1932

Abstract

Mercury pollution poses global human health and environmental risks. Although mercury is naturally present in the environment, human activities, such as coal burning, have increased the amount of mercury cycling among the land, atmosphere, and ocean by a factor of three to five. Emitted to the atmosphere in its elemental form, mercury travels worldwide before oxidizing to a form that deposits to ecosystems. In aquatic systems, mercury can convert into methylmercury, a potent neurotoxin. People and wildlife are exposed to methylmercury as it bioaccumulates up the food chain. Mercury continues to circulate in the atmosphere, oceans, and terrestrial system for centuries to millennia before it returns to deep-ocean sediments. Areas of uncertainty in the global biogeochemical cycle of mercury include oxidation processes in the atmosphere, land-atmosphere and ocean-atmosphere cycling, and methylation processes in the ocean. National and international policies have addressed direct mercury emissions, but further efforts to reduce risks face numerous political and technical challenges.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.environ.051308.084314
2009-11-21
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/energy/34/1/annurev.environ.051308.084314.html?itemId=/content/journals/10.1146/annurev.environ.051308.084314&mimeType=html&fmt=ahah

Literature Cited

  1. Mason RP. , Sheu G-R. 1. . 2002.. Role of the ocean in the global mercury cycle. . Glob. Biogeochem. Cycles 16::41093 [Google Scholar]
  2. Mergler D. , Anderson HA. , Chan LHM. , Mahaffey KR. , Murray M. 2. , et al. 2007.. Methylmercury exposure and health effects in humans: a worldwide concern. . Ambio: A J. Hum. Environ. 36::311 [Google Scholar]
  3. Knightes CD. , Sunderland EM. , Barber MC. , Johnston JM. , Ambrose RB Jr. 3. . 2009.. Application of ecosystem scale fate and bioaccumulation models to predict fish mercury response times to changes in atmospheric deposition. . Environ. Toxicol. Chem. 28::88193 [Google Scholar]
  4. Mason RP. , Abbott ML. , Bodaly RA. , Bullock OR Jr. , Evers D. 4. , et al. 2005.. Monitoring the response to changing mercury deposition. . Environ. Sci. Technol. 39::A1422 [Google Scholar]
  5. 5. US Environ. Prot. Agency (EPA). 2005.. Regulatory Impact Analysis of the Final Clean Air Mercury Rule. Research Triangle Park, NC:: Off. Air Quality Plan. Stand. [Google Scholar]
  6. Harris RC. , Rudd JWM. , Almyot M. , Babiarz CL. , Beaty KG. 6. , et al. 2007.. Whole-ecosystem study shows rapid fish-mercury response to changes in mercury deposition. . Proc. Natl. Acad. Sci. USA 104::1658691 [Google Scholar]
  7. Rice GE. , Senn DB. , Shine JP. 7. . 2009.. Relative importance of atmospheric and riverine mercury sources to the northern Gulf of Mexico. . Environ. Sci. Technol. 43::16368 [Google Scholar]
  8. 8. Comm. Toxicol. Eff. Methylmercury, Board Environ. Stud. Toxicol., Comm. Life Sci., US Natl. Res. Counc. 2000.. Toxicological Effects of Methylmercury. Washington, DC:: Natl. Acad. [Google Scholar]
  9. Harada M. 9. . 1995.. Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. . Crit. Rev. Toxicol. 25::124 [Google Scholar]
  10. Marsh DO. , Clarkson TW. , Cox C. , Myers GJ. , Amin-Zaki L. , Al-Tikriti SAA. 10. . 1987.. Fetal methylmercury poisoning. Relationship between concentration in single strands of maternal hair and child effects. . Arch. Neurol. 44::101722 [Google Scholar]
  11. Grandjean P. , Weihe P. , White RF. , Debes F. , Araki S. 11. , et al. 1997.. Cognitive deficit in 7-year-old children with prenatal exposure to methylmercury. . Neurotoxicol. Teratol. 19::41728 [Google Scholar]
  12. Crump KS. , Kjellström T. , Shipp AM. , Silvers A. , Stewart A. 12. . 1998.. Influence of prenatal mercury exposure upon scholastic and psychological test performance: benchmark analysis of a New Zealand cohort. . Risk Anal. 18::70113 [Google Scholar]
  13. Davidson PW. , Myers GJ. , Cox C. , Axtell C. , Shamlaye C. 13. , et al. 1998.. Effects of prenatal and postnatal methylmercury exposure from fish consumption on neurodevelopment: outcomes at 66 months of age in the Seychelles Child Development Study. . JAMA 280::7017 [Google Scholar]
  14. Chan HM. , Egeland GM. 14. . 2004.. Fish consumption, mercury exposure, and heart diseases. . Nutr. Rev. 62::6872 [Google Scholar]
  15. Stern AH. 15. . 2005.. A review of the studies of the cardiovascular health effects of methylmercury with consideration of their suitability for risk assessment. . Environ. Res. 98::13342 [Google Scholar]
  16. 16. US Environ. Prot. Agency (EPA). 2001.. Water quality criterion for the protection of human health: methylmercury. . Rep. EPA-823-R-01-001, US EPA Off. Sci. Technol./Off. Water, Washington, DC: [Google Scholar]
  17. Axelrad DA. , Bellinger DC. , Ryan LM. , Woodruff TJ. 17. . 2007.. Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. . Environ. Health Perspect. 115::60915 [Google Scholar]
  18. Wolfe MF. , Schwarzbach S. , Sulaiman RA. 18. . 1998.. Effects of mercury on wildlife: a comprehensive review. . Environ. Toxicol. Chem. 17::14660 [Google Scholar]
  19. Scheuhammer AM. 19. . 1987.. The chronic toxicity of aluminum, cadmium, mercury, and lead in birds: a review. . Environ. Pollut. 46::26395 [Google Scholar]
  20. Evers DC. , Burgess NM. , Champoux L. , Hoskins B. , Major A. 20. , et al. 2005.. Patterns and interpretation of mercury exposure in freshwater avian communities in northeastern North America. . Ecotoxicology 14::193221 [Google Scholar]
  21. Scheuhammer AM. , Meyer MW. , Sandheinrich MB. , Murray MW. 21. . 2007.. Effects of environmental methylmercury on the health of wild birds, mammals, and fish. . AMBIO: A J. Hum. Environ. 36::1219 [Google Scholar]
  22. Moya J. 22. . 2004.. Overview of fish consumption rates in the United States. . Hum. Ecol. Risk Assess. 10::1195211 [Google Scholar]
  23. Carrington CD. , Montwill B. , Bolger PM. 23. . 2004.. An intervention analysis for the reduction of exposure to methylmercury from the consumption of seafood by women of child-bearing age. . Regul. Toxicol. Pharmacol. 40::27280 [Google Scholar]
  24. Sunderland EM. 24. . 2007.. Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. . Environ. Health Perspect. 115::23542 [Google Scholar]
  25. Selin NE. 25. . 2005.. Mercury rising: Is global action needed to protect human health and the environment?. Environment 47::2235 [Google Scholar]
  26. Selin NE. , Selin H. 26. . 2006.. Global politics of mercury pollution: the need for multi-scale governance. . Rev. Eur. Commun. Int. Environ. Law 15::25869 [Google Scholar]
  27. 26a. UN Conf. Human Environ. 1972.. Action plan for the human environment. Stockholm, June 16. http://www.unep.org/Documents.Multilingual/Default.asp?DocumentID=97&ArticleID=1492&l=en [Google Scholar]
  28. Pacyna EG. , Pacyna JM. 27. . 2002.. Global emission of mercury from anthropogenic sources in 1995. . Water Air Soil Pollut. 137::14965 [Google Scholar]
  29. 28. Arctic Monit. Assess. Program (AMAP). 2002.. Arctic Pollution 2002. Oslo:: AMAP [Google Scholar]
  30. 28a.  Proposed National Emission Standards for Hazardous Air Pollutants; and, in the Alternative, Proposed Standards of Performance for New and Existing Stationary Sources: Electric Utility Steam Generating Units; Proposed Rule, Environmental Protection Agency. . Federal Register 69:(20):4652752, (Jan. 30, 2004) [Google Scholar]
  31. Fitzgerald WF. , Lamborg CH. 29. . 2005.. Geochemistry of mercury in the environment. . In Treatise on Geochemistry, ed. BS Lollar , pp. 10748. New York:: Elsevier [Google Scholar]
  32. Selin NE. , Jacob DJ. , Yantosca RM. , Strode S. , Jaeglé L. , Sunderland EM. 30. . 2008.. Global 3-D land-ocean-atmosphere model for mercury: present-day versus preindustrial cycles and anthropogenic enrichment factors for deposition. . Glob. Biogeochem. Cycles 22::GB2011 [Google Scholar]
  33. Nriagu JO. 31. . 1993.. Legacy of mercury pollution. . Nature 363::589 [Google Scholar]
  34. Fitzgerald WF. , Engstrom DR. , Mason RP. , Nater EA. 32. . 1998.. The case for atmospheric mercury contamination in remote areas. . Environ. Sci. Technol. 32::17 [Google Scholar]
  35. Schuster PF. , Krabbenhoft DF. , Naftz DL. , Cecil LD. , Olson ML. 33. , et al. 2002.. Atmospheric mercury deposition during the last 270 years: a glacial ice core record of natural and anthropogenic sources. . Environ. Sci. Technol. 36::230310 [Google Scholar]
  36. Roos-Barraclough F. , Martínez-Cortizas A. , García-Rodeja E. , Shotyk W. 34. . 2002.. A 14500 year record of the accumulation of atmospheric mercury in peat: volcanic signals, anthropogenic influences and a correlation to bromine accumulation. . Earth Planet. Sci. Lett. 202::43551 [Google Scholar]
  37. Biester H. , Bindler R. , Martínez-Cortizas A. , Engstrom DR. 35. . 2007.. Modeling the past atmospheric deposition of mercury using natural archives. . Environ. Sci. Technol. 41::485160 [Google Scholar]
  38. Varekamp JC. , Buseck PR. 36. . 1986.. Global mercury flux from volcanic and geothermal sources. . Appl. Geochem. 1::6573 [Google Scholar]
  39. Tarr RS. 37. . 1898.. Economic Geology of the United States. London:: Macmillan [Google Scholar]
  40. Gustin MS. , Lindberg SE. , Weisberg PJ. 38. . 2008.. An update on the natural sources and sinks of atmospheric mercury. . Appl. Geochem. 23::48293 [Google Scholar]
  41. Lindqvist O. 39. . 1991.. Mercury in the Swedish environment: recent research on causes, consequences and corrective methods. . Water Air Soil Pollut. 55::1261 [Google Scholar]
  42. Nriagu J. , Becker C. 40. . 2003.. Volcanic emissions of mercury to the atmosphere: global and regional inventories. . Sci. Total Environ. 304::312 [Google Scholar]
  43. Pyle DM. , Mather TA. 41. . 2003.. The importance of volcanic emissions for the global atmospheric mercury cycle. . Atmos. Environ. 37::511524 [Google Scholar]
  44. Pacyna EG. , Pacyna JM. , Steenhuisen F. , Wilson S. 42. . 2006.. Global anthropogenic mercury emission inventory for 2000. . Atmos. Environ. 40::404863 [Google Scholar]
  45. Jaffe D. , Prestbo E. , Swartzendruber P. , Weiss-Penzias P. , Kato S. 43. , et al. 2005.. Export of atmospheric mercury from Asia. . Atmos. Environ. 39::302938 [Google Scholar]
  46. Strode S. , Jaeglé L. , Selin NE. 44. . 2009.. Impact of mercury emissions from historical gold and silver mining: global modeling. . Atmos. Environ. 43::201217 [Google Scholar]
  47. Streets DG. , Zhang Q. , Wu Y. 44a. . 2009.. Projections of global mercury emissions in 2050. . Environ. Sci. Technol. 43::298388 [Google Scholar]
  48. 45. UN Environ. Program. (UNEP). 2002.. Global Mercury Assessment, Inter-Organ. Program Sound Manag. Chem., Geneva: [Google Scholar]
  49. 46. US Environ. Prot. Agency (EPA). 2009.. Mercury: controlling power plant emissions: emissions progress. http://www.epa.gov/mercury/control_emissions/emissions.htm [Google Scholar]
  50. Lin C-J. , Pehkonen SO. 47. . 1999.. The chemistry of atmospheric mercury: a review. . Atmos. Environ. 33::206779 [Google Scholar]
  51. Pehkonen SO. , Lin CJ. 48. . 1998.. Aqueous photochemistry of mercury with organic acids. . J. Air Waste Manag. Assoc. 48::14450 [Google Scholar]
  52. Schroeder WH. , Munthe J. 49. . 1998.. Atmospheric mercury: an overview. . Atmos. Environ. 32::80922 [Google Scholar]
  53. Lin C-J. , Pongprueksa P. , Lindberg SE. , Pehkonen SO. , Byun D. , Jang C. 50. . 2006.. Scientific uncertainties in atmospheric mercury models I: model science evaluation. . Atmos. Environ. 40::291128 [Google Scholar]
  54. Lindberg S. , Bullock R. , Ebinghaus R. , Daniel E. , Feng X. 51. , et al. 2007.. A synthesis of progress and uncertainties in attributing the sources of mercury in deposition. . AMBIO: A J. Hum. Environ. 36::1932 [Google Scholar]
  55. Lin C-J. , Pongprueksa P. , Bullock OR. , Lindberg SE. , Pehkonen SO. 52. , et al. 2007.. Scientific uncertainties in atmospheric mercury models II: sensitivity analysis in the CONUS domain. . Atmos. Environ. 41::654460 [Google Scholar]
  56. Bullock OR Jr. , Atkinson D. , Braverman T. , Civerolo K. , Dastoor A. 53. , et al. 2008.. The North American Mercury Model Intercomparison Study (NAMMIS): study description and model-to-model comparisons. . J. Geophys. Res. 113::D17310 [Google Scholar]
  57. Ebinghaus R. , Kock HH. , Coggins AM. , Spain TG. , Jennings SG. , Temme C. 54. . 2002.. Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. . Atmos. Environ. 36::526776 [Google Scholar]
  58. Weiss-Penzias P. , Jaffe DA. , McClintick A. , Prestbo EM. , Landis MS. 55. . 2003.. Gaseous elemental mercury in the marine boundary layer: evidence for rapid removal in anthropogenic pollution. . Environ. Sci. Technol. 37::375563 [Google Scholar]
  59. Poissant L. , Pilote M. , Beauvais C. , Constant P. , Zhang HH. 56. . 2005.. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hg-p) in southern Quebec, Canada. . Atmos. Environ. 39::127587 [Google Scholar]
  60. Kellerhals M. , Beauchamp S. , Belzer W. , Blanchard P. , Froude F. 57. , et al. 2003.. Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). . Atmos. Environ. 37::100311 [Google Scholar]
  61. 58. Eur. Monit. Eval. Program. (EMEP). 2005.. Co-operative program for monitoring and evaluation of the long-range transmissions of air pollutants in Europe (EMEP). EMEP measurement data online. http://tarantula.nilu.no/projects/ccc/emepdata.html [Google Scholar]
  62. Laurier FJG. , Mason RP. , Whalin L. 59. . 2003.. Reactive gaseous mercury formation in the North Pacific Ocean's marine boundary layer: a potential role of halogen chemistry. . J. Geophys. Res. 108::4529 [Google Scholar]
  63. Lamborg CH. , Rolfhus KR. , Fitzgerald WF. , Kim G. 60. . 1999.. The atmospheric cycling and air-sea exchange of mercury species in the South and equatorial Atlantic Ocean. . Deep-Sea Res. II 46::95777 [Google Scholar]
  64. Temme C. , Slemr F. , Ebinghaus R. , Einax JW. 61. . 2003.. Distribution of mercury over the Atlantic Ocean in 1996 and 1999–2001. . Atmos. Environ. 37::188997 [Google Scholar]
  65. Slemr F. , Brunke EG. , Ebinghaus R. , Temme C. , Munthe J. 62. , et al. 2003.. Worldwide trend of atmospheric mercury since 1977. . Geophys. Res. Lett. 30::1516 [Google Scholar]
  66. Slemr F. , Langer E. 63. . 1992.. Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. . Nature 355::43437 [Google Scholar]
  67. Pal B. , Ariya PA. 64. . 2004.. Gas-phase HO-initiated reactions of elemental mercury: kinetics and product studies, and atmospheric implications. . Environ. Sci. Technol. 21::555566 [Google Scholar]
  68. Hall B. 65. . 1995.. The gas phase oxidation of elemental mercury by ozone. . Water Air Soil Pollut. 80::30115 [Google Scholar]
  69. Calvert JG. , Lindberg SE. 66. . 2005.. Mechanisms of mercury removal by O3 and OH in the atmosphere. . Atmos. Environ. 39::335567 [Google Scholar]
  70. Donohoue DL. , Bauer D. , Cossairt B. , Hynes AJ. 67. . 2006.. Temperature and pressure dependent rate coefficients for the reaction of Hg with Br and the reaction of Br with Br: a pulsed laser photolysis-pulsed laser induced fluorescence study. . J. Phys. Chem. A 110::662332 [Google Scholar]
  71. Landis MS. , Stevens RK. , Schaedlich F. , Prestbo EM. 68. . 2002.. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. . Environ. Sci. Technol. 36::30009 [Google Scholar]
  72. Selin NE. , Jacob DJ. , Park RJ. , Yantosca RM. , Strode S. 69. , et al. 2007.. Chemical cycling and deposition of atmospheric mercury: global constraints from observations. . J. Geophys. Res. 112::D02308 [Google Scholar]
  73. Laurier F. , Mason R. 70. . 2007.. Mercury concentration and speciation in the coastal and open ocean boundary layer. . J. Geophys. Res. 112::D06302 [Google Scholar]
  74. Holmes C. , Yang X. , Jacob DJ. 71. . 2006.. Is atomic bromine a major global oxidant of atmospheric mercury?. Geophys. Res. Lett. 33::L20808 [Google Scholar]
  75. Seigneur C. , Lohman K. 72. . 2008.. Effect of bromine chemistry on the atmospheric mercury cycle. . J. Geophys. Res. 113::D22309 [Google Scholar]
  76. Goodsite ME. , Plane JMC. , Skov H. 73. . 2004.. A theoretical study of the oxidation of Hg-0 to HgBr2 in the troposphere. . Environ. Sci. Technol. 38::177276 [Google Scholar]
  77. Simpson WR. , von Glasow R. , Riedel K. , Anderson P. , Ariya P. 74. , et al. 2007.. Halogens and their role in polar boundary-layer ozone depletion. . Atmos. Chem. Phys 7::4375418 [Google Scholar]
  78. Steffen A. , Schroeder W. , Bottenheim J. , Narayan J. , Fuentes JD. 75. . 2002.. Atmospheric mercury concentrations: measurements and profiles near snow and ice surfaces in the Canadian Arctic during Alert 2000. . Atmos. Environ. 36::265361 [Google Scholar]
  79. Steffen A. , Douglas T. , Amyot M. , Ariya P. , Aspmo K. 76. , et al. 2008.. A synthesis of atmospheric mercury depletion event chemistry in the atmosphere and snow. . Atmos. Chem. Phys. 8::144582 [Google Scholar]
  80. Swartzendruber PC. , Jaffe DA. , Prestbo EM. , Weiss-Penzias P. , Selin NE. 77. , et al. 2006.. Observations of reactive gaseous mercury in the free troposphere at the Mount Bachelor Observatory. . J. Geophys. Res. 111::D24301 [Google Scholar]
  81. Talbot R. , Mao H. , Scheuer E. , Dibb J. , Avery M. 78. , et al. 2008.. Factors influencing the large-scale distribution of Hg in the Mexico City area and over the North Pacific. . Atmos. Chem. Phys. 8::210314 [Google Scholar]
  82. Murphy DM. , Hudson PK. , Thomson DS. , Sheridan PJ. , Wilson JC. 79. . 2006.. Observations of mercury-containing aerosols. . Environ. Sci. Technol. 40::235762 [Google Scholar]
  83. 80. Natl. Atmospheric Deposition Program. 2009.. Mercury Deposition Network (MDN): A NADP Network. Champaign, IL:: NADP Program Off., Ill. State Water Surv. [Google Scholar]
  84. Lindberg SE. , Meyers TP. , Taylor GE Jr. , Turner RR. , Schroeder WH. 81. . 1992.. Atmosphere-surface exchange of mercury in a forest: results of modeling and gradient approaches. . J. Geophys. Res. 97::251928 [Google Scholar]
  85. Bullock OR Jr. , Atkinson D. , Braverman T. , Civerolo K. , Dastoor A. 81a. , et al. 2009.. An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study (NAMMIS). . J. Geophys. Res. 114::D08301 [Google Scholar]
  86. Seigneur C. , Vijayaraghavan K. , Lohman K. , Karamchandani P. , Scott C. 82. . 2004.. Global source attribution for mercury deposition in the United States. . Environ. Sci. Technol. 38::55569 [Google Scholar]
  87. Selin NE. , Jacob DJ. 83. . 2008.. Seasonal and spatial patterns of mercury wet deposition in the United States: constraints on the contribution from North American anthropogenic sources. . Atmos. Environ. 42::5193204 [Google Scholar]
  88. Guentzel JL. , Landing WM. , Gill GA. , Pollman CD. 84. . 2001.. Processes influencing rainfall deposition of mercury in Florida. . Environ. Sci. Technol. 35::86373 [Google Scholar]
  89. Bullock OR. , Brehme KA. , Mapp GR. 85. . 1998.. Lagrangian modeling of mercury air emission, transport and deposition: an analysis of model sensitivity to emissions uncertainty. . Sci. Total Environ. 213::112 [Google Scholar]
  90. Dvonch JT. , Graney JR. , Marsik FJ. , Keeler GJ. , Stevens RK. 86. . 1998.. An investigation of source-receptor relationships for mercury in South Florida using event precipitation data. . Sci. Total Environ. 213::95108 [Google Scholar]
  91. Dvonch JT. , Keeler GJ. , Marsik FJ. 87. . 2005.. The influence of meteorological conditions on the wet deposition of mercury in southern Florida. . J. Appl. Meteorol. 44::142135 [Google Scholar]
  92. Keeler GJ. , Landis MS. , Norris GA. , Christianson EM. , Dvonch JT. 88. . 2006.. Sources of mercury wet deposition in eastern Ohio, USA. . Environ. Sci. Technol. 40::587481 [Google Scholar]
  93. Christianson EM. , Keeler G. , Landis MS. 89. . 2008.. Near-field mercury deposition during summertime precipitation events: the impact of coal fired utilities. . Eos Trans. AGU 89:: Fall Meet. Suppl. Abstr.A53D0316 [Google Scholar]
  94. Pongprueksa P. , Lin CJ. , Lindberg SE. , Jang C. , Braverman T. 90. , et al. 2008.. Scientific uncertainties in atmospheric mercury models III: boundary and initial conditions, model grid resolution, and Hg (II) reduction mechanism. . Atmos. Environ. 42::182845 [Google Scholar]
  95. Vijayaraghavan K. , Karamchandani P. , Seigneur C. , Balmori R. , Chen S-Y. 91. . 2008.. Plume-in-grid modeling of atmopsheric mercury. . J. Geophys. Res. 113::D24305 [Google Scholar]
  96. Hintelmann H. , Harris R. , Heyes A. , Hurley JP. , Kelly CA. 92. , et al. 2002.. Reactivity and mobility of new and old mercury deposition in a boreal forest ecosystem during the first year of the METAALICUS study. . Environ. Sci. Technol. 36::503440 [Google Scholar]
  97. Amyot M. , Southworth G. , Lindberg SE. , Hintelmann H. , Lalonde JD. 93. , et al. 2004.. Formation and evasion of dissolved gaseous mercury in large enclosures amended with 200HgCl2. . Atmos. Environ. 38::427989 [Google Scholar]
  98. Ferrari CP. , Gauchard PA. , Aspmo K. , Dommergue A. , Magand O. 94. , et al. 2005.. Snow-to-air exchanges of mercury in an Arctic seasonal snow pack in Ny-Alesund, Svalbard. . Atmos. Environ. 39::763345 [Google Scholar]
  99. Lalonde JD. , Poulain AJ. , Amyot M. 95. . 2002.. The role of mercury redox reactions in snow on snow-to-air mercury transfer. . Environ. Sci. Technol. 36::17478 [Google Scholar]
  100. Obrist D. 96. . 2007.. Atmospheric mercury pollution due to losses of terrestrial carbon pools?. Biogeochemistry 85::11923 [Google Scholar]
  101. Grigal DF. 97. . 2002.. Inputs and outputs of mercury from terrestrial watersheds: a review. . Environ. Rev. 10::139 [Google Scholar]
  102. Skyllberg U. , Qian J. , Frech W. , Xia K. , Bleam WF. 98. . 2003.. Distribution of mercury, methyl mercury and organic sulphur species in soil, soil solution and stream of a boreal forest catchment. . Biogeochemistry 64::5376 [Google Scholar]
  103. Andersson A. 99. . 1967.. Kvicksilvret i marken (Mercury in the soil). . Grundförbättring 20::95105 [Google Scholar]
  104. Frescholtz TF. , Gustin MS. 100. . 2004.. Soil and foliar mercury emission as a function of soil concentration. . Water Air Soil Pollut. 155::22337 [Google Scholar]
  105. Richardson GM. , Mitchell IA. , Mah-Paulson M. , Hackbarth T. , Garrett RG. 101. . 2003.. Natural emissions of mercury to the atmosphere in Canada. . Environ. Rev. 11::1736 [Google Scholar]
  106. Shacklette HT. , Boerngen JG. , Turner RL. 102. . 1971.. Mercury in the environment—surficial materials of the conterminous United States. . Rep. 644, US Geol. Surv., GPO, Washington, DC: [Google Scholar]
  107. Gabriel MC. , Williamson DG. 103. . 2004.. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. . Environ. Geochem. Health 26::42134 [Google Scholar]
  108. Lindberg SE. , Hanson PJ. , Meyers TP. , Kim KH. 104. . 1998.. Air/surface exchange of mercury vapor over forests—the need for a reassessment of continental biogenic emissions. . Atmos. Environ. 32::895908 [Google Scholar]
  109. Fritsche J. , Obrist D. , Alewell C. 105. . 2008.. Evidence of microbial control of Hg0 emissions from uncontaminated terrestrial soils. . J. Plant Nutr. Soil Sci. 171::2009 [Google Scholar]
  110. Kim KH. , Lindberg SE. , Meyers TP. 106. . 1995.. Micrometeorological measurements of mercury-vapor fluxes over background forest soils in eastern Tennessee. . Atmos. Environ. 29::26782 [Google Scholar]
  111. Lindberg SE. , Kim KH. , Meyers TP. , Owens JG. 107. . 1995.. Micrometeorological gradient approach for quantifying air/surface exchange of mercury-vapor: tests over contaminated soils. . Environ. Sci. Technol. 29::12635 [Google Scholar]
  112. Carpi A. , Lindberg SE. 108. . 1998.. Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: tests and results over background soil. . Atmos. Environ. 32::87382 [Google Scholar]
  113. Gustin MS. , Biester H. , Kim CS. 109. . 2002.. Investigation of the light-enhanced emission of mercury from naturally enriched substrates. . Atmos. Environ. 36::324154 [Google Scholar]
  114. Gustin MS. , Stamenkovic J. 110. . 2005.. Effect of watering and soil moisture on mercury emissions from soils. . Biogeochemistry 76::21532 [Google Scholar]
  115. Weiss-Penzias P. , Jaffe D. , Swartzendruber P. , Hafner W. , Chand D. , Prestbo E. 111. . 2007.. Quantifying Asian and biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. . Atmos. Environ. 41::436679 [Google Scholar]
  116. Turetsky MR. , Harden JW. , Friedli HR. , Flannigan M. , Payne N. 112. , et al. 2006.. Wildfires threaten mercury stocks in northern soils. . Geophys. Res. Lett. 33::L16403 [Google Scholar]
  117. Flannigan MD. , Stocks BJ. , Wotton BM. 113. . 2000.. Climate change and forest fires. . Sci. Total Environ. 262::22129 [Google Scholar]
  118. 114. US Environ. Prot. Agency (EPA). 2007.. 2005/2006 National listing of fish advisories. . EPA-823-F-07-003 fact sheet. Off. Water, Washington, DC:. http://www.epa.gov/waterscience/fish/advisories/2006/tech.pdf [Google Scholar]
  119. Bloom NS. , Gill GA. , Cappellino S. , Dobbs C. , McShea L. 115. , et al. 1999.. Speciation and cycling of mercury in Lavaca Bay, Texas, sediments. . Environ. Sci. Technol. 33::713 [Google Scholar]
  120. Mason RP. , Sullivan KA. 116. . 1997.. Mercury in Lake Michigan. . Environ. Sci. Technol. 31::94247 [Google Scholar]
  121. Wang W. , Driscoll CT. 117. . 1995.. Patterns of total mercury concentrations in Onondaga Lake, New York. . Environ. Sci. Technol. 29::226166 [Google Scholar]
  122. Engstrom DR. 118. . 2007.. Fish respond when the mercury rises. . Proc. Natl. Acad. Sci. USA 104::1639495 [Google Scholar]
  123. Gilmour CC. , Riedel GS. , Ederington MC. , Bell JT. , Benoit JM. 119. , et al. 1998.. Methylmercury concentrations and production rates across a trophic gradient in the northern everglades. . Biogeochemistry 40::32745 [Google Scholar]
  124. Benoit JM. , Gilmour CC. , Heyes A. , Mason RP. , Miller C. 120. . 2003.. Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. . In ACS Symp. Ser. 835, ed. Y Chai, OC Braids , pp. 26297. Washington, DC:: Am. Chem. Soc. [Google Scholar]
  125. Kerin EJ. , Gilmour CC. , Roden E. , Suzuki MT. , Coates JD. , Mason RP. 121. . 2006.. Mercury methylation by dissimilatory iron-reducing bacteria. . Appl. Environ. Microbiol. 72::7919 [Google Scholar]
  126. Rudd JWM. 122. . 1995.. Sources of methyl mercury to freshwater ecosystems: a review. . Water Air Soil Pollut. 80::697713 [Google Scholar]
  127. Gilmour CC. , Henry EA. , Mitchell R. 123. . 1992.. Sulfate stimulation of mercury methylation in freshwater sediments. . Environ. Sci. Technol. 26::228187 [Google Scholar]
  128. Munthe J. , Bodaly RA. , Branfireun BA. , Driscoll CT. , Gilmour CC. 124. , et al. 2007.. Recovery of mercury-contaminated fisheries. . AMBIO: A J. Hum. Environ. 36::3344 [Google Scholar]
  129. Compeau GC. , Bartha R. 125. . 1985.. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. . Appl. Environ. Microbiol. 50::498502 [Google Scholar]
  130. King JK. , Saunders FM. , Lee RF. , Jahnke RA. 126. . 1999.. Coupling mercury methylation rates to sulfate reduction rates in marine sediments. . Environ. Toxicol. Chem. 18::136269 [Google Scholar]
  131. Hintelmann H. , Keppel-Jones K. , Evans RD. 127. . 2000.. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. . Environ. Toxicol. Chem. 19::220411 [Google Scholar]
  132. Mason RP. , Lawrence AL. 128. . 1999.. Concentration, distribution and bioavailability of mercury and methylmercury in sediments of Baltimore Harbor and Chesapeake Bay, Maryland, USA. . Environ. Toxicol. Chem. 18::243847 [Google Scholar]
  133. Benoit JM. , Gilmour CC. , Mason RP. , Heyes A. 129. . 1999.. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. . Environ. Sci. Technol. 33::95157 [Google Scholar]
  134. Stoichev T. , Amouroux D. , Wasserman JC. , Point D. , De Diego A. 130. , et al. 2004.. Dynamics of mercury species in surface sediments of a macrotidal estuarine–coastal system (Adour River, Bay of Biscay). . Estuar. Coast. Shelf Sci. 59::51121 [Google Scholar]
  135. Baeyens W. , Elskens M. , Van Ryssen R. , Leermakers M. 131. . 1997.. The impact of the Scheldt input on the trace metal distribution in the Belgian coastal area (results of 1981–1983 and 1995–1996). . Hydrobiologia 366::91108 [Google Scholar]
  136. Benoit JM. , Gilmour CC. , Mason RP. 132. . 2001.. The influence of sulfide on solid-phase mercury bioavailability for methylation by pure cultures of Desulfobulbus propionicus (1pr3). . Environ. Sci. Technol. 35::12732 [Google Scholar]
  137. Compeau G. , Bartha R. 133. . 1984.. Methylation and demethylation of mercury under controlled redox, pH and salinity conditions. . Appl. Environ. Microbiol. 48::12037 [Google Scholar]
  138. Eckley CS. , Hintelmann H. 134. . 2006.. Determination of mercury methylation potentials in the water column of lakes across Canada. . Sci. Total Environ. 368::11125 [Google Scholar]
  139. Eckley CS. , Watras CJ. , Hintelmann H. , Morrison K. , Kent AD. , Regnell O. 135. . 2005.. Mercury methylation in the hypolimnetic waters of lakes with and without connection to wetlands in northern Wisconsin. . Can. J. Fish. Aquat. Sci. 62::40011 [Google Scholar]
  140. Orihel DM. , Paterson MJ. , Gilmour CC. , Bodaly RAD. , Blanchfield PJ. 136. , et al. 2006.. Effect of loading rate on the fate of mercury in littoral mesocosms. . Environ. Sci. Technol. 40::59926000 [Google Scholar]
  141. Mason RP. , Fitzgerald WF. 137. . 1993.. The distribution and biogeochemical cycling of mercury in the equatorial Pacific Ocean. . Deep Sea Res. Part I 40::1897924 [Google Scholar]
  142. Morel FMM. , Kraepiel AML. , Amyot M. 138. . 1998.. The chemical cycle and bioaccumulation of mercury. . Annu. Rev. Ecol. Syst. 29::54366 [Google Scholar]
  143. Lamborg CH. , Fitzgerald WF. , Damman AWH. , Benoit JM. , Balcom PH. , Engstrom DR. 139. . 2002.. Modern and historic atmospheric mercury fluxes in both hemispheres: global and regional mercury cycling implications. . Glob. Biogeochem. Cycles 16::110414 [Google Scholar]
  144. Cossa D. , Martin JM. , Takayanagi K. , Sanjuan J. 140. . 1997.. The distribution and cycling of mercury species in the western Mediterranean. . Deep Sea Res. Part II 44::72140 [Google Scholar]
  145. Mason RP. , Rolfhus KR. , Fitzgerald WF. 141. . 1998.. Mercury in the North Atlantic. . Mar. Chem. 61::3753 [Google Scholar]
  146. Laurier FJG. , Mason RP. , Gill GA. , Whalin L. 142. . 2004.. Mercury distributions in the North Pacific Ocean—20 years of observations. . Mar. Chem. 90::319 [Google Scholar]
  147. Sunderland EM. , Mason RP. 143. . 2007.. Human impacts on open ocean mercury concentrations. . Glob. Biogeochem. Cycles 21::GB4022 [Google Scholar]
  148. Strode SA. , Jaegle L. , Selin NE. , Jacob DJ. , Park RJ. 144. , et al. 2007.. Air-sea exchange in the global mercury cycle. . Glob. Biogeochem. Cycles 21::GB1017 [Google Scholar]
  149. Rolfhus KR. , Fitzgerald WF. 145. . 1995.. Linkages between atmospheric mercury deposition and the methylmercury content of marine fish. . Water Air Soil Pollut. 80::29197 [Google Scholar]
  150. Fitzgerald WF. , Lamborg CH. , Hammerschmidt CR. 146. . 2007.. Marine biogeochemical cycling of mercury. . Chem. Rev. 107::64162 [Google Scholar]
  151. Sunderland EM. , Krabbenhoft DP. , Moreau JW. , Strode SA. , Landing WM. 146a. . 2009.. Mercury sources, distribution, and bioavailability in the North Pacific Ocean: insights from data and models. . Glob. Biogeochem. Cycles 23::GB2010 [Google Scholar]
  152. Monperrus M. , Tessier E. , Amouroux D. , Leynaert A. , Huonnic P. , Donard OFX. 147. . 2007.. Mercury methylation, demethylation and reduction rates in coastal and marine surface waters of the Mediterranean Sea. . Mar. Chem. 107::4963 [Google Scholar]
  153. Lamborg CH. , Yigiterhan O. , Fitzgerald WF. , Balcom PH. , Hammerschmidt CR. , Murray J. 148. . 2008.. Vertical distribution of mercury species at two sites in the western Black Sea. . Mar. Chem. 111::7789 [Google Scholar]
  154. Kirk JL. , Louis VLS. , Hintelmann H. , Lehnherr I. , Else B. , Poissant L. 149. . 2008.. Methylated mercury species in marine waters of the Canadian high and sub Arctic. . Environ. Sci. Technol. 42::836773 [Google Scholar]
  155. Hammerschmidt CR. , Fitzgerald WF. 150. . 2006.. Methylmercury cycling in sediments on the continental shelf of southern New England. . Geochim. Cosmochim. Acta 70::91830 [Google Scholar]
  156. Heyes A. , Mason RP. , Kim EH. , Sunderland E. 151. . 2006.. Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. . Mar. Chem. 102::13447 [Google Scholar]
  157. Gill GA. , Bloom NS. , Cappellino S. , Driscoll CT. , Dobbs C. 152. , et al. 1999.. Sediment-water fluxes of mercury in Lavaca Bay, Texas. . Environ. Sci. Technol. 33::66369 [Google Scholar]
  158. Mason RP. , Lawson NM. , Lawrence AL. , Leaner JJ. , Lee JG. , Sheu GR. 153. . 1999.. Mercury in the Chesapeake Bay. . Mar. Chem. 65::7796 [Google Scholar]
  159. Monperrus M. , Tessier E. , Point D. , Vidimova K. , Amouroux D. 154. , et al. 2007.. The biogeochemistry of mercury at the sediment–water interface in the Thau Lagoon. 2. Evaluation of mercury methylation potential in both surface sediment and the water column. . Estuar. Coast. Shelf Sci. 72::48596 [Google Scholar]
  160. Kraepiel AML. , Keller K. , Chin HB. , Malcolm EG. , Morel FMM. 155. . 2003.. Sources and variations of mercury in tuna. . Environ. Sci. Technol. 37::555158 [Google Scholar]
  161. Pacyna J. , Wilson S. , Steenhuisen F. , Pacyna E. 156. . 2005.. Spatially distributed inventories of global anthropogenic emissions of mercury to the atmosphere. http://www.amap.no/Resources/HgEmissions/HgInventoryData.html [Google Scholar]
  162. Mason RP. , Fitzgerald WF. , Morel FMM. 157. . 1994.. The biogeochemical cycling of elemental mercury: anthropogenic influences. . Geochim. Cosmochim. Acta 58::319198 [Google Scholar]
  163. Lamborg CH. , Fitzgerald WF. , O'Donnell J, Torgerson T. 158. . 2009.. A non-steady-state compartmental model of global-scale mercury biogeochemistry with interhemispheric atmospheric gradients. . Geochim. Cosmochim. Acta 66::110518 [Google Scholar]
/content/journals/10.1146/annurev.environ.051308.084314
Loading
/content/journals/10.1146/annurev.environ.051308.084314
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error