1932

Abstract

In the late 1990s, mutations in the synaptic protein α-synuclein (α-syn) were identified in families with hereditary Parkinson's disease (PD). Rapidly, α-syn became the target of numerous investigations that have transformed our understanding of the pathogenesis underlying this disorder. α-Syn is the major component of Lewy bodies (LBs), cytoplasmic protein aggregates that form in the neurons of PD patients. α-Syn interacts with lipid membranes and adopts amyloid conformations that deposit within LBs. Work in yeast and other model systems has revealed that α-syn-associated toxicity might be the consequence of abnormal membrane interactions and alterations in vesicle trafficking. Here we review evidence regarding α-syn's normal interactions with membranes and regulation of synaptic vesicles as well as how overexpression of α-syn yields global cellular dysfunction. Finally, we present a model linking vesicle dynamics to toxicity with the sincere hope that understanding these disease mechanisms will lead to the development of novel, potent therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.cellbio.042308.113313
2010-11-10
2025-05-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/26/1/annurev.cellbio.042308.113313.html?itemId=/content/journals/10.1146/annurev.cellbio.042308.113313&mimeType=html&fmt=ahah

Literature Cited

  1. Abe K. , Kobayashi N. , Sode K. , Ikebukuro K. . 2007.. Peptide ligand screening of α-synuclein aggregation modulators by in silico panning. . BMC Bioinforma. 8::451 [Google Scholar]
  2. Abeliovich A. , Schmitz Y. , Farinas I. , Choi-Lundberg D. , Ho WH. , et al. 2000.. Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. . Neuron 25::23952 [Google Scholar]
  3. Auluck PK. , Bonini NM. . 2002.. Pharmacological prevention of Parkinson disease in Drosophila. . Nat. Med. 8::118586 [Google Scholar]
  4. Auluck PK. , Chan HY. , Trojanowski JQ. , Lee VM. , Bonini NM. . 2002.. Chaperone suppression of α-synuclein toxicity in a Drosophila model for Parkinson's disease. . Science 295::86568 [Google Scholar]
  5. Auluck PK. , Meulener MC. , Bonini NM. . 2005.. Mechanisms of suppression of α-synuclein neurotoxicity by geldanamycin in Drosophila. . J. Biol. Chem. 280::287378 [Google Scholar]
  6. Ayala A. , Venero JL. , Cano J. , Machado A. . 2007.. Mitochondrial toxins and neurodegenerative diseases. . Front. Biosci. 12::9861007 [Google Scholar]
  7. Betarbet R. , Sherer TB. , MacKenzie G. , Garcia-Osuna M. , Panov AV. , Greenamyre JT. . 2000.. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. . Nat. Neurosci. 3::13016 [Google Scholar]
  8. Beyer K. , Ariza A. . 2008.. The therapeutical potential of α-synuclein antiaggregatory agents for dementia with Lewy bodies. . Curr. Med. Chem. 15::274859 [Google Scholar]
  9. Biere AL. , Wood SJ. , Wypych J. , Steavenson S. , Jiang Y. , et al. 2000.. Parkinson's disease-associated α-synuclein is more fibrillogenic than β- and γ-synuclein and cannot cross-seed its homologs. . J. Biol. Chem. 275::3457479 [Google Scholar]
  10. Bonifati V. , Rizzu P. , van Baren MJ. , Schaap O. , Breedveld GJ. , et al. 2003.. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. . Science 299::25659 [Google Scholar]
  11. Brown S. , Taylor NL. . 1999.. Could mitochondrial dysfunction play a role in manganese toxicity?. Environ. Toxicol. Pharmacol. 7::4957 [Google Scholar]
  12. Cabin DE. , Shimazu K. , Murphy D. , Cole NB. , Gottschalk W. , et al. 2002.. Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking α-synuclein. . J. Neurosci. 22::8797807 [Google Scholar]
  13. Cannon JR. , Tapias V. , Na HM. , Honick AS. , Drolet RE. , Greenamyre JT. . 2009.. A highly reproducible rotenone model of Parkinson's disease. . Neurobiol. Dis. 34::27990 [Google Scholar]
  14. Caudle WM. , Colebrooke RE. , Emson PC. , Miller GW. . 2008.. Altered vesicular dopamine storage in Parkinson's disease: a premature demise. . Trends Neurosci. 31::3038 [Google Scholar]
  15. Chartier-Harlin MC. , Kachergus J. , Roumier C. , Mouroux V. , Douay X. , et al. 2004.. α-Synuclein locus duplication as a cause of familial Parkinson's disease. . Lancet 364::116769 [Google Scholar]
  16. Chen CY. , Balch WE. . 2006.. The Hsp90 chaperone complex regulates GDI-dependent Rab recycling. . Mol. Biol. Cell 17::3494507 [Google Scholar]
  17. Chernomordik L. , Kozlov MM. , Zimmerberg J. . 1995.. Lipids in biological membrane fusion. . J. Membr. Biol. 146::114 [Google Scholar]
  18. Chung CY. , Koprich JB. , Hallett PJ. , Isacson O. . 2009.. Functional enhancement and protection of dopaminergic terminals by RAB3B overexpression. . Proc. Natl. Acad. Sci. USA 106::2247479 [Google Scholar]
  19. Clark IE. , Dodson MW. , Jiang C. , Cao JH. , Huh JR. , et al. 2006.. Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. . Nature 441::116266 [Google Scholar]
  20. Conway KA. , Harper JD. , Lansbury PT. . 1998.. Accelerated in vitro fibril formation by a mutant α-synuclein linked to early-onset Parkinson disease. . Nat. Med. 4::131820 [Google Scholar]
  21. Cooper AA. , Gitler AD. , Cashikar A. , Haynes CM. , Hill KJ. , et al. 2006.. α-Synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. . Science 313::32428 [Google Scholar]
  22. Dai C. , Whitesell L. , Rogers AB. , Lindquist S. . 2007.. Heat shock factor 1 is a powerful multifaceted modifier of carcinogenesis. . Cell 130::100518 [Google Scholar]
  23. Dalfo E. , Gomez-Isla T. , Rosa JL. , Nieto Bodelon M. , Cuadrado Tejedor M. , et al. 2004.. Abnormal α-synuclein interactions with Rab proteins in α-synuclein A30P transgenic mice. . J. Neuropathol. Exp. Neurol. 63::30213 [Google Scholar]
  24. Darios F. , Wasser C. , Shakirzyanova A. , Giniatullin A. , Goodman K. , et al. 2009.. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. . Neuron 62::68394 [Google Scholar]
  25. Daum G. , Vance JE. . 1997.. Import of lipids into mitochondria. . Prog. Lipid. Res. 36::10330 [Google Scholar]
  26. Davidson WS. , Jonas A. , Clayton DF. , George JM. . 1998.. Stabilization of α-synuclein secondary structure upon binding to synthetic membranes. . J. Biol. Chem. 273::944349 [Google Scholar]
  27. Davis GC. , Williams AC. , Markey SP. , Ebert MH. , Caine ED. , et al. 1979.. Chronic parkinsonism secondary to intravenous injection of meperidine analogues. . Psychiatry Res. 1::24954 [Google Scholar]
  28. Davletov B. , Connell E. , Darios F. . 2007.. Regulation of SNARE fusion machinery by fatty acids. . Cell Mol. Life Sci. 64::1597608 [Google Scholar]
  29. de Brito OM. , Scorrano L. . 2008.. Mitofusin 2 tethers endoplasmic reticulum to mitochondria. . Nature 456::60510 [Google Scholar]
  30. den Jager WA. . 1969.. Sphingomyelin in Lewy inclusion bodies in Parkinson's disease. . Arch. Neurol. 21::61519 [Google Scholar]
  31. Dexter DT. , Holley AE. , Flitter WD. , Slater TF. , Wells FR. , et al. 1994.. Increased levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. . Mov. Disord. 9::9297 [Google Scholar]
  32. Dick FD. , De Palma G. , Ahmadi A. , Scott NW. , Prescott GJ. , et al. 2007.. Environmental risk factors for Parkinson's disease and parkinsonism: the Geoparkinson study. . Occup. Environ. Med. 64::66672 [Google Scholar]
  33. Dickson DW. , Braak H. , Duda JE. , Duyckaerts C. , Gasser T. , et al. 2009.. Neuropathological assessment of Parkinson's disease: refining the diagnostic criteria. . Lancet Neurol. 8::115057 [Google Scholar]
  34. Elbaz A. , Moisan F. . 2008.. Update in the epidemiology of Parkinson's disease. . Curr. Opin. Neurol. 21::45460 [Google Scholar]
  35. Eliezer D. , Kutluay E. , Bussell R Jr. , Browne G. . 2001.. Conformational properties of α-synuclein in its free and lipid-associated states. . J. Mol. Biol. 307::106173 [Google Scholar]
  36. Falsone SF. , Kungl AJ. , Rek A. , Cappai R. , Zangger K. . 2009.. The molecular chaperone Hsp90 modulates intermediate steps of amyloid assembly of the Parkinson-related protein α-synuclein. . J. Biol. Chem. [Google Scholar]
  37. Feany MB. , Bender WW. . 2000.. A Drosophila model of Parkinson's disease. . Nature 404::39498 [Google Scholar]
  38. Flower TR. , Chesnokova LS. , Froelich CA. , Dixon C. , Witt SN. . 2005.. Heat shock prevents α-synuclein-induced apoptosis in a yeast model of Parkinson's disease. . J. Mol. Biol. 351::1081100 [Google Scholar]
  39. Frigerio R. , Sanft KR. , Grossardt BR. , Peterson BJ. , Elbaz A. , et al. 2006.. Chemical exposures and Parkinson's disease: a population-based case-control study. . Mov. Disord. 21::168892 [Google Scholar]
  40. Giasson BI. , Duda JE. , Quinn SM. , Zhang B. , Trojanowski JQ. , Lee VM. . 2002.. Neuronal α-synucleinopathy with severe movement disorder in mice expressing A53T human α-synuclein. . Neuron 34::52133 [Google Scholar]
  41. Giasson BI. , Murray IV. , Trojanowski JQ. , Lee VM. . 2001.. A hydrophobic stretch of 12 amino acid residues in the middle of α-synuclein is essential for filament assembly. . J. Biol. Chem. 276::238086 [Google Scholar]
  42. Giasson BI. , Uryu K. , Trojanowski JQ. , Lee VM. . 1999.. Mutant and wild type human α-synucleins assemble into elongated filaments with distinct morphologies in vitro. . J. Biol. Chem. 274::761922 [Google Scholar]
  43. Gitler AD. , Bevis BJ. , Shorter J. , Strathearn KE. , Hamamichi S. , et al. 2008.. The Parkinson's disease protein α-synuclein disrupts cellular Rab homeostasis. . Proc. Natl. Acad. Sci. USA 105::14550 [Google Scholar]
  44. Gitler AD. , Chesi A. , Geddie ML. , Strathearn KE. , Hamamichi S. , et al. 2009.. α-Synuclein is part of a diverse and highly conserved interaction network that includes PARK9 and manganese toxicity. . Nat. Genet. 41:(3):30815 [Google Scholar]
  45. Gomez-Isla T. , Irizarry MC. , Mariash A. , Cheung B. , Soto O. , et al. 2003.. Motor dysfunction and gliosis with preserved dopaminergic markers in human α-synuclein A30P transgenic mice. . Neurobiol. Aging 24::24558 [Google Scholar]
  46. Hashimoto M. , Hsu LJ. , Sisk A. , Xia Y. , Takeda A. , et al. 1998.. Human recombinant NACP/α-synuclein is aggregated and fibrillated in vitro: relevance for Lewy body disease. . Brain Res. 799::3016 [Google Scholar]
  47. Heo HY. , Park JM. , Kim CH. , Han BS. , Kim KS. , Seol W. . 2010.. LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. . Exp. Cell Res. 316:(4):64956 [Google Scholar]
  48. Hong EL. , Balakrishnan R. , Dong Q. , Christie KR. , Park J. , et al. 2008.. Gene Ontology annotations at SGD: new data sources and annotation methods. . Nucleic Acids Res. 36::D57781 [Google Scholar]
  49. Huang X. , Abbott RD. , Petrovitch H. , Mailman RB. , Ross GW. . 2008.. Low LDL cholesterol and increased risk of Parkinson's disease: prospective results from Honolulu-Asia Aging Study. . Mov. Disord. 23::101318 [Google Scholar]
  50. Ibanez P. , Lesage S. , Janin S. , Lohmann E. , Durif F. , et al. 2009.. α-synuclein gene rearrangements in dominantly inherited parkinsonism: frequency, phenotype, and mechanisms. . Arch. Neurol. 66::1028 [Google Scholar]
  51. Jo E. , McLaurin J. , Yip CM. , St George-Hyslop P. , Fraser PE. . 2000.. α-Synuclein membrane interactions and lipid specificity. . J. Biol. Chem. 275::3432834 [Google Scholar]
  52. Kamp F. , Beyer K. . 2006.. Binding of α-synuclein affects the lipid packing in bilayers of small vesicles. . J. Biol. Chem. 281::925159 [Google Scholar]
  53. Kitada T. , Asakawa S. , Hattori N. , Matsumine H. , Yamamura Y. , et al. 1998.. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. . Nature 392::6058 [Google Scholar]
  54. Kornmann B. , Currie E. , Collins SR. , Schuldiner M. , Nunnari J. , et al. 2009.. An ER-mitochondria tethering complex revealed by a synthetic biology screen. . Science 325:(5939):47781 [Google Scholar]
  55. Kruger R. , Kuhn W. , Muller T. , Woitalla D. , Graeber M. , et al. 1998.. Ala30Pro mutation in the gene encoding α-synuclein in Parkinson's disease. . Nat. Genet. 18::1068 [Google Scholar]
  56. Kuwahara T. , Koyama A. , Koyama S. , Yoshina S. , Ren CH. , et al. 2008.. A systematic RNAi screen reveals involvement of endocytic pathway in neuronal dysfunction in α-synuclein transgenic C. elegans. . Hum. Mol. Genet. 17::29973009 [Google Scholar]
  57. Lakso M. , Vartiainen S. , Moilanen AM. , Sirvio J. , Thomas JH. , et al. 2003.. Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human α-synuclein. . J. Neurochem. 86::16572 [Google Scholar]
  58. Langston JW. , Ballard P. , Tetrud JW. , Irwin I. . 1983.. Chronic parkinsonism in humans due to a product of meperidine-analog synthesis. . Science 219::97980 [Google Scholar]
  59. Latourelle JC. , Pankratz N. , Dumitriu A. , Wilk JB. , Goldwurm S. , et al. 2009.. Genomewide association study for onset age in Parkinson disease. . BMC Med. Genet. 10::98 [Google Scholar]
  60. Lavedan C. . 1998.. The synuclein family. . Genome Res. 8::87180 [Google Scholar]
  61. Lee MK. , Stirling W. , Xu Y. , Xu X. , Qui D. , et al. 2002.. Human α-synuclein-harboring familial Parkinson's disease-linked Ala-53 → Thr mutation causes neurodegenerative disease with α-synuclein aggregation in transgenic mice. . Proc. Natl. Acad. Sci. USA 99::896873 [Google Scholar]
  62. Lees AJ. , Hardy J. , Revesz T. . 2009.. Parkinson's disease. . Lancet 373::205566 [Google Scholar]
  63. Lill C. , Bagade S. , McQueen M. , Roehr J. , Kavvoura F. , et al. 2009.. The PDGene Database. Alzheimer Research Forum. http://www.pdgene.org/ [Google Scholar]
  64. Lucking CB. , Brice A. . 2000.. α-Synuclein and Parkinson's disease. . Cell Mol. Life Sci. 57::1894908 [Google Scholar]
  65. Maroteaux L. , Campanelli JT. , Scheller RH. . 1988.. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. . J. Neurosci. 8::280415 [Google Scholar]
  66. McLean PJ. , Kawamata H. , Shariff S. , Hewett J. , Sharma N. , et al. 2002.. TorsinA and heat shock proteins act as molecular chaperones: suppression of α-synuclein aggregation. . J. Neurochem. 83::84654 [Google Scholar]
  67. Mena I. , Horiuchi K. , Burke K. , Cotzias GC. . 1969.. Chronic manganese poisoning. Individual susceptibility and absorption of iron. . Neurology 19::10006 [Google Scholar]
  68. Meulener MC. , Xu K. , Thomson L. , Ischiropoulos H. , Bonini NM. . 2006.. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging. . Proc. Natl. Acad. Sci. USA 103::1251722 [Google Scholar]
  69. Miller-Fleming L. , Giorgini F. , Outeiro TF. . 2008.. Yeast as a model for studying human neurodegenerative disorders. . Biotechnol. J. 3::32538 [Google Scholar]
  70. Mosharov EV. , Larsen KE. , Kanter E. , Phillips KA. , Wilson K. , et al. 2009.. Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. . Neuron 62::21829 [Google Scholar]
  71. Muller T. , Kuhn W. , Pohlau D. , Przuntek H. . 1995.. Parkinsonism unmasked by lovastatin. . Ann. Neurol. 37::68586 [Google Scholar]
  72. Murphy DD. , Rueter SM. , Trojanowski JQ. , Lee VM. . 2000.. Synucleins are developmentally expressed, and α-synuclein regulates the size of the presynaptic vesicular pool in primary hippocampal neurons. . J. Neurosci. 20::321420 [Google Scholar]
  73. Nemani VM. , Lu W. , Berge V. , Nakamura K. , Onoa B. , et al. 2010.. Increased expression of α-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering and endocytosis. . Neuron 65::6679 [Google Scholar]
  74. Neumann J. , Bras J. , Deas E. , O'Sullivan SS. , Parkkinen L. , et al. 2009.. Glucocerebrosidase mutations in clinical and pathologically proven Parkinson's disease. . Brain 132::178394 [Google Scholar]
  75. Nishimura M. , Tomimoto H. , Suenaga T. , Nakamura S. , Namba Y. , et al. 1994.. Synaptophysin and chromogranin A immunoreactivities of Lewy bodies in Parkinson's disease brains. . Brain Res. 634::33944 [Google Scholar]
  76. Nohturfft A. , Zhang SC. . 2009.. Coordination of lipid metabolism in membrane biogenesis. . Annu. Rev. Cell Dev. Biol. 25::53966 [Google Scholar]
  77. Norris EH. , Giasson BI. , Ischiropoulos H. , Lee VM. . 2003.. Effects of oxidative and nitrative challenges on α-synuclein fibrillogenesis involve distinct mechanisms of protein modifications. . J. Biol. Chem. 278::2723040 [Google Scholar]
  78. Norris EH. , Uryu K. , Leight S. , Giasson BI. , Trojanowski JQ. , Lee VM. . 2007.. Pesticide exposure exacerbates α-synucleinopathy in an A53T transgenic mouse model. . Am. J. Pathol. 170::65866 [Google Scholar]
  79. Outeiro TF. , Giorgini F. . 2006.. Yeast as a drug discovery platform in Huntington's and Parkinson's diseases. . Biotechnol. J. 1::25869 [Google Scholar]
  80. Outeiro TF. , Lindquist S. . 2003.. Yeast cells provide insight into α-synuclein biology and pathobiology. . Science 302::177275 [Google Scholar]
  81. Periquet M. , Fulga T. , Myllykangas L. , Schlossmacher MG. , Feany MB. . 2007.. Aggregated α-synuclein mediates dopaminergic neurotoxicity in vivo. . J. Neurosci. 27::333846 [Google Scholar]
  82. Perl DP. , Olanow CW. . 2007.. The neuropathology of manganese-induced Parkinsonism. . J. Neuropathol. Exp. Neurol. 66::67582 [Google Scholar]
  83. Perlmutter JD. , Braun AR. , Sachs JN. . 2009.. Curvature dynamics of α-synuclein familial Parkinson disease mutants: molecular simulations of the micelle- and bilayer-bound forms. . J. Biol. Chem. 284::717789 [Google Scholar]
  84. Perrin RJ. , Woods WS. , Clayton DF. , George JM. . 2000.. Interaction of human α-synuclein and Parkinson's disease variants with phospholipids. Structural analysis using site-directed mutagenesis. . J. Biol. Chem. 275::3439398 [Google Scholar]
  85. Perrin RJ. , Woods WS. , Clayton DF. , George JM. . 2001.. Exposure to long chain polyunsaturated fatty acids triggers rapid multimerization of synucleins. . J. Biol. Chem. 276::4195862 [Google Scholar]
  86. Pesah Y. , Pham T. , Burgess H. , Middlebrooks B. , Verstreken P. , et al. 2004.. Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stress. . Development 131::218394 [Google Scholar]
  87. Piccoli C. , Sardanelli A. , Scrima R. , Ripoli M. , Quarato G. , et al. 2008.. Mitochondrial respiratory dysfunction in familiar parkinsonism associated with PINK1 mutation. . Neurochem. Res. 33::256574 [Google Scholar]
  88. Polymeropoulos MH. , Lavedan C. , Leroy E. , Ide SE. , Dehejia A. , et al. 1997.. Mutation in the α-synuclein gene identified in families with Parkinson's disease. . Science 276::204547 [Google Scholar]
  89. Riekkinen P. , Rinne UK. , Pelliniemi TT. , Sonninen V. . 1975.. Interaction between dopamine and phospholipids. Studies of the substantia nigra in Parkinson disease patients. . Arch. Neurol. 32::2527 [Google Scholar]
  90. Rospigliosi CC. , McClendon S. , Schmid AW. , Ramlall TF. , Barre P. , et al. 2009.. E46K Parkinson's-linked mutation enhances C-terminal-to-N-terminal contacts in α-synuclein. . J. Mol. Biol. 388::102232 [Google Scholar]
  91. Sakisaka T. , Meerlo T. , Matteson J. , Plutner H. , Balch WE. . 2002.. Rab-αGDI activity is regulated by a Hsp90 chaperone complex. . EMBO J. 21::612535 [Google Scholar]
  92. Satake W. , Nakabayashi Y. , Mizuta I. , Hirota Y. , Ito C. , et al. 2009.. Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. . Nat. Genet. 41:(12):13037 [Google Scholar]
  93. Scherzer CR. , Jensen RV. , Gullans SR. , Feany MB. . 2003.. Gene expression changes presage neurodegeneration in a Drosophila model of Parkinson's disease. . Hum. Mol. Genet. 12::245766 [Google Scholar]
  94. Segrest JP. , De Loof H. , Dohlman JG. , Brouillette CG. , Anantharamaiah GM. . 1990.. Amphipathic helix motif: classes and properties. . Proteins 8::10317 [Google Scholar]
  95. Segrest JP. , Jones MK. , De Loof H. , Brouillette CG. , Venkatachalapathi YV. , Anantharamaiah GM. . 1992.. The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. . J. Lipid. Res. 33::14166 [Google Scholar]
  96. Sherer TB. , Kim JH. , Betarbet R. , Greenamyre JT. . 2003.. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and α-synuclein aggregation. . Exp. Neurol. 179::916 [Google Scholar]
  97. Simon-Sanchez J. , Scholz S. , del Mar Matarin M. , Fung HC. , Hernandez D. , et al. 2008.. Genomewide SNP assay reveals mutations underlying Parkinson disease. . Hum. Mutat. 29::31522 [Google Scholar]
  98. Singleton AB. , Farrer M. , Johnson J. , Singleton A. , Hague S. , et al. 2003.. α-Synuclein locus triplication causes Parkinson's disease. . Science 302::841 [Google Scholar]
  99. Smyth LT. , Ruhf RC. , Whitman NE. , Dugan T. . 1973.. Clinical manganism and exposure to manganese in the production and processing of ferromanganese alloy. . J. Occup. Med. 15::1019 [Google Scholar]
  100. Soper JH. , Roy S. , Stieber A. , Lee E. , Wilson RB. , et al. 2008.. α-Synuclein-induced aggregation of cytoplasmic vesicles in Saccharomyces cerevisiae. . Mol. Biol. Cell 19::1093103 [Google Scholar]
  101. Spillantini MG. , Crowther RA. , Jakes R. , Cairns NJ. , Lantos PL. , Goedert M. . 1998.. Filamentous α-synuclein inclusions link multiple system atrophy with Parkinson's disease and dementia with Lewy bodies. . Neurosci. Lett. 251::2058 [Google Scholar]
  102. Spillantini MG. , Schmidt ML. , Lee VM. , Trojanowski JQ. , Jakes R. , Goedert M. . 1997.. α-Synuclein in Lewy bodies. . Nature 388::83940 [Google Scholar]
  103. Stampfer MJ. . 2009.. Welding occupations and mortality from Parkinson's disease and other neurodegenerative diseases among United States men, 1985–1999. . J. Occup. Environ. Hyg. 6::26772 [Google Scholar]
  104. Stenmark H. . 2009.. Rab GTPases as coordinators of vesicle traffic. . Nat. Rev. Mol. Cell Biol. 10::51325 [Google Scholar]
  105. Su LJ. , Auluck PK. , Outeiro TF. , Yeger-Lotem E. , Kritzer JA. , et al. 2010.. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models. . Dis. Model Mech. 3::194208 [Google Scholar]
  106. Tanner CM. , Ross GW. , Jewell SA. , Hauser RA. , Jankovic J. , et al. 2009.. Occupation and risk of parkinsonism: a multicenter case-control study. . Arch. Neurol. 66::110613 [Google Scholar]
  107. Thayanidhi N. , Helm JR. , Nycz DC. , Bentley M. , Liang Y. , Hay JC. . 2010.. α-Synuclein delays ER-to-Golgi transport in mammalian cells by antagonizing ER/Golgi SNAREs. . Mol. Biol. Cell 21::185063 [Google Scholar]
  108. Valente EM. , Abou-Sleiman PM. , Caputo V. , Muqit MM. , Harvey K. , et al. 2004.. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. . Science 304::115860 [Google Scholar]
  109. Van Woert MH. , Mueller PS. . 1971.. Glucose, insulin, and free fatty acid metabolism in Parkinson's disease treated with levodopa. . Clin. Pharmacol. Ther. 12::36067 [Google Scholar]
  110. Vartiainen S. , Pehkonen P. , Lakso M. , Nass R. , Wong G. . 2006.. Identification of gene expression changes in transgenic C. elegans overexpressing human α-synuclein. . Neurobiol. Dis. 22::47786 [Google Scholar]
  111. Weinreb PH. , Zhen W. , Poon AW. , Conway KA. , Lansbury PT Jr. . 1996.. NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. . Biochemistry 35::1370915 [Google Scholar]
  112. Whitesell L. , Lindquist SL. . 2005.. HSP90 and the chaperoning of cancer. . Nat. Rev. Cancer 5::76172 [Google Scholar]
  113. Wolozin B. , Wang SW. , Li NC. , Lee A. , Lee TA. , Kazis LE. . 2007.. Simvastatin is associated with a reduced incidence of dementia and Parkinson's disease. . BMC Med. 5::20 [Google Scholar]
  114. Wong K. , Sidransky E. , Verma A. , Mixon T. , Sandberg GD. , et al. 2004.. Neuropathology provides clues to the pathophysiology of Gaucher disease. . Mol. Genet. Metab. 82::192207 [Google Scholar]
  115. Yang Y. , Gehrke S. , Haque ME. , Imai Y. , Kosek J. , et al. 2005.. Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. . Proc. Natl. Acad. Sci. USA 102::1367075 [Google Scholar]
  116. Yeger-Lotem E. , Riva L. , Su LJ. , Gitler AD. , Cashikar AG. , et al. 2009.. Bridging high-throughput genetic and transcriptional data reveals cellular responses to α-synuclein toxicity. . Nat. Genet. 41::31623 [Google Scholar]
  117. Yonetani M. , Nonaka T. , Masuda M. , Inukai Y. , Oikawa T. , et al. 2009.. Conversion of wild-type α-synuclein into mutant-type fibrils and its propagation in the presence of A30P mutant. . J. Biol Chem. 284::794050 [Google Scholar]
  118. Zarranz JJ. , Alegre J. , Gomez-Esteban JC. , Lezcano E. , Ros R. , et al. 2004.. The new mutation, E46K, of α-synuclein causes Parkinson and Lewy body dementia. . Ann. Neurol. 55::16473 [Google Scholar]
/content/journals/10.1146/annurev.cellbio.042308.113313
Loading
/content/journals/10.1146/annurev.cellbio.042308.113313
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error