CM, Tomes CN, Mayorga LS. 82.  2005. Dynamics of SNARE assembly and disassembly during sperm acrosomal exocytosis. PLoS Biol. 3:e323 [Google Scholar]
  90. Chernomordik LV, Zimmerberg J, Kozlov MM. 83.  2006. Membranes of the world unite!. J. Cell Biol. 175:201–7 [Google Scholar]
  91. Malinin VS, Lentz BR. 84.  2004. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. Biophys. J. 86:2951–64 [Google Scholar]
  92. Weinreb G, Lentz BR. 85.  2007. Analysis of membrane fusion as a two-state sequential process: evaluation of the stalk model. Biophys. J. 92:4012–29 [Google Scholar]
  93. Yang L, Huang HW. 86.  2002. Observation of a membrane fusion intermediate structure. Science 297:1877–79 [Google Scholar]
  94. Muller M, Katsov K, Schick M. 87.  2003. A new mechanism of model membrane fusion determined from Monte Carlo simulation. Biophys. J. 85:1611–23 [Google Scholar]
  95. Kasson PM, Kelley NW, Singhal N, Vrljic M, Brunger AT, Pande VS. 88.  2006. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proc. Natl. Acad. Sci. USA 103:11916–21 [Google Scholar]
  96. Kasson PM, Pande VS. 89.  2007. Control of membrane fusion mechanism by lipid composition: predictions from ensemble molecular dynamics. PLoS Comput. Biol. 3:e220 [Google Scholar]
  97. Weber T, Zemelman BV, McNew JA, Westermann B, Gmachl M. 90.  et al. 1998. SNAREpins: minimal machinery for membrane fusion. Cell 92:759–72 [Google Scholar]
  98. Ohki S, Flanagan TD, Hoekstra D. 91.  1998. Probe transfer with and without membrane fusion in a fluorescence fusion assay. Biochemistry 37:7496–503 [Google Scholar]
  99. Nickel W, Weber T, McNew JA, Parlati F, Söllner TH, Rothman JE. 92.  1999. Content mixing and membrane integrity during membrane fusion driven by pairing of isolated v-SNAREs and t-SNAREs. Proc. Natl. Acad. Sci. USA 96:12571–76 [Google Scholar]
  100. Takamori S, Holt M, Stenius K, Lemke EA, Gronborg M. 93.  et al. 2006. Molecular anatomy of a trafficking organelle. Cell 127:831–46 [Google Scholar]
  101. Schuette CG, Hatsuzawa K, Margittai M, Stein A, Riedel D. 94.  et al. 2004. Determinants of liposome fusion mediated by synaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 101:2858–63 [Google Scholar]
  102. von Gersdorff H, Matthews G. 95.  1994. Dynamics of synaptic vesicle fusion and membrane retrieval in synaptic terminals. Nature 367:735–39 [Google Scholar]
  103. Wolfel M, Schneggenburger R. 96.  2003. Presynaptic capacitance measurements and Ca2+ uncaging reveal submillisecond exocytosis kinetics and characterize the Ca2+ sensitivity of vesicle pool depletion at a fast CNS synapse. J. Neurosci. 23:7059–68 [Google Scholar]
  104. McNew JA, Parlati F, Fukuda R, Johnston RJ, Paz K. 97.  et al. 2000. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 407:153–59 [Google Scholar]
  105. Parlati F, McNew JA, Fukuda R, Miller R, Söllner TH, Rothman JE. 98.  2000. Topological restriction of SNARE-dependent membrane fusion. Nature 407:194–98 [Google Scholar]
  106. Parlati F, Varlamov O, Paz K, McNew JA, Hurtado D. 99.  et al. 2002. Distinct SNARE complexes mediating membrane fusion in Golgi transport based on combinatorial specificity. Proc. Natl. Acad. Sci. USA 99:5424–29 [Google Scholar]
  107. Fasshauer D, Antonin W, Margittai M, Pabst S, Jahn R. 100.  1999. Mixed and non-cognate SNARE complexes. Characterization of assembly and biophysical properties. J. Biol. Chem. 274:15440–46 [Google Scholar]
  108. Yang B, Gonzalez LC Jr, Prekeris R, Steegmaier M, Advani RJ, Scheller RH. 101.  1999. SNARE interactions are not selective. Implications for membrane fusion specificity. J. Biol. Chem. 274:5649–53 [Google Scholar]
  109. McNew JA, Weber T, Parlati F, Johnston RJ, Melia TJ. 102.  et al. 2000. Close is not enough: SNARE-dependent membrane fusion requires an active mechanism that transduces force to membrane anchors. J. Cell Biol. 150:105–17 [Google Scholar]
  110. Melia TJ, Weber T, McNew JA, Fisher LE, Johnston RJ. 103.  et al. 2002. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell Biol. 158:929–40 [Google Scholar]
  111. McNew JA, Weber T, Engelman DM, Söllner TH, Rothman JE. 104.  1999. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion. Mol. Cell 4:415–21 [Google Scholar]
  112. Mima J, Hickey CM, Xu H, Jun Y, Wickner W. 105.  2008. Reconstituted membrane fusion requires regulatory lipids, SNAREs and synergistic SNARE chaperones. EMBO J. 27:2031–42 [Google Scholar]
  113. Liu T, Wang T, Chapman ER, Weisshaar JC. 106.  2008. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs. Biophys. J. 94:1303–14 [Google Scholar]
  114. Zhao J, Tamm LK. 107.  2003. FTIR and fluorescence studies of interactions of synaptic fusion proteins in polymer-supported bilayers. Langmuir 19:1838–46 [Google Scholar]
  115. Hua Y, Scheller RH. 108.  2001. Three SNARE complexes cooperate to mediate membrane fusion. Proc. Natl. Acad. Sci. USA 98:8065–70 [Google Scholar]
  116. Rickman C, Hu K, Carroll J, Davletov B. 109.  2005. Self-assembly of SNARE fusion proteins into star-shaped oligomers. Biochem J 388:75–79 [Google Scholar]
  117. Mittelsteadt T, Seifert G, Alvarez-Baron E, Steinhauser C, Becker AJ, Schoch S. 109a.  2009. Differential mRNA expression patterns of the synaptotagmin gene family in the rodent brain. J. Comp. Neurol. 512:514–28 [Google Scholar]
  118. Perin MS, Fried VA, Mignery GA, Jahn R, Südhof TC. 110.  1990. Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345:260–63 [Google Scholar]
  119. Bai J, Chapman ER. 111.  2004. The C2 domains of synaptotagmin-partners in exocytosis. Trends Biochem. Sci. 29:143–51 [Google Scholar]
  120. Südhof TC. 112.  2004. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27:509–47 [Google Scholar]
  121. Rizo J, Chen X, Arac D. 113.  2006. Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends Cell Biol. 16:339–50 [Google Scholar]
  122. Desai RC, Vyas B, Earles CA, Littleton JT, Kowalchyck JA. 114.  et al. 2000. The C2B domain of synaptotagmin is a Ca2+-sensing module essential for exocytosis. J. Cell Biol. 150:1125–36 [Google Scholar]
  123. Sutton RB, Davletov BA, Berghuis AM, Südhof TC, Sprang SR. 115.  1995. Structure of the first C2 domain of synaptotagmin I: a novel Ca2+/phospholipid-binding fold. Cell 80:929–38 [Google Scholar]
  124. Shao X, Li C, Fernandez I, Zhang X, Südhof TC, Rizo J. 116.  1997. Synaptotagmin-syntaxin interaction: the C2 domain as a Ca2+-dependent electrostatic switch. Neuron 18:133–42 [Google Scholar]
  125. Sutton RB, Ernst JA, Brunger AT. 117.  1999. Crystal structure of the cytosolic C2A-C2B domains of synaptotagmin III. Implications for Ca2+-independent snare complex interaction. J. Cell Biol. 147:589–98 [Google Scholar]
  126. Fuson KL, Montes M, Robert JJ, Sutton RB. 118.  2007. Structure of human synaptotagmin 1 C2AB in the absence of Ca2+ reveals a novel domain association. Biochemistry 46:13041–48 [Google Scholar]
  127. Chicka MC, Hui E, Liu H, Chapman ER. 119.  2008. Synaptotagmin arrests the SNARE complex before triggering fast, efficient membrane fusion in response to Ca2+. Nat. Struct. Mol. Biol. 15:827–35 [Google Scholar]
  128. Mahal LK, Sequeira SM, Gureasko JM, Söllner TH. 120.  2002. Calcium-independent stimulation of membrane fusion and SNAREpin formation by synaptotagmin I. J. Cell Biol. 158:273–82 [Google Scholar]
  129. Mackler JM, Drummond JA, Loewen CA, Robinson IM, Reist NE. 121.  2002. The C2B Ca2+-binding motif of synaptotagmin is required for synaptic transmission in vivo. Nature 418:340–44 [Google Scholar]
  130. Robinson IM, Ranjan R, Schwarz TL. 122.  2002. Synaptotagmins I and IV promote transmitter release independently of Ca2+ binding in the C2A domain. Nature 418:336–40 [Google Scholar]
  131. Stevens CF, Sullivan JM. 123.  2003. The synaptotagmin C2A domain is part of the calcium sensor controlling fast synaptic transmission. Neuron 39:299–308 [Google Scholar]
  132. Nishiki T, Augustine GJ. 124.  2004. Dual roles of the C2B domain of synaptotagmin I in synchronizing Ca2+-dependent neurotransmitter release. J. Neurosci. 24:8542–50 [Google Scholar]
  133. Martens S, Kozlov MM, McMahon HT. 125.  2007. How synaptotagmin promotes membrane fusion. Science 316:1205–8 [Google Scholar]
  134. Bowen ME, Weninger K, Ernst J, Chu S, Brunger AT. 126.  2005. Single-molecule studies of synaptotagmin and complexin binding to the SNARE complex. Biophys. J. 89:690–702 [Google Scholar]
  135. Chapman ER, Hanson PI, An S, Jahn R. 127.  1995. Ca2+ regulates the interaction between synaptotagmin and syntaxin 1. J. Biol. Chem. 270:23667–71 [Google Scholar]
  136. Kee Y, Scheller RH. 128.  1996. Localization of synaptotagmin-binding domains on syntaxin. J. Neurosci. 16:1975–81 [Google Scholar]
  137. Schiavo G, Stenbeck G, Rothman JE, Söllner TH. 129.  1997. Binding of the synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc. Natl. Acad. Sci. USA 94:997–1001 [Google Scholar]
  138. Davis AF, Bai J, Fasshauer D, Wolowick MJ, Lewis JL, Chapman ER. 130.  1999. Kinetics of synaptotagmin responses to Ca2+ and assembly with the core SNARE complex onto membranes. Neuron 24:363–76 [Google Scholar]
  139. Gerona RR, Larsen EC, Kowalchyk JA, Martin TF. 131.  2000. The C terminus of SNAP25 is essential for Ca2+-dependent binding of synaptotagmin to SNARE complexes. J. Biol. Chem. 275:6328–36 [Google Scholar]
  140. Dai H, Shen N, Arac D, Rizo J. 132.  2007. A quaternary SNARE-synaptotagmin-Ca2+-phospholipid complex in neurotransmitter release. J. Mol. Biol. 367:848–63 [Google Scholar]
  141. McMahon HT, Missler M, Li C, Südhof TC. 133.  1995. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83:111–19 [Google Scholar]
  142. Pabst S, Margittai M, Vainius D, Langen R, Jahn R, Fasshauer D. 134.  2002. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277:7838–48 [Google Scholar]
  143. Pabst S, Hazzard JW, Antonin W, Südhof TC, Jahn R. 135.  et al. 2000. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275:19808–18 [Google Scholar]
  144. Bracher A, Kadlec J, Betz H, Weissenhorn W. 136.  2002. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277:26517–23 [Google Scholar]
  145. Chen X, Tomchick DR, Kovrigin E, Arac D, Machius M. 137.  et al. 2002. Three-dimensional structure of the complexin/SNARE complex. Neuron 33:397–409 [Google Scholar]
  146. Tokumaru H, Umayahara K, Pellegrini LL, Ishizuka T, Saisu H. 138.  et al. 2001. SNARE complex oligomerization by synaphin/complexin is essential for synaptic vesicle exocytosis. Cell 104:421–32 [Google Scholar]
  147. Marz KE, Hanson PI. 139.  2002. Sealed with a twist: complexin and the synaptic SNARE complex. Trends Neurosci. 25:381–83 [Google Scholar]
  148. Xue M, Reim K, Chen X, Chao HT, Deng H. 140.  et al. 2007. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14:949–58 [Google Scholar]
  149. Guan R, Dai H, Rizo J. 141.  2008. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47:1474–81 [Google Scholar]
  150. Yoon TY, Lu X, Diao J, Lee SM, Ha T, Shin YK. 142.  2008. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15:707–13 [Google Scholar]
  151. 143.  Deleted in proof
  152. Schaub JR, Lu X, Doneske B, Shin YK, McNew JA. 144.  2006. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13:748–50 [Google Scholar]
  153. Hata Y, Slaughter CA, Südhof TC. 145.  1993. Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366:347–51 [Google Scholar]
  154. Zilly FE, Sorensen JB, Jahn R, Lang T. 146.  2006. Munc18-bound syntaxin readily forms SNARE complexes with synaptobrevin in native plasma membranes. PLoS Biol. 4:e330 [Google Scholar]
  155. Dulubova I, Khvotchev M, Liu S, Huryeva I, Südhof TC, Rizo J. 147.  2007. Munc18-1 binds directly to the neuronal SNARE complex. Proc. Natl. Acad. Sci. USA 104:2697–702 [Google Scholar]
  156. Burkhardt P, Hattendorf DA, Weis WI, Fasshauer D. 148.  2008. Munc18a controls SNARE assembly through its interaction with the syntaxin N-peptide. EMBO J. 27:923–33 [Google Scholar]
  157. Khvotchev M, Dulubova I, Sun J, Dai H, Rizo J, Südhof TC. 149.  2007. Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci. 27:12147–55 [Google Scholar]
  158. Varoqueaux F, Sigler A, Rhee JS, Brose N, Enk C. 150.  et al. 2002. Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc. Natl. Acad. Sci. USA 99:9037–42 [Google Scholar]
  159. Rhee JS, Betz A, Pyott S, Reim K, Varoqueaux F. 151.  et al. 2002. Beta phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108:121–33 [Google Scholar]
  160. Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee JS. 152.  2002. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 33:411–24 [Google Scholar]
  161. Junge HJ, Rhee JS, Jahn O, Varoqueaux F, Spiess J. 153.  et al. 2004. Calmodulin and Munc13 form a Ca2+ sensor/effector complex that controls short-term synaptic plasticity. Cell 118:389–401 [Google Scholar]
  162. Richmond JE, Weimer RM, Jorgensen EM. 154.  2001. An open form of syntaxin bypasses the requirement for UNC-13 in vesicle priming. Nature 412:338–41 [Google Scholar]
  163. Basu J, Shen N, Dulubova I, Lu J, Guan R. 155.  et al. 2005. A minimal domain responsible for Munc13 activity. Nat. Struct. Mol. Biol. 12:1017–18 [Google Scholar]
  164. Bowen M, Brunger AT. 156.  2006. Conformation of the synaptobrevin transmembrane domain. Proc. Natl. Acad. Sci. USA 103:8378–83 [Google Scholar]
  165. Giraudo CG, Garcia-Diaz A, Eng WS, Chen Y, Hendrickson WA. 157.  2009. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 23:512–16 [Google Scholar]
  166. Maximov A, Tang J, Yang X, Pang ZP, Südhof TC. 158.  2009. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 23:516–21 [Google Scholar]
/content/journals/10.1146/annurev.biochem.77.070306.103621
Loading
/content/journals/10.1146/annurev.biochem.77.070306.103621
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error