1932

Abstract

E3 ligases confer specificity to ubiquitination by recognizing target substrates and mediating transfer of ubiquitin from an E2 ubiquitin-conjugating enzyme to substrate. The activity of most E3s is specified by a RING domain, which binds to an E2∼ubiquitin thioester and activates discharge of its ubiquitin cargo. E2-E3 complexes can either monoubiquitinate a substrate lysine or synthesize polyubiquitin chains assembled via different lysine residues of ubiquitin. These modifications can have diverse effects on the substrate, ranging from proteasome-dependent proteolysis to modulation of protein function, structure, assembly, and/or localization. Not surprisingly, RING E3-mediated ubiquitination can be regulated in a number of ways.

RING-based E3s are specified by over 600 human genes, surpassing the 518 protein kinase genes. Accordingly, RING E3s have been linked to the control of many cellular processes and to multiple human diseases. Despite their critical importance, our knowledge of the physiological partners, biological functions, substrates, and mechanism of action for most RING E3s remains at a rudimentary stage.

Keyword(s): APCCblCRLE2SCFUPS
Loading

Article metrics loading...

/content/journals/10.1146/annurev.biochem.78.101807.093809
2009-07-07
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/biochem/78/1/annurev.biochem.78.101807.093809.html?itemId=/content/journals/10.1146/annurev.biochem.78.101807.093809&mimeType=html&fmt=ahah

Literature Cited

  1. Pickart CM. 1.  2004. Back to the future with ubiquitin. Cell 116:181–90 [Google Scholar]
  2. Pickart CM. 2.  2001. Mechanisms underlying ubiquitination. Annu. Rev. Biochem. 70:503–33 [Google Scholar]
  3. Dye BT, Schulman BA. 3.  2007. Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu. Rev. Biophys. Biomol. Struct. 36:131–50 [Google Scholar]
  4. Chau V, Tobias JW, Bachmair A, Marriott D, Ecker DJ. 4.  et al. 1989. A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–83 [Google Scholar]
  5. Thrower JS, Hoffman L, Rechsteiner M, Pickart CM. 5.  2000. Recognition of the polyubiquitin proteolytic signal. EMBO J. 19:94–102 [Google Scholar]
  6. Hicke L, Schubert HL, Hill CP. 6.  2005. Ubiquitin-binding domains. Nat. Rev. Mol. Cell Biol. 6:610–21 [Google Scholar]
  7. Grabbe C, Dikic I. 7.  2009. Functional roles of ubiquitin-like domain and ubiquitin-binding domain containing proteins. Chem. Rev. In press [Google Scholar]
  8. Freemont PS, Hanson IM, Trowsdale J. 8.  1991. A novel cysteine-rich sequence motif. Cell 64:483–84 [Google Scholar]
  9. Barlow PN, Luisi B, Milner A, Elliott M, Everett R. 9.  1994. Structure of the C3HC4 domain by 1H-nuclear magnetic resonance spectroscopy. A new structural class of zinc-finger. J. Mol. Biol. 237:201–11 [Google Scholar]
  10. Borden KL, Boddy MN, Lally J, O'Reilly NJ, Martin S. 10.  et al. 1995. The solution structure of the RING finger domain from the acute promyelocytic leukaemia proto-oncoprotein PML. EMBO J. 14:1532–41 [Google Scholar]
  11. Zheng N, Schulman BA, Song L, Miller JJ, Jeffrey PD. 11.  et al. 2002. Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416:703–9 [Google Scholar]
  12. Borden KL, Freemont PS. 12.  1996. The RING finger domain: a recent example of a sequence-structure family. Curr. Opin. Struct. Biol. 6:395–401 [Google Scholar]
  13. Scheel H, Hofmann K. 13.  2003. No evidence for PHD fingers as ubiquitin ligases. Trends Cell Biol. 13:285–87 author reply 87–88 [Google Scholar]
  14. Aravind L, Iyer LM, Koonin EV. 14.  2003. Scores of RINGS but no PHDs in ubiquitin signaling. Cell Cycle 2:123–26 [Google Scholar]
  15. Tao H, Simmons BN, Singireddy S, Jakkidi M, Short KM. 15.  et al. 2008. Structure of the MID1 tandem B-boxes reveals an interaction reminiscent of intermolecular ring heterodimers. Biochemistry 47:2450–57 [Google Scholar]
  16. Aravind L, Koonin EV. 16.  2000. The U box is a modified RING finger—a common domain in ubiquitination. Curr. Biol. 10:R132–34 [Google Scholar]
  17. Vander Kooi CW, Ohi MD, Rosenberg JA, Oldham ML, Newcomer ME. 17.  et al. 2006. The Prp19 U-box crystal structure suggests a common dimeric architecture for a class of oligomeric E3 ubiquitin ligases. Biochemistry 45:121–30 [Google Scholar]
  18. Janjusevic R, Abramovitch RB, Martin GB, Stebbins CE. 18.  2006. A bacterial inhibitor of host programmed cell death defenses is an E3 ubiquitin ligase. Science 311:222–26 [Google Scholar]
  19. Bailly V, Lauder S, Prakash S, Prakash L. 19.  1997. Yeast DNA repair proteins Rad6 and Rad18 form a heterodimer that has ubiquitin conjugating, DNA binding, and ATP hydrolytic activities. J. Biol. Chem. 272:23360–65 [Google Scholar]
  20. Bordallo J, Plemper RK, Finger A, Wolf DH. 20.  1998. Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol. Biol. Cell 9:209–22 [Google Scholar]
  21. Zachariae W, Shevchenko A, Andrews PD, Ciosk R, Galova M. 21.  et al. 1998. Mass spectrometric analysis of the anaphase-promoting complex from yeast: identification of a subunit related to cullins. Science 279:1216–19 [Google Scholar]
  22. Potuschak T, Stary S, Schlogelhofer P, Becker F, Nejinskaia V, Bachmair A. 22.  1998. PRT1 of Arabidopsis thaliana encodes a component of the plant N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7904–8 [Google Scholar]
  23. Kwon YT, Reiss Y, Fried VA, Hershko A, Yoon JK. 23.  et al. 1998. The mouse and human genes encoding the recognition component of the N-end rule pathway. Proc. Natl. Acad. Sci. USA 95:7898–903 [Google Scholar]
  24. Kamura T, Koepp DM, Conrad MN, Skowyra D, Moreland RJ. 24.  et al. 1999. Rbx1, a component of the VHL tumor suppressor complex and SCF ubiquitin ligase. Science 284:657–61 [Google Scholar]
  25. Ohta T, Michel JJ, Schottelius AJ, Xiong Y. 25.  1999. ROC1, a homolog of APC11, represents a family of cullin partners with an associated ubiquitin ligase activity. Mol. Cell 3:535–41 [Google Scholar]
  26. Tan P, Fuchs SY, Chen A, Wu K, Gomez C. 26.  et al. 1999. Recruitment of a ROC1-CUL1 ubiquitin ligase by Skp1 and HOS to catalyze the ubiquitination of I kappa B alpha. Mol. Cell 3:527–33 [Google Scholar]
  27. Seol JH, Feldman RM, Zachariae W, Shevchenko A, Correll CC. 27.  et al. 1999. Cdc53/cullin and the essential Hrt1 RING-H2 subunit of SCF define a ubiquitin ligase module that activates the E2 enzyme Cdc34. Genes Dev. 13:1614–26 [Google Scholar]
  28. Joazeiro CA, Wing SS, Huang H, Leverson JD, Hunter T, Liu YC. 28.  1999. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286:309–12 [Google Scholar]
  29. Lorick KL, Jensen JP, Fang S, Ong AM, Hatakeyama S, Weissman AM. 29.  1999. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 96:11364–69 [Google Scholar]
  30. Yokouchi M, Kondo T, Houghton A, Bartkiewicz M, Horne WC. 30.  et al. 1999. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274:31707–12 [Google Scholar]
  31. Levkowitz G, Waterman H, Ettenberg SA, Katz M, Tsygankov AY. 31.  et al. 1999. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4:1029–40 [Google Scholar]
  32. Xie Y, Varshavsky A. 32.  1999. The E2-E3 interaction in the N-end rule pathway: The RING-H2 finger of E3 is required for the synthesis of multiubiquitin chain. EMBO J. 18:6832–44 [Google Scholar]
  33. Li W, Bengtson MH, Ulbrich A, Matsuda A, Reddy VA. 33.  et al. 2008. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle's dynamics and signaling. PLoS ONE 3:e1487 [Google Scholar]
  34. Petroski MD, Deshaies RJ. 34.  2005. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol. 6:9–20 [Google Scholar]
  35. Lee J, Zhou P. 34a.  2007. DCAFs, the missing link of the CUL4-DDB1 ubiquitin ligase. Mol. Cell 26:775–80 [Google Scholar]
  36. Meroni G, Diez-Roux G. 35.  2005. TRIM/RBCC, a novel class of ‘single protein RING finger’ E3 ubiquitin ligases. BioEssays 27:1147–57 [Google Scholar]
  37. Sardiello M, Cairo S, Fontanella B, Ballabio A, Meroni G. 36.  2008. Genomic analysis of the TRIM family reveals two groups of genes with distinct evolutionary properties. BMC Evol. Biol. 8:225 [Google Scholar]
  38. Eisenhaber B, Chumak N, Eisenhaber F, Hauser MT. 37.  2007. The ring between ring fingers (RBR) protein family. Genome Biol. 8:209 [Google Scholar]
  39. Marin I, Ferrús A. 38.  2002. Comparative genomics of the RBR family, including the Parkinson's disease–related gene Parkin and the genes of the Ariadne subfamily. Mol. Biol. Evol. 19:2039–50 [Google Scholar]
  40. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D. 39.  et al. 2001. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J. Biol. Chem. 276:14537–40 [Google Scholar]
  41. Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P. 40.  et al. 2004. Role of histone H2A ubiquitination in Polycomb silencing. Nature 431:873–78 [Google Scholar]
  42. Linares LK, Hengstermann A, Ciechanover A, Muller S, Scheffner M. 41.  2003. HdmX stimulates Hdm2-mediated ubiquitination and degradation of p53. Proc. Natl. Acad. Sci. USA 100:12009–14 [Google Scholar]
  43. Zheng N, Wang P, Jeffrey PD, Pavletich NP. 42.  2000. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102:533–39 [Google Scholar]
  44. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D III. 43.  et al. 2003. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc. Natl. Acad. Sci. USA 100:5646–51 [Google Scholar]
  45. Dominguez C, Bonvin AM, Winkler GS, van Schaik FM, Timmers HT, Boelens R. 44.  2004. Structural model of the UbcH5B/CNOT4 complex revealed by combining NMR, mutagenesis, and docking approaches. Structure 12:633–44 [Google Scholar]
  46. Albert TK, Hanzawa H, Legtenberg YI, de Ruwe MJ, van den Heuvel FA. 45.  et al. 2002. Identification of a ubiquitin-protein ligase subunit within the CCR4-NOT transcription repressor complex. EMBO J. 21:355–64 [Google Scholar]
  47. Itahana K, Mao H, Jin A, Itahana Y, Clegg HV. 46.  et al. 2007. Targeted inactivation of Mdm2 RING finger E3 ubiquitin ligase activity in the mouse reveals mechanistic insights into p53 regulation. Cancer Cell 12:355–66 [Google Scholar]
  48. Ozkan E, Yu H, Deisenhofer J. 47.  2005. Mechanistic insight into the allosteric activation of a ubiquitin-conjugating enzyme by RING-type ubiquitin ligases. Proc. Natl. Acad. Sci. USA 102:18890–95 [Google Scholar]
  49. Christensen DE, Brzovic PS, Klevit RE. 48.  2007. E2-BRCA1 RING interactions dictate synthesis of mono- or specific polyubiquitin chain linkages. Nat. Struct. Mol. Biol. 14:941–48 [Google Scholar]
  50. Chen B, Mariano J, Tsai YC, Chan AH, Cohen M, Weissman AM. 49.  2006. The activity of a human endoplasmic reticulum-associated degradation E3, gp78, requires its Cue domain, RING finger, and an E2-binding site. Proc. Natl. Acad. Sci. USA 103:341–46 [Google Scholar]
  51. Winkler GS, Albert TK, Dominguez C, Legtenberg YI, Boelens R, Timmers HT. 50.  2004. An altered-specificity ubiquitin-conjugating enzyme/ubiquitin-protein ligase pair. J. Mol. Biol. 337:157–65 [Google Scholar]
  52. Eletr ZM, Huang DT, Duda DM, Schulman BA, Kuhlman B. 51.  2005. E2 conjugating enzymes must disengage from their E1 enzymes before E3-dependent ubiquitin and ubiquitin-like transfer. Nat. Struct. Mol. Biol. 12:933–34 [Google Scholar]
  53. Jones JM, Gellert M. 52.  2003. Autoubiquitylation of the V(D)J recombinase protein RAG1. Proc. Natl. Acad. Sci. USA 100:15446–51 [Google Scholar]
  54. Yurchenko V, Xue Z, Sadofsky M. 53.  2003. The RAG1 N-terminal domain is an E3 ubiquitin ligase. Genes Dev. 17:581–85 [Google Scholar]
  55. Petroski MD, Deshaies RJ. 54.  2005. Mechanism of lysine 48-linked ubiquitin-chain synthesis by the cullin-RING ubiquitin-ligase complex SCF/Cdc34. Cell 123:1107–20 [Google Scholar]
  56. Saha A, Deshaies RJ. 55.  2008. Multimodal activation of ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32:21–31 [Google Scholar]
  57. Scheffner M, Nuber U, Huibregtse JM. 56.  1995. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83 [Google Scholar]
  58. Passmore LA, Barford D. 57.  2004. Getting into position: the catalytic mechanisms of protein ubiquitylation. Biochem. J. 379:513–25 [Google Scholar]
  59. Kentsis A, Gordon RE, Borden KL. 58.  2002. Control of biochemical reactions through supramolecular RING domain self-assembly. Proc. Natl. Acad. Sci. USA 99:15404–9 [Google Scholar]
  60. Poyurovsky MV, Priest C, Kentsis A, Borden KL, Pan ZQ. 59.  et al. 2007. The Mdm2 RING domain C-terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26:90–101 [Google Scholar]
  61. Huang A, de Jong RN, Wienk H, Winkler GS, Timmers HTM, Boelens R.60.  2009. E2-c-Cbl recognition is necessary but not sufficient for ubiquitination activity. J. Mol. Biol. 385:507–19 [Google Scholar]
  62. Xu Z, Kohli E, Devlin KI, Bold M, Nix JC, Misra S. 61.  2008. Interactions between the quality control ubiquitin ligase CHIP and ubiquitin conjugating enzymes. BMC Struct. Biol. 8:26 [Google Scholar]
  63. Zhang M, Windheim M, Roe SM, Peggie M, Cohen P. 62.  et al. 2005. Chaperoned ubiquitylation—crystal structures of the CHIP U box E3 ubiquitin ligase and a CHIP-Ubc13-Uev1a complex. Mol. Cell 20:525–38 [Google Scholar]
  64. Mace PD, Linke K, Feltham R, Schumacher FR, Smith CA. 63.  et al. 2008. Structures of the cIAP2 ring domain reveal conformational changes associated with E2 recruitment. J. Biol. Chem. 283:31633–40 [Google Scholar]
  65. Wu PY, Hanlon M, Eddins M, Tsui C, Rogers RS. 64.  et al. 2003. A conserved catalytic residue in the ubiquitin-conjugating enzyme family. EMBO J. 22:5241–50 [Google Scholar]
  66. Reverter D, Lima CD. 65.  2005. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687–92 [Google Scholar]
  67. Orlicky S, Tang X, Willems A, Tyers M, Sicheri F. 66.  2003. Structural basis for phosphodependent substrate selection and orientation by the SCFCdc4 ubiquitin ligase. Cell 112:243–56 [Google Scholar]
  68. Hao B, Oehlmann S, Sowa ME, Harper JW, Pavletich NP. 67.  2007. Structure of a Fbw7-Skp1-cyclin E complex: multisite-phosphorylated substrate recognition by SCF ubiquitin ligases. Mol. Cell 26:131–43 [Google Scholar]
  69. Hao B, Zheng N, Schulman BA, Wu G, Miller JJ. 68.  et al. 2005. Structural basis of the Cks1-dependent recognition of p27(Kip1) by the SCF(Skp2) ubiquitin ligase. Mol. Cell 20:9–19 [Google Scholar]
  70. Wu G, Xu G, Schulman BA, Jeffrey PD, Harper JW, Pavletich NP. 69.  2003. Structure of a beta-TrCP1-Skp1-beta-catenin complex: destruction motif binding and lysine specificity of the SCF(beta-TrCP1) ubiquitin ligase. Mol. Cell 11:1445–56 [Google Scholar]
  71. Deffenbaugh AE, Scaglione KM, Zhang L, Moore JM, Buranda T. 70.  et al. 2003. Release of ubiquitin-charged Cdc34-S∼Ub from the RING domain is essential for ubiquitination of the SCF(Cdc4)-bound substrate Sic1. Cell 114:611–22 [Google Scholar]
  72. Petroski MD, Kleiger G, Deshaies RJ. 71.  2006. Evaluation of a diffusion-driven mechanism for substrate ubiquitination by the SCF-Cdc34 ubiquitin ligase complex. Mol. Cell 24:523–34 [Google Scholar]
  73. Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW. 72.  1995. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc. Natl. Acad. Sci. USA 92:11259–63 [Google Scholar]
  74. Petroski MD, Deshaies RJ. 73.  2003. Context of multiubiquitin chain attachment influences the rate of Sic1 degradation. Mol. Cell 11:1435–44 [Google Scholar]
  75. Jin L, Williamson A, Banerjee S, Philipp I, Rape M. 74.  2008. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 133:653–65 [Google Scholar]
  76. Highbarger LA, Gerlt JA, Kenyon GL. 75.  1996. Mechanism of the reaction catalyzed by acetoacetate decarboxylase. Importance of lysine 116 in determining the pKa of active-site lysine 115. Biochemistry 35:41–46 [Google Scholar]
  77. Yu H, King RW, Peters JM, Kirschner MW. 76.  1996. Identification of a novel ubiquitin-conjugating enzyme involved in mitotic cyclin degradation. Curr. Biol. 6:455–66 [Google Scholar]
  78. Rodrigo-Brenni MC, Morgan DO. 77.  2007. Sequential E2s drive polyubiquitin chain assembly on APC targets. Cell 130:127–39 [Google Scholar]
  79. Summers MK, Pan B, Mukhyala K, Jackson PK. 78.  2008. The unique N terminus of the UbcH10 E2 enzyme controls the threshold for APC activation and enhances checkpoint regulation of the APC. Mol. Cell 31:544–56 [Google Scholar]
  80. Hochstrasser M. 79.  2006. Lingering mysteries of ubiquitin-chain assembly. Cell 124:27–34 [Google Scholar]
  81. Li W, Tu D, Brunger AT, Ye Y. 80.  2007. A ubiquitin ligase transfers preformed polyubiquitin chains from a conjugating enzyme to a substrate. Nature 446:333–37 [Google Scholar]
  82. Li W, Tu D, Li L, Wollert T, Ghirlando R. 81.  et al. 2009. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin conjugating enzyme Ube2g2.. Proc. Natl. Acad. Sci. USA 106:3722–27 [Google Scholar]
  83. Ravid T, Hochstrasser M. 82.  2007. Autoregulation of an E2 enzyme by ubiquitin-chain assembly on its catalytic residue. Nat. Cell Biol. 9:422–27 [Google Scholar]
  84. Fang S, Jensen JP, Ludwig RL, Vousden KH, Weissman AM. 83.  2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275:8945–51 [Google Scholar]
  85. Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD. 84.  2003. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol. Cell 11:261–66 [Google Scholar]
  86. Wood A, Krogan NJ, Dover J, Schneider J, Heidt J. 85.  et al. 2003. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol. Cell 11:267–74 [Google Scholar]
  87. Flick K, Raasi S, Zhang H, Yen JL, Kaiser P. 86.  2006. A ubiquitin-interacting motif protects polyubiquitinated Met4 from degradation by the 26S proteasome. Nat. Cell Biol. 8:509–15 [Google Scholar]
  88. Kirkpatrick DS, Hathaway NA, Hanna J, Elsasser S, Rush J. 87.  et al. 2006. Quantitative analysis of in vitro ubiquitinated cyclin B1 reveals complex chain topology. Nat. Cell Biol. 8:700–10 [Google Scholar]
  89. Haglund K, Sigismund S, Polo S, Szymkiewicz I, Di Fiore PP, Dikic I. 88.  2003. Multiple monoubiquitination of RTKs is sufficient for their endocytosis and degradation. Nat. Cell Biol. 5:461–66 [Google Scholar]
  90. Wu-Baer F, Lagrazon K, Yuan W, Baer R. 89.  2003. The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J. Biol. Chem. 278:34743–46 [Google Scholar]
  91. Nishikawa H, Ooka S, Sato K, Arima K, Okamoto J. 90.  et al. 2004. Mass spectrometric and mutational analyses reveal Lys-6-linked polyubiquitin chains catalyzed by BRCA1-BARD1 ubiquitin ligase. J. Biol. Chem. 279:3916–24 [Google Scholar]
  92. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ. 91.  1997. A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91:221–30 [Google Scholar]
  93. Hofmann RM, Pickart CM. 92.  1999. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96:645–53 [Google Scholar]
  94. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D. 93.  et al. 2003. A proteomics approach to understanding protein ubiquitination. Nat. Biotechnol. 21:921–26 [Google Scholar]
  95. Kim HT, Kim KP, Lledias F, Kisselev AF, Scaglione KM. 94.  et al. 2007. Certain pairs of ubiquitin-conjugating enzymes (E2s) and ubiquitin-protein ligases (E3s) synthesize nondegradable forked ubiquitin chains containing all possible isopeptide linkages. J. Biol. Chem. 282:17375–86 [Google Scholar]
  96. Haas AL, Reback PB, Chau V. 95.  1991. Ubiquitin conjugation by the yeast RAD6 and CDC34 gene products. Comparison to their putative rabbit homologs, E220K and E232K. J. Biol. Chem. 266:5104–12 [Google Scholar]
  97. Chen Z, Pickart CM. 96.  1990. A 25-kDa ubiquitin carrier protein (E2) catalyzes multi-ubiquitin chain synthesis via lysine 48 of ubiquitin. J. Biol. Chem. 265:21835–42 [Google Scholar]
  98. Van Nocker S, Vierstra RD. 97.  1991. Cloning and characterization of a 20-kDa ubiquitin carrier protein from wheat that catalyzes multiubiquitin chain formation in vitro. Proc. Natl. Acad. Sci. USA 88:10297–301 [Google Scholar]
  99. Wang M, Pickart CM. 98.  2005. Different HECT domain ubiquitin ligases employ distinct mechanisms of polyubiquitin chain synthesis. EMBO J. 24:4324–33 [Google Scholar]
  100. Haldeman MT, Xia G, Kasperek EM, Pickart CM. 99.  1997. Structure and function of ubiquitin conjugating enzyme E2-25K: The tail is a core-dependent activity element. Biochemistry 36:10526–37 [Google Scholar]
  101. Kirisako T, Kamei K, Murata S, Kato M, Fukumoto H. 100.  et al. 2006. A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J. 25:4877–87 [Google Scholar]
  102. Carroll CW, Morgan DO. 101.  2002. The Doc1 subunit is a processivity factor for the anaphase-promoting complex. Nat. Cell Biol. 4:880–87 [Google Scholar]
  103. Brzovic PS, Lissounov A, Christensen DE, Hoyt DW, Klevit RE. 102.  2006. A UbcH5/ubiquitin noncovalent complex is required for processive BRCA1-directed ubiquitination. Mol. Cell 21:873–80 [Google Scholar]
  104. Pai MT, Tzeng SR, Kovacs JJ, Keaton MA, Li SS. 103.  et al. 2007. Solution structure of the Ubp-M BUZ domain, a highly specific protein module that recognizes the C-terminal tail of free ubiquitin. J. Mol. Biol. 370:290–302 [Google Scholar]
  105. Notenboom V, Hibbert RG, van Rossum-Fikkert SE, Olsen JV, Mann M, Sixma TK. 104.  2007. Functional characterization of Rad18 domains for Rad6, ubiquitin, DNA binding and PCNA modification. Nucleic Acids Res. 35:5819–30 [Google Scholar]
  106. Giannini AL, Gao Y, Bijlmakers MJ. 105.  2008. T-cell regulator RNF125/TRAC-1 belongs to a novel family of ubiquitin ligases with zinc fingers and a ubiquitin-binding domain. Biochem. J. 410:101–11 [Google Scholar]
  107. Eddins MJ, Carlile CM, Gomez KM, Pickart CM, Wolberger C. 106.  2006. Mms2-Ubc13 covalently bound to ubiquitin reveals the structural basis of linkage-specific polyubiquitin chain formation. Nat. Struct. Mol. Biol. 13:915–20 [Google Scholar]
  108. Park Y, Burkitt V, Villa A, Tong L, Wu H. 107.  1999. Structural basis for self-association and receptor recognition of human TRAF2. Nature 398:533–38 [Google Scholar]
  109. Polekhina G, House C, Traficante N, Mackay J, Relaix F. 108.  et al. 2002. Siah ubiquitin ligase is structurally related to TRAF and modulates TNF-alpha signaling. Nat. Struct. Biol. 9:68–75 [Google Scholar]
  110. Kozlov G, Peschard P, Zimmerman B, Lin T, Moldoveanu T. 109.  et al. 2007. Structural basis for UBA-mediated dimerization of c-Cbl ubiquitin ligase. J. Biol. Chem. 282:27547–55 [Google Scholar]
  111. Ohi M, Vander Kooi C, Rosenberg J, Ren L, Hirsch J. 110.  et al. 2005. Structural and functional analysis of essential premRNA splicing factor Prp19p. Mol. Cell. Biol. 25:451–60 [Google Scholar]
  112. Tang X, Orlicky S, Lin Z, Willems A, Neculai D. 111.  et al. 2007. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129:1165–76 [Google Scholar]
  113. Barbash O, Zamfirova P, Lin DI, Chen X, Yang K. 112.  et al. 2008. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14:68–78 [Google Scholar]
  114. Welcker M, Clurman BE. 113.  2007. Fbw7/hCDC4 dimerization regulates its substrate interactions. Cell Div. 2:7 [Google Scholar]
  115. Lamothe B, Besse A, Campos AD, Webster WK, Wu H, Darnay BG. 114.  2007. Site-specific Lys-63-linked tumor necrosis factor receptor-associated factor 6 auto-ubiquitination is a critical determinant of I kappa B kinase activation. J. Biol. Chem. 282:4102–12 [Google Scholar]
  116. Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ. 115.  1997. Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278:455–60 [Google Scholar]
  117. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW. 116.  1997. F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin-ligase complex. Cell 91:209–19 [Google Scholar]
  118. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K. 117.  et al. 2002. E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438–42 [Google Scholar]
  119. Ivan M, Kondo K, Yang H, Kim W, Valiando J. 118.  et al. 2001. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–68 [Google Scholar]
  120. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J. 119.  et al. 2001. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–72 [Google Scholar]
  121. Xie Y, Kerscher O, Kroetz MB, McConchie HF, Sung P, Hochstrasser M. 120.  2007. The yeast Hex3.Slx8 heterodimer is a ubiquitin ligase stimulated by substrate sumoylation. J. Biol. Chem. 282:34176–84 [Google Scholar]
  122. Sun H, Leverson JD, Hunter T. 121.  2007. Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins. EMBO J. 26:4102–12 [Google Scholar]
  123. Uzunova K, Gottsche K, Miteva M, Weisshaar SR, Glanemann C. 122.  et al. 2007. Ubiquitin-dependent proteolytic control of SUMO conjugates. J. Biol. Chem. 282:34167–75 [Google Scholar]
  124. Prudden J, Pebernard S, Raffa G, Slavin DA, Perry JJ. 123.  et al. 2007. SUMO-targeted ubiquitin ligases in genome stability. EMBO J. 26:4089–101 [Google Scholar]
  125. Ravid T, Hochstrasser M. 124.  2008. Degradation signal diversity in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9:679–90 [Google Scholar]
  126. Nash P, Tang X, Orlicky S, Chen Q, Gertler FB. 125.  et al. 2001. Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414:514–21 [Google Scholar]
  127. Deshaies RJ, Ferrell JE Jr. 126.  2001. Multisite phosphorylation and the countdown to S phase. Cell 107:819–22 [Google Scholar]
  128. Klein P, Pawson T, Tyers M. 127.  2003. Mathematical modeling suggests cooperative interactions between a disordered polyvalent ligand and a single receptor site. Curr. Biol. 13:1669–78 [Google Scholar]
  129. Borg M, Mittag T, Pawson T, Tyers M, Forman-Kay JD, Chan HS. 128.  2007. Polyelectrostatic interactions of disordered ligands suggest a physical basis for ultrasensitivity. Proc. Natl. Acad. Sci. USA 104:9650–55 [Google Scholar]
  130. Lahav-Baratz S, Sudakin V, Ruderman JV, Hershko A. 129.  1995. Reversible phosphorylation controls the activity of cyclosome-associated cyclin-ubiquitin ligase. Proc. Natl. Acad. Sci. USA 92:9303–7 [Google Scholar]
  131. Rudner AD, Murray AW. 130.  2000. Phosphorylation by Cdc28 activates the Cdc20-dependent activity of the anaphase-promoting complex. J. Cell Biol. 149:1377–90 [Google Scholar]
  132. Zachariae W, Schwab M, Nasmyth K, Seufert W. 131.  1998. Control of cyclin ubiquitination by CDK-regulated binding of Hct1 to the anaphase promoting complex. Science 282:1721–24 [Google Scholar]
  133. Harper JW, Burton JL, Solomon MJ. 132.  2002. The anaphase-promoting complex: It's not just for mitosis any more. Genes Dev. 16:2179–206 [Google Scholar]
  134. Peters JM. 133.  2006. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat. Rev. Mol. Cell Biol. 7:644–56 [Google Scholar]
  135. Sarcevic B, Mawson A, Baker RT, Sutherland RL. 134.  2002. Regulation of the ubiquitin-conjugating enzyme hHR6A by CDK-mediated phosphorylation. EMBO J. 21:2009–18 [Google Scholar]
  136. Goebl MG, Goetsch L, Byers B. 135.  1994. The Ubc3 (Cdc34) ubiquitin-conjugating enzyme is ubiquitinated and phosphorylated in vivo. Mol. Cell. Biol. 14:3022–29 [Google Scholar]
  137. Coccetti P, Tripodi F, Tedeschi G, Nonnis S, Marin O. 136.  et al. 2008. The CK2 phosphorylation of catalytic domain of Cdc34 modulates its activity at the G1 to S transition in Saccharomyces cerevisiae. Cell Cycle 7:1391–401 [Google Scholar]
  138. Sadowski M, Mawson A, Baker R, Sarcevic B. 137.  2007. Cdc34 C-terminal tail phosphorylation regulates Skp1/cullin/F-box (SCF)-mediated ubiquitination and cell cycle progression. Biochem. J. 405:569–81 [Google Scholar]
  139. Barz T, Ackermann K, Pyerin W. 138.  2006. Control of methionine biosynthesis genes by protein kinase CK2-mediated phosphorylation of Cdc34. Cell Mol. Life Sci. 63:2183–90 [Google Scholar]
  140. Semplici F, Meggio F, Pinna LA, Oliviero S. 139.  2002. CK2-dependent phosphorylation of the E2 ubiquitin conjugating enzyme UBC3B induces its interaction with beta-TrCP and enhances beta-catenin degradation. Oncogene 21:3978–87 [Google Scholar]
  141. Block K, Boyer TG, Yew PR. 140.  2001. Phosphorylation of the human ubiquitin-conjugating enzyme, CDC34, by casein kinase 2. J. Biol. Chem. 276:41049–58 [Google Scholar]
  142. Wang X, Taplick J, Geva N, Oren M. 141.  2004. Inhibition of p53 degradation by Mdm2 acetylation. FEBS Lett. 561:195–201 [Google Scholar]
  143. Zhou P, Howley PM. 142.  1998. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell 2:571–80 [Google Scholar]
  144. Galan JM, Peter M. 143.  1999. Ubiquitin-dependent degradation of multiple F-box proteins by an autocatalytic mechanism. Proc. Natl. Acad. Sci. USA 96:9124–29 [Google Scholar]
  145. Deshaies RJ. 144.  1999. SCF and Cullin/Ring H2-based ubiquitin ligases. Annu. Rev. Cell Dev. Biol. 15:435–67 [Google Scholar]
  146. Li Y, Gazdoiu S, Pan ZQ, Fuchs SY. 145.  2004. Stability of homologue of Slimb F-box protein is regulated by availability of its substrate. J. Biol. Chem. 279:11074–80 [Google Scholar]
  147. Li M, Brooks CL, Kon N, Gu W. 146.  2004. A dynamic role of HAUSP in the p53-Mdm2 pathway. Mol. Cell 13:879–86 [Google Scholar]
  148. Cummins JM, Vogelstein B. 147.  2004. HAUSP is required for p53 destabilization. Cell Cycle 3:689–92 [Google Scholar]
  149. Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD. 148.  2000. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288:874–77 [Google Scholar]
  150. Schile AJ, Garcia-Fernandez M, Steller H. 149.  2008. Regulation of apoptosis by XIAP ubiquitin-ligase activity. Genes Dev. 22:2256–66 [Google Scholar]
  151. Yoo SJ, Huh JR, Muro I, Yu H, Wang L. 150.  et al. 2002. Hid, Rpr and Grim negatively regulate DIAP1 levels through distinct mechanisms. Nat. Cell Biol. 4:416–24 [Google Scholar]
  152. Ryoo HD, Bergmann A, Gonen H, Ciechanover A, Steller H. 151.  2002. Regulation of Drosophila IAP1 degradation and apoptosis by reaper and ubcD1. Nat. Cell Biol. 4:432–38 [Google Scholar]
  153. Mallery DL, Vandenberg CJ, Hiom K. 152.  2002. Activation of the E3 ligase function of the BRCA1/BARD1 complex by polyubiquitin chains. EMBO J. 21:6755–62 [Google Scholar]
  154. Ben-Saadon R, Zaaroor D, Ziv T, Ciechanover A. 153.  2006. The polycomb protein Ring1B generates self atypical mixed ubiquitin chains required for its in vitro histone H2A ligase activity. Mol. Cell 24:701–11 [Google Scholar]
  155. Bashir T, Dorrello NV, Amador V, Guardavaccaro D, Pagano M. 154.  2004. Control of the SCF(Skp2-Cks1) ubiquitin ligase by the APC/C(Cdh1) ubiquitin ligase. Nature 428:190–93 [Google Scholar]
  156. Wei W, Ayad NG, Wan Y, Zhang GJ, Kirschner MW, Kaelin WG Jr. 155.  2004. Degradation of the SCF component Skp2 in cell-cycle phase G1 by the anaphase-promoting complex. Nature 428:194–98 [Google Scholar]
  157. Wei N, Deng XW. 156.  2003. The COP9 signalosome. Annu. Rev. Cell Dev. Biol. 19:261–86 [Google Scholar]
  158. Cope GA, Deshaies RJ. 157.  2003. COP9 signalosome: a multifunctional regulator of SCF and other cullin-based ubiquitin ligases. Cell 114:663–71 [Google Scholar]
  159. Kawakami T, Chiba T, Suzuki T, Iwai K, Yamanaka K. 158.  et al. 2001. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20:4003–12 [Google Scholar]
  160. Sakata E, Yamaguchi Y, Miyauchi Y, Iwai K, Chiba T. 159.  et al. 2007. Direct interactions between NEDD8 and ubiquitin E2 conjugating enzymes upregulate cullin-based E3 ligase activity. Nat. Struct. Mol. Biol. 14:167–68 [Google Scholar]
  161. Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. 160.  2008. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006 [Google Scholar]
  162. Liu J, Furukawa M, Matsumoto T, Xiong Y. 161.  2002. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10:1511–18 [Google Scholar]
  163. Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH. 162.  et al. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10:1519–26 [Google Scholar]
  164. Goldenberg SJ, Cascio TC, Shumway SD, Garbutt KC, Liu J. 163.  et al. 2004. Structure of the Cand1-Cul1-Roc1 complex reveals regulatory mechanisms for the assembly of the multisubunit cullin-dependent ubiquitin ligases. Cell 119:517–28 [Google Scholar]
  165. Bornstein G, Ganoth D, Hershko A. 164.  2006. Regulation of neddylation and deneddylation of cullin1 in SCFSkp2 ubiquitin ligase by F-box protein and substrate. Proc. Natl. Acad. Sci. USA 103:11515–20 [Google Scholar]
  166. Davis M, Hatzubai A, Andersen JS, Ben-Shushan E, Fisher GZ. 165.  et al. 2002. Pseudosubstrate regulation of the SCF(beta-TrCP) ubiquitin ligase by hnRNP-U. Genes Dev. 16:439–51 [Google Scholar]
  167. Miller JJ, Summers MK, Hansen DV, Nachury MV, Lehman NL. 166.  et al. 2006. Emi1 stably binds and inhibits the anaphase-promoting complex/cyclosome as a pseudosubstrate inhibitor. Genes Dev. 20:2410–20 [Google Scholar]
  168. King EM, van der Sar SJ, Hardwick KG. 167.  2007. Mad3 KEN boxes mediate both Cdc20 and Mad3 turnover, and are critical for the spindle checkpoint. PLoS ONE 2:e342 [Google Scholar]
  169. Burton JL, Solomon MJ. 168.  2007. Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev. 21:655–67 [Google Scholar]
  170. Choi E, Dial JM, Jeong DE, Hall MC. 169.  2008. Unique D box and KEN box sequences limit ubiquitination of Acm1 and promote pseudosubstrate inhibition of the anaphase-promoting complex. J. Biol. Chem. 283:23701–10 [Google Scholar]
  171. Ostapenko D, Burton JL, Wang R, Solomon MJ. 170.  2008. Pseudosubstrate inhibition of APCCdh1 by Acm1: regulation by proteolysis and Cdc28 phosphorylation. Mol. Cell. Biol. 28:4653–64 [Google Scholar]
  172. Enquist-Newman M, Sullivan M, Morgan DO. 171.  2008. Modulation of the mitotic regulatory network by APC-dependent destruction of the Cdh1 inhibitor Acm1. Mol. Cell 30:437–46 [Google Scholar]
  173. Turner GC, Du F, Varshavsky A. 172.  2000. Peptides accelerate their uptake by activating a ubiquitin-dependent proteolytic pathway. Nature 405:579–83 [Google Scholar]
  174. Rachakonda G, Xiong Y, Sekhar KR, Stamer SL, Liebler DC, Freeman ML. 173.  2008. Covalent modification at Cys151 dissociates the electrophile sensor Keap1 from the ubiquitin ligase CUL3. Chem. Res. Toxicol. 21:705–10 [Google Scholar]
  175. Yamamoto T, Suzuki T, Kobayashi A, Wakabayashi J, Maher J. 174.  et al. 2008. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity. Mol. Cell. Biol. 28:2758–70 [Google Scholar]
  176. Tan X, Calderon-Villalobos LI, Sharon M, Zheng C, Robinson CV. 175.  et al. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–45 [Google Scholar]
  177. Spartz AK, Gray WM. 176.  2008. Plant hormone receptors: new perceptions. Genes Dev. 22:2139–48 [Google Scholar]
  178. Rape M, Reddy SK, Kirschner MW. 177.  2006. The processivity of multiubiquitination by the APC determines the order of substrate degradation. Cell 124:89–103 [Google Scholar]
  179. Marangos P, Carroll J. 178.  2008. Securin regulates entry into M-phase by modulating the stability of cyclin B. Nat. Cell Biol. 10:445–51 [Google Scholar]
  180. Westbrook TF, Hu G, Ang XL, Mulligan P, Pavlova NN. 179.  et al. 2008. SCFbeta-TRCP controls oncogenic transformation and neural differentiation through REST degradation. Nature 452:370–74 [Google Scholar]
  181. Lai Z, Yang T, Kim YB, Sielecki TM, Diamond MA. 180.  et al. 2002. Differentiation of Hdm2-mediated p53 ubiquitination and Hdm2 autoubiquitination activity by small molecular weight inhibitors. Proc. Natl. Acad. Sci. USA 99:14734–39 [Google Scholar]
  182. Peschiaroli A, Dorrello NV, Guardavaccaro D, Venere M, Halazonetis T. 181.  et al. 2006. SCFbetaTrCP-mediated degradation of Claspin regulates recovery from the DNA replication checkpoint response. Mol. Cell 23:319–29 [Google Scholar]
  183. Benanti JA, Cheung SK, Brady MC, Toczyski DP. 182.  2007. A proteomic screen reveals SCFGrr1 targets that regulate the glycolytic-gluconeogenic switch. Nat. Cell Biol. 9:1184–91 [Google Scholar]
  184. Yen HC, Elledge SJ. 183.  2008. Identification of SCF ubiquitin ligase substrates by global protein stability profiling. Science 322:923–29 [Google Scholar]
  185. Yewdell JW, Nicchitta CV. 184.  2006. The DRiP hypothesis decennial: support, controversy, refinement and extension. Trends Immunol. 27:368–73 [Google Scholar]
  186. Mayor T, Graumann J, Bryan J, MacCoss MJ, Deshaies RJ. 185.  2007. Quantitative profiling of ubiquitylated proteins reveals proteasome substrates and the substrate repertoire influenced by the Rpn10 receptor pathway. Mol. Cell Proteomics 6:1885–95 [Google Scholar]
  187. Song BL, Sever N, DeBose-Boyd RA. 186.  2005. Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. Mol. Cell 19:829–40 [Google Scholar]
  188. Gardner RG, Shearer AG, Hampton RY. 187.  2001. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell. Biol. 21:4276–91 [Google Scholar]
  189. Mata IF, Lockhart PJ, Farrer MJ. 188.  2004. Parkin genetics: one model for Parkinson's disease. Hum. Mol. Genet. 13:Rev. Issue 1R127–33 [Google Scholar]
  190. Moore DJ, West AB, Dawson VL, Dawson TM. 189.  2005. Molecular pathophysiology of Parkinson's disease. Annu. Rev. Neurosci. 28:57–87 [Google Scholar]
  191. Skowyra D, Koepp DM, Kamura T, Conrad MN, Conaway RC. 190.  et al. 1999. Reconstitution of G1 cyclinubiquitination with complexes containing SCFGrr1 and Rbx1. Science 284:662–65 [Google Scholar]
  192. Eisele F, Wolf DH. 191.  2008. Degradation of misfolded protein in the cytoplasm is mediated by the ubiquitin ligase Ubr1. FEBS Lett. 582:4143–46 [Google Scholar]
/content/journals/10.1146/annurev.biochem.78.101807.093809
Loading
/content/journals/10.1146/annurev.biochem.78.101807.093809
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error