The replicated copies of each chromosome, the sister chromatids, are attached prior to their segregation in mitosis and meiosis. This association or cohesion is critical for each sister chromatid to bind to microtubules from opposite spindle poles and thus segregate away from each other at anaphase of mitosis or meiosis II. The cohesin protein complex is essential for cohesion in both mitosis and meiosis, and cleavage of one of the subunits is sufficient for loss of cohesion at anaphase. The localization of the cohesin complex and other cohesion proteins permits evaluation of the positions of sister-chromatid associations within the chromosome structure, as well as the relationship between cohesion and condensation. Recently, two key riddles in the mechanism of meiotic chromosome segregation have yielded to molecular answers. First, analysis of the cohesin complex in meiosis provides molecular support for the long-standing hypothesis that sister-chromatid cohesion links homologs in meiosis I by stabilizing chiasmata. Second, the isolation of the monopolin protein that controls kinetochore behavior in meiosis I defines a functional basis by which sister kinetochores are directed toward the same pole in meiosis I.


Article metrics loading...

Loading full text...

Full text loading...


Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error