1932

Abstract

Rock-mechanics experiments, geodetic observations of postloading strain transients, and micro- and macrostructural studies of exhumed ductile shear zones provide complementary views of the style and rheology of deformation deep in Earth's crust and upper mantle. Overall, results obtained in small-scale laboratory experiments provide robust constraints on deformation mechanisms and viscosities at the natural laboratory conditions. Geodetic inferences of the viscous strength of the upper mantle are consistent with flow of mantle rocks at temperatures and water contents determined from surface heat-flow, seismic, and mantle xenolith studies. Laboratory results show that deformation mechanisms and rheology strongly vary as a function of stress, grain size, and fluids. Field studies reveal a strong tendency for deformation in the lower crust and uppermost mantle in and adjacent to fault zones to localize into systems of discrete shear zones with strongly reduced grain size and strength. Deformation mechanisms and rheology may vary over short spatial (shear zone) and temporal (earthquake cycle) scales.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.earth.36.031207.124326
2008-05-30
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/ea/36/1/annurev.earth.36.031207.124326.html?itemId=/content/journals/10.1146/annurev.earth.36.031207.124326&mimeType=html&fmt=ahah

Literature Cited

  1. Behrmann JH. 1985. Crystal plasticity and superplasticity in quartzite: a natural example. Tectonophysics 115:101–29 [Google Scholar]
  2. Bills BG, Adams KD, Wesnousky SG. 2007. Viscosity structure of the crust and upper mantle in western Nevada from isostatic rebound patterns of Lake Lahontan shorelines. J. Geophys. Res. 112:B06405 [Google Scholar]
  3. Bills BG, Currey DR, Marshall GA. 1994. Viscosity estimates for the crust and upper mantle from patterns of lacustrine shoreline deformation in the Eastern Great Basin. J. Geophys. Res. 99:22059–86 [Google Scholar]
  4. Blanpied ML, Lockner DA, Byerlee JD. 1995. Frictional slip of granite at hydrothermal conditions. J. Geophys. Res. 100:13045–65 [Google Scholar]
  5. Brace WF, Kohlstedt DL. 1980. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 84:6248–52 [Google Scholar]
  6. Brudy M, Zoback MD, Fuchs K, Rummel F, Baumgärtner J. 1997. Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength. J. Geophys. Res. 102:18453–76 [Google Scholar]
  7. Bürgmann R, Rosen PA, Fielding EJ. 2000. Synthetic aperture radar interferometry to measure Earth's surface topography and its deformation. Annu. Rev. Earth Planet. Sci. 28:169–209 [Google Scholar]
  8. Burov EB, Watts AB. 2006. The long-term strength of continental lithosphere: “jelly sandwich” or “crème brûlée”?. GSA Today 12:4–10 [Google Scholar]
  9. Byerlee J. 1978. Friction of rocks. Pure Appl. Geophys. 116:615–26 [Google Scholar]
  10. Bystricky M, Kunze K, Burlini L, Burg JP. 2000. High shear strain of olivine aggregates: rheological and seismic consequences. Science 290:1564–67 [Google Scholar]
  11. Bystricky M, Mackwell S. 2001. Creep of dry clinopyroxenite aggregates. J. Geophys. Res. 106:13443–54 [Google Scholar]
  12. Carreras J. 2001. Zooming on Northern Cap de Creus shear zones. J. Struct. Geol. 23:1457–86 [Google Scholar]
  13. Cembrano J, Lavenu A, Reynolds P, Arancibia G, Lopez G, Sanhueza A. 2002. Late Cenozoic transpressional ductile deformation north of the Nazca–South America–Antarctica triple junction. Tectonophysics 354:289–314 [Google Scholar]
  14. Chen S, Hiraga K, Kohlstedt DL. 2006. Water weakening of clinopyroxene in the dislocation creep regime. J. Geophys. Res. 111:B08203 [Google Scholar]
  15. Deng J, Gurnis M, Kanamori H, Hauksson E. 1998. Viscoelastic flow in the lower crust after the 1992 Landers, California, earthquake. Science 282:1689–92 [Google Scholar]
  16. de Ronde AA, Stunitz H, Tullis J, Heilbronner R. 2005. Reaction-induced weakening of plagioclase-olivine composites. Tectonophysics 409:85–106 [Google Scholar]
  17. Dijkstra AH, Drury MR, Vissers RLM, Newman J. 2002. On the role of melt-rock reaction in mantle shear zone formation in the Othris peridotite massif (Greece). J. Struct. Geol. 24:1431–50 [Google Scholar]
  18. Dijkstra AH, Drury MR, Vissers RLM, Newman J, Van Roermund HLM. 2004. Shear zones in the upper mantle: evidence from alpine- and ophiolite-type peridotite massifs. Geol. Soc. Lond. Spec. Pub. 224:11–24 [Google Scholar]
  19. Dimanov A, Dresen G. 2005. Rheology of synthetic anorthite-diopside aggregates: implications for ductile shear zones. J. Geophys. Res. 110:B07203 [Google Scholar]
  20. Dimanov A, Rybacki E, Wirth R, Dresen G. 2007. Creep and strain-dependent microstructures of synthetic anorthite-diopside aggregates. J. Struct. Geol. 29:1049–69 [Google Scholar]
  21. Dimanov A, Wirth R, Dresen G. 2000. The effect of melt distribution on the rheology of plagioclase rocks. Tectonophysics 328:307–27 [Google Scholar]
  22. Dixon JE, Dixon TH, Bell DR, Malservisi R. 2004. Lateral variation in upper mantle viscosity: role of water. Earth Planet. Sci. Lett. 222:451–67 [Google Scholar]
  23. Dohmen R, Chakraborty S, Becker H-W. 2002. Si and O diffusion in olivine and implications for characterizing plastic flow in the mantle. Geophys. Res. Lett. 29:2030 [Google Scholar]
  24. Drury MR. 2005. Dynamic recrystallization and strain softening of olivine aggregates in the laboratory and the lithosphere. Geol. Soc. Lond. Spec. Pub. 243:143–58 [Google Scholar]
  25. Ellis S, Beavan J, Eberhart-Phillips D, Stöckhert B. 2006. Simplified models of the Alpine Fault seismic cycle: stress transfer in the mid-crust. Geophys. J. Int. 166:386–402 [Google Scholar]
  26. Evans B. 2005. Creep constitutive laws for rocks with evolving structure. Geol. Soc. Lond. Spec. Pub. 245:329–46 [Google Scholar]
  27. Fialko Y. 2004. Evidence of fluid-filled upper crust from observations of postseismic deformation due to the 1992 Mw7.3 Landers earthquake. J. Geophys. Res. 109:B08401 [Google Scholar]
  28. Freed AM, Bürgmann R. 2004. Evidence of power-law flow in the Mojave desert mantle. Nature 430:548–51 [Google Scholar]
  29. Freed AM, Bürgmann R, Calais E, Freymueller JT. 2006a. Stress-dependent power-law flow in the upper mantle following the 2002 Denali, Alaska, earthquake. Earth Planet. Sci. Lett. 252:481–89 [Google Scholar]
  30. Freed AM, Bürgmann R, Calais E, Freymueller JT, Hreinsdóttir S. 2006b. Implications of deformation following the 2002 Denali, Alaska, earthquake for postseismic relaxation processes and lithospheric rheology. J. Geophys. Res. 111:B01401 [Google Scholar]
  31. Freed AM, Bürgmann R, Herring TA. 2007. Far-reaching transient motions after Mojave earthquakes require broad mantle flow beneath a strong crust. Geophys. Res. Lett. 34:L19302 [Google Scholar]
  32. Fusseis F, Handy MR, Schrank C. 2006. Networking of shear zones at the brittle-to-viscous transition (Cap de Creus, NE Spain). J. Struct. Geol. 28:1228–43 [Google Scholar]
  33. Gleason GC, Tullis J. 1995. A flow law for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics 247:1–23 [Google Scholar]
  34. Goes S, van der Lee S. 2002. Thermal structure of the North American uppermost mantle inferred from seismic tomography. J. Geophys. Res. 107:2050 [Google Scholar]
  35. Goetze C, Evans B. 1979. Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophys. J. R. Astron. Soc. 59:463–78 [Google Scholar]
  36. Gomez-Barreiro J, Lonardelli I, Wenk HR, Dresen G, Rybacki E et al. 2007. Orientation of anorthite deformed experimentally in Newtonian creep. Earth Planet. Sci. Lett. 264188–207 [Google Scholar]
  37. Griggs DT, Blacic JD. 1965. Quartz: anomalous weakness of synthetic crystals. Science 147:292–95 [Google Scholar]
  38. Gueguen Y, Nicolas A. 1980. Deformation of mantle rocks. Annu. Rev. Earth Planet. Sci. 8:119–44 [Google Scholar]
  39. Handy MR, Hirth G, Bürgmann R. 2007. Continental fault structure and rheology from the frictional-to-viscous transition downward. In Tectonic Faults: Agents of Change on a Dynamic Earthed. MR Handy, G Hirth, N Hovius pp. 139–81 Cambridge, MA: MIT [Google Scholar]
  40. Hanmer S. 1988. Great Slave Lake shear zone, Canadian shield: reconstructed vertical profile of a crustal-scale fault zone. Tectonophysics 149:245–64 [Google Scholar]
  41. Haskell NA. 1935. The motion of a fluid under a surface load. Physics 6:265–69 [Google Scholar]
  42. Hearn EH. 2003. What can GPS data tell us about the dynamics of post-seismic deformation?. Geophys. J. Int. 155:753–77 [Google Scholar]
  43. Hearn EH, Bürgmann R, Reilinger R. 2002. Dynamics of Izmit earthquake postseismic deformation and loading of the Duzce earthquake hypocenter. Bull. Seism. Soc. Am. 92:172–93 [Google Scholar]
  44. Henstock TJ, Levander A, Hole JA. 1997. Deformation in the lower crust of the San Andreas fault system in northern California. Science 278:650–53 [Google Scholar]
  45. Herwegh M, Xiao X, Evans B. 2003. The effect of dissolved magnesium on diffusion creep in calcite. Earth Planet. Sci. Lett. 212:457–70 [Google Scholar]
  46. Hetland EA, Hager BH. 2006. The effects of rheological layering on postseismic deformation. Geophys.. J. Int. 166:277–92 [Google Scholar]
  47. Hirth G, Kohlstedt DL. 2003. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Inside the Subduction Factoryed. J Eiler pp. 83–105 Geophys. Monogr. 138 xs Washington, DC: Am. Geophys. Soc. [Google Scholar]
  48. Hirth G, Teyssier C, Dunlap WJ. 2001. An evaluation of quartzite flow laws based on comparisons between experimentally and naturally deformed rocks. Int. J. Earth Sci. 90:77–87 [Google Scholar]
  49. Hsu Y-J, Segall P, Yu SB, Kuo L-C, Williams CA. 2007. Temporal and spatial variations of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake. Geophys. J. Int. 169:367–79 [Google Scholar]
  50. Hyndman RD, Currie CA, Mazzotti SP. 2005. Subduction zone backarcs, mobile belts, and orogenic heat. GSA Today 15:4–10 [Google Scholar]
  51. Jackson J. 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today 12:4–9 [Google Scholar]
  52. James TS, Clague JJ, Wang K, Hutchinson I. 2000. Postglacial rebound at the northern Cascadia subduction zone. Q. Sci. Rev. 19:1527–41 [Google Scholar]
  53. Jaroslow GE, Hirth G, Dick HJB. 1996. Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256:17–37 [Google Scholar]
  54. Jin D, Karato S, Obata M. 1998. Mechanisms of shear localization in the continental lithosphere: inference from the deformation microstructures of peridotites from the Ivrea zone, northwestern Italy. J. Struct. Geol. 20:195–209 [Google Scholar]
  55. Johnson EA. 2006. Water in nominally anhydrous crustal minerals: speciation, concentration, and geologic significance. In Water in Nominally Anhydrous Mineralsed. JR Smith, H Keppler pp. 117–54 Chantilly, VA: Mineral. Soc. Am. [Google Scholar]
  56. Karato S-I, Jung H, Katayama I, Skemer P. 2008. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36: In press [Google Scholar]
  57. Kaufmann G, Amelung F. 2000. Reservoir-induced deformation and continental rheology in the vicinity of Lake Mead, Nevada. J. Geophys. Res. 105:16341–58 [Google Scholar]
  58. Kenkmann T, Dresen G. 2002. Dislocation microstructures and phase distribution in a lower crustal shear zone: an example from the Ivrea-Zone, Italy. Int. J. Earth Sci. 91:445–58 [Google Scholar]
  59. Kenner SJ, Segall P. 2003. Lower crustal structure in northern California: implications from strain-rate variations following the 1906 San Francisco earthquake. J. Geophys. Res. 108:2011 [Google Scholar]
  60. Khazaradze G, Klotz J. 2003. Short- and long-term effects of GPS measured crustal deformation rates along the south central Andes. J. Geophys. Res. 108:2289 [Google Scholar]
  61. Kohlstedt DL. 2007. Constitutive equations, rheological behavior, and viscosity of rocks. In Treatise on Geophysicsed. G Schubert, Vol. 2, Miner. Phys. Amsterdam: Elsevier. In press [Google Scholar]
  62. Larsen CF, Motyka RJ, Freymueller JT, Echelmeyer KA, Ivins ER. 2005. Rapid viscoelastic uplift in southeast Alaska caused by post–Little Ice Age glacial retreat. Earth Planet. Sci. Lett. 237:548–60 [Google Scholar]
  63. Little TA, Holcombe RJ, Ilg BR. 2002. Kinematics of oblique collision and ramping inferred from microstructures and strain in middle crustal rocks, central Southern Alps, New Zealand. J. Struct. Geol. 24:219–39 [Google Scholar]
  64. Luan FC, Paterson MS. 1992. Preparation and deformation of synthetic aggregates of quartz. J. Geophys. Res. 97:301–20 [Google Scholar]
  65. Marone CJ. 1998. Laboratory-derived friction laws and their application to seismic faulting. Annu. Rev. Earth Planet. Sci. 26:643–96 [Google Scholar]
  66. Martelat JE, Schulmann K, Lardeaux JM, Nicollet C, Cardon H. 1999. Granulite microfabrics and deformation mechanisms in southern Madagascar. J. Struct. Geol. 21:671–87 [Google Scholar]
  67. Masterlark T, Wang HF. 2002. Transient stress coupling between the 1992 Landers and 1999 Hector Mine, California, earthquakes. Bull. Seism. Soc. Am. 92:1470–86 [Google Scholar]
  68. Mei S, Kohlstedt DL. 2000a. Influence of water on plastic deformation of olivine aggregates 1. Diffusion creep regime. J. Geophys. Res. 105:21457–69 [Google Scholar]
  69. Mei S, Kohlstedt DL. 2000b. Influence of water on plastic deformation of olivine aggregates 2. Dislocation creep regime. J. Geophys. Res. 105:21471–81 [Google Scholar]
  70. Milne GA, Davis JL, Mitrovica JX, Scherneck H-G, Johansson JM et al. 2001. Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 291:2381–85 [Google Scholar]
  71. Molnar P, Anderson HJ, Audoine E, Eberhart-Phillips D, Gledhill KR et al. 1999. Continuous deformation versus faulting through the continental lithosphere of New Zealand. Science 286:516–19 [Google Scholar]
  72. Newman J, Lamb WM, Drury MR, Vissers RLM. 1999. Deformation processes in a peridotite shear zone: reaction softening by an H2O-deficient, continuous net transfer reaction. Tectonophysics 303:193–222 [Google Scholar]
  73. Nishimura T, Thatcher W. 2003. Rheology of the lithosphere inferred from postseismic uplift following the 1959 Hebgen Lake earthquake. J. Geophys. Res. 108:2389 [Google Scholar]
  74. Norris RJ, Cooper AF. 2003. Very high strains recorded in mylonites along the Alpine Fault, New Zealand: implications for the deep structure of plate boundary faults. J. Struct. Geol. 25:2141–57 [Google Scholar]
  75. Owen S, Anderson G, Agnew DC, Johnson H, Hurst K et al. 2002. Early Postseismic deformation from the 16 October 1999 Mw7.1 Hector Mine, California, earthquake as measured by survey-mode GPS. Bull. Seism. Soc. Am. 92:1423–#0 [Google Scholar]
  76. Pagli C, Sigmundsson F, Lund B, Sturkell E, Geirsson H et al. 2007. Glacio-istostatic deformation around the Vatnajökull ice cap, Iceland, induced by recent climate warming: GPS observations and finite element modeling. J. Geophys. Res. 112:B08405 [Google Scholar]
  77. Parsons T, Hart PE. 1999. Dipping San Andreas and Hayward faults revealed beneath San Francisco Bay, California. Geology 27:839–42 [Google Scholar]
  78. Paterson MS. 1989. The interaction of water with quartz and its influence in dislocation flow: an overview. In Rheology of Solids and of the Earthed. S Karato, M Toriumi pp. 107–42 New York: Oxford Univ. Press [Google Scholar]
  79. Paulson A, Zhong S, Wahr J. 2005. Modelling postglacial rebound with lateral viscosity variations. Geophys. J. Int. 163:357–71 [Google Scholar]
  80. Peltzer G, Rosen P, Rogez F, Hudnut K. 1996. Postseismic rebound in fault step-overs caused by pore fluid flow. Science 273:1202–4 [Google Scholar]
  81. Perfettini H, Avouac JP. 2007. Modeling afterslip and aftershocks following the 1992 Landers Earthquake. J. Geophys. Res. 112:B07409 [Google Scholar]
  82. Pollitz FF. 2003. Transient rheology of the uppermost mantle beneath the Mojave Desert, California. Earth Planet. Sci. Lett. 215:89–104 [Google Scholar]
  83. Pollitz FF. 2005. Transient rheology of the upper mantle beneath central Alaska inferred from the crustal velocity field following the 2002 Denali earthquake. J. Geophys. Res. 11:B08407 [Google Scholar]
  84. Pollitz FF, Bürgmann R, Banerjee P. 2006. Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth. Geophys. J. Int. 167:397–420 [Google Scholar]
  85. Pollitz FF, Peltzer G, Bürgmann R. 2000. Mobility of continental mantle: evidence from postseismic geodetic observations following the 1992 Landers earthquake. J. Geophys. Res. 105:8035–54 [Google Scholar]
  86. Pollitz FF, Wicks C, Thatcher W. 2001. Mantle flow beneath a continental strike-slip fault: postseismic deformation after the 1999 Hector Mine earthquake. Science 293:1814–18 [Google Scholar]
  87. Pryer LL. 1993. Microstructures in feldspars from a major crustal thrust zone: the Grenville Front, Ontario, Canada. J. Struct. Geol. 15:21–36 [Google Scholar]
  88. Reid HF. 1910. Permanent displacements of the ground, in the California earthquake of April 18, 1906. In Report of the State Earthquake Investigation Commissionpp. 16–28 Washington, D.C.: Carnegie Inst. Wash. [Google Scholar]
  89. Reiner M. 1964. The Deborah number. Phys. Today 62: [Google Scholar]
  90. Renner J, Evans B, Hirth G. 2000. On the rheologically critical melt fraction. Earth Planet. Sci. Lett. 181:585–94 [Google Scholar]
  91. Rutter EH, Brodie KH. 2004a. Experimental grain size-sensitive flow of hot-pressed Brazilian quartz aggregates. J. Struct. Geol. 26:2011–23 [Google Scholar]
  92. Rutter EH, Brodie KH. 2004b. Experimental intracrystalline plastic flow in hot-pressed synthetic quartzite prepared from Brazilian quartz crystals. J. Struct. Geol. 26:259–70 [Google Scholar]
  93. Rutter EH, Brodie KH, Irving DH. 2006. Flow of synthetic, wet, partially molten “granite” under undrained conditions: an experimental study. J. Geophys. Res. 111:B06407 [Google Scholar]
  94. Rybacki E, Dresen G. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. J. Geophys. Res. 105:26017–36 [Google Scholar]
  95. Rybacki E, Gottschalk M, Wirth R, Dresen G. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. J. Geophys. Res. 111:B03203 [Google Scholar]
  96. Ryder I, Parsons BE, Wright TJ, Funning GJ. 2007. Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modeling. Geophys. J. Int. 169:1009–27 [Google Scholar]
  97. Savage JC, Svarc JL. 1997. Postseismic deformation associated with the 1992 Mw = 7.3 Landers earthquake, southern California. J. Geophys. Res. 102:7565–77 [Google Scholar]
  98. Segall P, Davis JL. 1997. GPS applications for geodynamics and earthquake studies. Annu. Rev. Earth Planet. Sci. 25:301–36 [Google Scholar]
  99. Sella GF, Stein S, Dixon TH, Craymer M, James TS et al. 2007. Observation of glacial isostatic adjustment in stable North America with GPS. Geophys. Res. Lett. 34:L02306 [Google Scholar]
  100. Sibson RH, White SH, Atkinson BK. 1979. Fault rock distribution and structure within the Alpine Fault Zone: a preliminary account. Bull. R. Soc. N.Z. 18:55–65 [Google Scholar]
  101. Sigmundsson F. 1991. Post-glacial rebound and asthenosphere viscosity in Iceland. Geophys. Res. Lett. 18:1131–34 [Google Scholar]
  102. Skogby H. 2006. Water in natural mantle minerals I: pyroxenes. In Water in Nominally Anhydrous Mineralsed. JR Smith, H Keppler pp. 155–67 Chantilly, VA: Mineral. Soc. Am. [Google Scholar]
  103. Sol S, Meltzer A, Bürgmann R, van der Hilst RD, King R et al. 2007. Geodynamics of the southeastern Tibetan plateau from seismic anisotropy and geodesy. Geology 35:563–66 [Google Scholar]
  104. Tamisiea ME, Mitrovica JX, Davis JL. 2007. GRACE gravity data constrain ancient ice geometries and continental dynamics over Laurentia. Science 316:881–83 [Google Scholar]
  105. Thatcher W. 1983. Nonlinear strain buildup and the earthquake cycle on the San Andreas fault. J. Geophys. Res. 88:5893–902 [Google Scholar]
  106. Thomson SN. 2002. Late Cenozoic geomorphic and tectonic evolution of the Patagonian andes between 42°S and 46°S: an appraisal based on fission-track results from the transpressional intra-arc Liquine-Ofqui fault zone. Geol. Soc. Am. Bull. 114:1159–73 [Google Scholar]
  107. Titus SJ, Medaris LG, Wang HF, Tikoff B. 2007. Continuation of the San Andreas fault system into the upper mantle: evidence from spinel peridotite xenoliths in the Coyote Lake basalt, central California. Tectonophysics 429:1–20 [Google Scholar]
  108. Tse ST, Rice JR. 1986. Crustal earthquake instability in relation to the depth variation of frictional slip properties. J. Geophys. Res. 91:9452–72 [Google Scholar]
  109. Tullis J. 2002. Deformation of crustal materials. Rev. Mineral. 51:51–95 [Google Scholar]
  110. Tullis TE, Horowitz FG, Tullis J. 1991. Flow laws of polyphase aggregates from end-member flow laws. J. Geophys. Res. 96:8081–96 [Google Scholar]
  111. Twiss RJ. 1977. Theory and applicability of a recrystallized grain size paleopiezometer. Pure Appl. Geophys. 115:227–44 [Google Scholar]
  112. van der Wal D, Chopra P, Drury M, FitzGerald J. 1993. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett. 20:1479–82 [Google Scholar]
  113. Vauchez A, Tommasi A. 2003. Wrench faults down to the asthenosphere: geological and geophysical evidence and thermomechanical effects. Geol. Soc. Lond. Spec. Pub. 210:15–34 [Google Scholar]
  114. Vissers RLM, Drury MR, Newman J, Fliervoet TF. 1997. Mylonitic deformation in upper mantle peridotites of the North Pyrenean Zone (France): implications for strength and strain localization in the lithosphere. Tectonophysics 279:303–25 [Google Scholar]
  115. Vissers RLM, Drury MR, Strating EHH, Spiers CJ, van der Wal D. 1995. Mantle shear zones and their effect on lithosphere strength during continental breakup. Tectonophysics 249:155–71 [Google Scholar]
  116. Voll G. 1976. Recrystallization of quartz, biotite, and feldspars from Erstfeld to the Leventina Nappe, Swiss Alps, and its geological significance. Schweiz. Mineral. Petrog. Mitt. 56:641–47 [Google Scholar]
  117. Wang K. 2007. Elastic and viscoelastic models of crustal deformation in subduction earthquake cycles. In The Seismogenic Zone of Subduction Thrust Faultsed. TH Dixon, JC Moore pp. 540–75 New York: Columbia Univ. Press [Google Scholar]
  118. Warren JM, Hirth G. 2006. Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet. Sci. Lett. 248:438–50 [Google Scholar]
  119. Weber M, Abu-Ayyash K, Abueladas A, Agnon A, Al-Amoush H et al. 2004. The crustal structure of the Dead Sea Transform. Geophys. J. Int. 156:655–81 [Google Scholar]
  120. Wilson CK, Jones CH, Molnar P, Sheehan AF, Boyd OS. 2004. Distributed deformation in the lower crust and upper mantle beneath a continental strike-slip fault zone: Marlborough fault system, South Island, New Zealand. Geology 32:837–40 [Google Scholar]
  121. Wittlinger G, Tapponnier P, Poupinet G, Mei J, Danian S et al. 1998. Tomographic evidence for localized lithospheric shear along the Altyn Tagh fault. Science 282:74–76 [Google Scholar]
  122. Wu P. 2002. Effects of mantle flow law stress exponent on postglacial induced surface motion and gravity in Laurentia. Geophys. J. Int. 148:676–86 [Google Scholar]
  123. Wu P. 2005. Effects of lateral variations in lithospheric thickness and mantle viscosity on glacially induced surface motion in Laurentia. Earth Planet. Sci. Lett. 235:549–63 [Google Scholar]
  124. Zhang S, Karato S-I. 1995. Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375:774–77 [Google Scholar]
  125. Zhu L. 2000. Crustal structure across the San Andreas fault, southern California from teleseismic converted waves. Earth Planet. Sci. Lett. 179:183–90 [Google Scholar]
  126. Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP et al. 1987. New evidence on the state of stress of the San Andreas fault system. Science 238:1105–11 [Google Scholar]
  127. Zweck C, Freymueller JT, Cohen SC. 2002. The 1964 great Alaska earthquake: present day and cumulative postseismic deformation in the western Kenai Peninsula. Phys. Earth Planet. Int. 132:5–20 [Google Scholar]
/content/journals/10.1146/annurev.earth.36.031207.124326
Loading
/content/journals/10.1146/annurev.earth.36.031207.124326
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error