1932

Abstract

Over the past twenty years there have been great advances in light microscopy with the result that multidimensional imaging has driven a revolution in modern biology. The development of new approaches of data acquisition is reported frequently, and yet the significant data management and analysis challenges presented by these new complex datasets remain largely unsolved. As in the well-developed field of genome bioinformatics, central repositories are and will be key resources, but there is a critical need for informatics tools in individual laboratories to help manage, share, visualize, and analyze image data. In this article we present the recent efforts by the bioimage informatics community to tackle these challenges, and discuss our own vision for future development of bioimage informatics solutions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.biophys.050708.133641
2009-06-09
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/biophys/38/1/annurev.biophys.050708.133641.html?itemId=/content/journals/10.1146/annurev.biophys.050708.133641&mimeType=html&fmt=ahah

Literature Cited

  1. Andrews PD, Harper IS, Swedlow JR. 1.  2002. To 5D and beyond: quantitative fluorescence microscopy in the postgenomic era. Traffic 3:29–36 [Google Scholar]
  2. Berman J, Edgerton M, Friedman B. 2.  2003. The tissue microarray data exchange specification: a community-based, open source tool for sharing tissue microarray data. BMC Med. Inform. Decis. Making 3:5 [Google Scholar]
  3. 3. BioImageXD 2008. BioImageXD—open source software for analysis and visualization of multidimensional biomedical data http://www.bioimagexd.net/ [Google Scholar]
  4. 4. BIRN 2008. http://www.nbirn.net/
  5. 5. Centre for Bio-Image Informatics 2008. Bisque database http://www.bioimage.ucsb.edu/downloads/Bisque%20Database [Google Scholar]
  6. Bullen A. 6.  2008. Microscopic imaging techniques for drug discovery. Nat. Rev. Drug Discov. 7:54–67 [Google Scholar]
  7. 7.  caBIG Community Website. http://cabig.nci.nih.gov/
  8. Carpenter A, Jones T, Lamprecht M, Clarke C, Kang I. 8.  et al. 2006. CellProfiler: image analysis software for identifying and quantifying cell phenotypes. Genome Biol. 7:R100 [Google Scholar]
  9. 9. Cell Centered Database 2008. http://ccdb.ucsd.edu/CCDBWebSite/
  10. Christiansen JH, Yang Y, Venkataraman S, Richardson L, Stevenson P. 10.  et al. 2006. EMAGE: a spatial database of gene expression patterns during mouse embryo development. Nucleic Acids Res. 34:D637–41 [Google Scholar]
  11. Cote RG, Jones P, Martens L, Apweiler R, Hermjakob H. 11.  2008. The Ontology Lookup Service: more data and better tools for controlled vocabulary queries. Nucleic Acids Res. 36:W372–76 [Google Scholar]
  12. 12. Django Project 2008. http://www.djangoproject.com/
  13. 13. Drysdale R, FlyBase Consortium 2008. FlyBase: a database for the Drosophila research community. Methods Mol. Biol 42045–59 [Google Scholar]
  14. Goldberg IG, Allan C, Burel J-M, Creager D, Falconi A. 14.  et al. 2005. The Open Microscopy Environment (OME) data model and XML file: open tools for informatics and quantitative analysis in biological imaging. Genome Biol. 6:R47 [Google Scholar]
  15. 15. hibernate.org 2008. http://www.hibernate.org/
  16. Huang K, Lin J, Gajnak JA, Murphy RF. 16.  2002. Image content-based retrieval and automated interpretation of fluorescence microscope images via the protein subcellular location image database. Proc. 2002 IEEE Int. Symp. Biomed. Imaging325–28 [Google Scholar]
  17. Image J. 17.  2008. http://rsbweb.nih.gov/ij/
  18. Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A. 18.  et al. 2007. Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–76 [Google Scholar]
  19. 19. Apache Lucene 2008. Overview http://lucene.apache.org/java/docs/ [Google Scholar]
  20. Macaulay C, Benyon D, Crerar A. 20.  2000. Ethnography, theory and systems design: from intuition to insight. Int. J. Hum. Comput. Stud. 53:35–60 [Google Scholar]
  21. Martone ME, Tran J, Wong WW, Sargis J, Fong L. 21.  et al. 2008. The Cell Centered Database project: an update on building community resources for managing and sharing 3D imaging data. J. Struct. Biol. 161:220–31 [Google Scholar]
  22. 22. MIPAV 2008. http://mipav.cit.nih.gov/
  23. Moore J, Allan C, Burel J-M, Loranger B, MacDonald D. 23.  et al. 2008. Open tools for storage and management of quantitative image data. Methods Cell Biol. 85:555–70 [Google Scholar]
  24. Murphy RF. 24.  2008. Murphy lab—Imaging services—PSLID http://murphylab.web.cmu.edu/services/PSLID/ [Google Scholar]
  25. 25. myGrid 2008. http://www.mygrid.org.uk/
  26. Neumann B, Held M, Liebel U, Erfle H, Rogers P. 26.  et al. 2006. High-throughput RNAi screening by time-lapse imaging of live human cells. Nat. Methods 3:385–90 [Google Scholar]
  27. 27. OME Consortium 2008. Data management http://www.openmicroscopy.org/site/documents/data-management [Google Scholar]
  28. 28. OME Consortium 2008. Development teams http://openmicroscopy.org/site/about/development-teams [Google Scholar]
  29. 29. OME Consortium 2008. OME server http://openmicroscopy.org/site/documents/data-management/ome-server [Google Scholar]
  30. 30. OME Consortium 2008. OMERO platform http://openmicroscopy.org/site/documents/data-management/omero [Google Scholar]
  31. 31. OME Consortium 2008. http://openmicroscopy.org/site
  32. 32. OME Consortium 2008. Partners http://openmicroscopy.org/site/about/partners [Google Scholar]
  33. 33. OME Consortium 2008. Videos for Quicktime http://openmicroscopy.org/site/videos [Google Scholar]
  34. 34. OME Consortium 2008. OME at LOCI—software—Bio-formats library http://www.loci.wisc.edu/ome/formats.html [Google Scholar]
  35. 35. OME Consortium 2008. OME at LOCI—OME-TIFF—overview and rationale http://www.loci.wisc.edu/ome/ome-tiff.html [Google Scholar]
  36. 36. OME Consortium 2008. OME validator http://validator.openmicroscopy.org.uk/ [Google Scholar]
  37. 37. OME Consortium 2008. http://ome-xml.org/
  38. 38. OME Consortium 2008. Continuous build & integration system for the Open Microscopy Environment project http://hudson.openmicroscopy.org.uk [Google Scholar]
  39. 39. OME Consortium 2008. ServerDesign http://trac.openmicroscopy.org.uk/omero/wiki/ServerDesign [Google Scholar]
  40. 40. OME Consortium 2008. VisBio—introduction http://www.loci.wisc.edu/visbio/ [Google Scholar]
  41. 41. OME Consortium 2008. The usable image project http://usableimage.org [Google Scholar]
  42. 42. OpenGIS® 2008. Standards and specifications http://www.opengeospatial.org/standards [Google Scholar]
  43. Orlov N, Shamir L, Macura T, Johnston J, Eckley DM, Goldberg IG. 43.  2008. WND-CHARM: multi-purpose image classification using compound image transforms. Pattern Recognit. Lett. 29:1684–93 [Google Scholar]
  44. Parvin B, Yang Q, Fontenay G, Barcellos-Hoff MH. 44.  2003. BioSig: An imaging and informatic system for phenotypic studies. IEEE Trans. Syst. Man Cybern. B 33:814–24 [Google Scholar]
  45. Peng H. 45.  2008. Bioimage informatics: a new area of engineering biology. Bioinformatics 24:1827–36 [Google Scholar]
  46. Pepperkok R, Ellenberg J. 46.  2006. High-throughput fluorescence microscopy for systems biology. Nat. Rev. Mol. Cell Biol. 7:690–96 [Google Scholar]
  47. 47. PostgreSQL 2008. http://www.postgresql.org/
  48. Rogers A, Antoshechkin I, Bieri T, Blasiar D, Bastiani C. 48.  et al. 2008. WormBase 2007. Nucleic Acids Res. 36:D612–17 [Google Scholar]
  49. Rueden C, Eliceiri KW, White JG. 49.  2004. VisBio: a computational tool for visualization of multidimensional biological image data. Traffic 5:411–17 [Google Scholar]
  50. 50. Saccharomyces Genome Database 2008. http://www.yeastgenome.org/
  51. Shamir L, Orlov N, Eckley DM, Macura T, Johnston J, Goldberg IG. 51.  2008. Wndcharm—an open source utility for biological image analysis. Source Code Biol. Med. 3:13 [Google Scholar]
  52. Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. 52.  2004. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22:1567–72 [Google Scholar]
  53. 53. Sun Microsystems 2008. Enterprise Javabeans Technology http://java.sun.com/products/ejb [Google Scholar]
  54. 54. Sun Microsystems 2008. Remote method invocation home http://java.sun.com/javase/technologies/core/basic/rmi/index.jsp [Google Scholar]
  55. Swedlow JR, Goldberg I, Brauner E, Sorger PK. 55.  2003. Informatics and quantitative analysis in biological imaging. Science 300:100–2 [Google Scholar]
  56. Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J. 56.  et al. 2006. The MGED Ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22:866–73 [Google Scholar]
  57. 57. WormBase 2008. http://www.wormbase.org/
  58. 58. ZeroC™ 2008. http://www.zeroc.com/
  59. Zhao T, Murphy RF. 59.  2007. Automated learning of generative models for subcellular location: Building blocks for systems biology. Cytometry A 71:978–90 [Google Scholar]
/content/journals/10.1146/annurev.biophys.050708.133641
Loading
/content/journals/10.1146/annurev.biophys.050708.133641
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error