1932

Abstract

Climate models simulate the atmosphere, given atmospheric composition and energy from the sun, and include explicit modeling of, and exchanges with, the underlying oceans, sea ice, and land. The models are based on physical principles governing momentum, thermodynamics, cloud microphysics, radiative transfer, and turbulence. Climate models are evolving into Earth-system models, which also include chemical and biological processes and afford the prospect of links to studies of human dimensions of climate change. Although the fundamental principles on which climate models are based are robust, computational limits preclude their numerical solution on scales that include many processes important in the climate system. Despite this limitation, which is often dealt with by parameterization, many aspects of past and present climate have been successfully simulated using climate models, and climate models are used extensively to predict future climate change resulting from human activity.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.environ.33.020707.160752
2008-11-21
2025-06-19
Loading full text...

Full text loading...

/deliver/fulltext/energy/33/1/annurev.environ.33.020707.160752.html?itemId=/content/journals/10.1146/annurev.environ.33.020707.160752&mimeType=html&fmt=ahah

Literature Cited

  1. Washington WM, Parkinson CL. 1.  2005. An Introduction to Three Dimensional Climate Modeling Sausalito, CA: Univ. Sci. Books353pp. [Google Scholar]
  2. 2. Intergov. Panel Clim. Change (IPCC) 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change S Solomon, D Qin, M Manning, Z Chen, M Marquis et al. Cambridge, UK/New York: Cambridge Univ. Press996pp. [Google Scholar]
  3. Tribbia JJ, Anthes RA. 3.  1987. Scientific basis of modern weather prediction. Science 237:493–99 [Google Scholar]
  4. Palmer T, Hagedorn R. 4.  2006. Predictability of Weather and Climate Cambridge, UK: Cambridge Univ. Press702pp. [Google Scholar]
  5. Delworth TD, Broccoli AJ, Rosati A, Stouffer RJ, Balaji V. 5.  et al. 2006. GFDL's CM2 global coupled climate models-Part I: Formulation and simulation characteristics. J. Climate 19:643–74 [Google Scholar]
  6. Collins WD, Bitz CM, Blackmon ML, Bonan GB, Bretherton CS. 6.  et al. 2006. The community climate system model version 3 (CCSM3). J. Climate 19:2122–43 [Google Scholar]
  7. Fung IY, Doney SC, Lindsay K, John J. 7.  2005. Evolution of carbon sinks in a changing climate. Proc. Natl. Acad. Sci. USA 32:11201–6 [Google Scholar]
  8. Jacob DJ, Prather MJ, Rasch PJ, Shia R-L, Balkanski YJ. 8.  et al. 1997. Evaluation and intercomparison of global atmospheric transport models using 222Rn and other short-lived tracers. J. Geophys. Res. 102:D55953–70 [Google Scholar]
  9. Horowitz LW, Walters S, Mauzerall DL, Emmons LK, Rasch PJ. 9.  et al. 2003. A global simulation of tropospheric ozone and related tracers: description and evaluation of MOZART, version 2. J. Geophys. Res. 108:D24, 4784 [Google Scholar]
  10. Payne AJ, Huybrechts P, Abe-Ouchi A, Calov R, Fastook JL. 10.  et al. 2000. Results from EISMINT model intercomparison: the effects of thermomechanical coupling. J. Glaciol. 46:227–38 [Google Scholar]
  11. Holton JR. 11.  1992. An Introduction to Dynamic Meteorology San Diego: Academic511pp. [Google Scholar]
  12. Boville BA, Gent PR. 12.  1998. The NCAR Climate System Model, version one. J. Climate 11:1115–30 [Google Scholar]
  13. Kiehl JT, Trenberth KE. 13.  1997. Earth's annual global mean energy budget. Bull. Am. Meteorol. Soc. 78:197–208 [Google Scholar]
  14. Ellingson RG, Fouquart Y. 14.  1991. The intercomparison of radiation codes in climate models: an overview. J. Geophys. Res. 96:8925–27 [Google Scholar]
  15. Schwarzkopf MD, Ramaswamy V. 15.  1999. Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: a GCM experiment. J. Geophys. Res. 104:9467–88 [Google Scholar]
  16. Freidenreich SM, Ramaswamy V. 16.  1999. A new multiple-band solar radiative parameterization for general circulation models. J. Geophys. Res. 104:31389–409 [Google Scholar]
  17. Collins WD. 17.  2001. Parameterization of generalized cloud overlap for radiative calculations in general circulation models. J. Atmos. Sci. 58:3224–42 [Google Scholar]
  18. Ramanathan V, Coakley JA Jr. 18.  1978. Climate modeling through radiative-convective models. Rev. Geophys. 16:465–89 [Google Scholar]
  19. Lin S-J. 19.  1997. A finite-volume integration method for computing pressure-gradient force in general vertical coordinates. Q. J. R. Meteorol. Soc. 123:1749–62 [Google Scholar]
  20. Randall D, Khairoutdinov MF, Arakawa A, Grabowski WW. 20.  2003. Breaking the cloud-parameterization deadlock. Bull. Am. Meteorol. Soc. 84:1547–64 [Google Scholar]
  21. Arakawa A, Schubert WH. 21.  1974. Interaction of a cumulus cloud ensemble with the large-scale environment: Part 1. J. Atmos. Sci. 31:674–701 [Google Scholar]
  22. Donner LJ. 22.  1993. A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects. J. Atmos. Sci. 50:889–906 [Google Scholar]
  23. Ramanathan V, Cess RD, Harrison EF, Minnis P, Barkstrom BR. 23.  1989. Cloud-radiative forcing and climate: results from the Earth Radiation Budget Experiment. Science 243:57–63 [Google Scholar]
  24. Harrison EF, Minnis P, Barkstrom BR, Ramanathan V, Cess RD, Gibson GG. 24.  1990. Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment. J. Geophys. Res. 95:18687–703 [Google Scholar]
  25. Donner LJ, Seman CJ, Soden BJ, Hemler RS, Warren JC. 25.  et al. 1997. Large-scale ice clouds in the GFDL SKYHI general circulation model. J. Geophys. Res. 102:21745–68 [Google Scholar]
  26. Tiedtke M. 26.  1993. Representation of clouds in large-scale models. Mon. Weather Rev. 121:3030–61 [Google Scholar]
  27. Rotstayn LD. 27.  1997. A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. Part I: Description and evaluation of the microphysical processes. Q. J. R. Meteorol. Soc. 123:1227–82 [Google Scholar]
  28. Abdul-Razzak H, Ghan SJ. 28.  2000. A parameterization of aerosol activation. 2. Multiple aerosol types. J. Geophys. Res. 165:6837–44 [Google Scholar]
  29. Nenes A, Seinfeld JH. 29.  2003. Parameterization of cloud droplet formation in global climate models. J. Geophys. Res. 108:D144415 [Google Scholar]
  30. Ming Y, Ramaswamy V, Donner LJ, Phillips VTJ. 30.  2006. A robust parameterization of cloud droplet activation. J. Atmos. Sci. 63:1348–56 [Google Scholar]
  31. Ming Y, Ramaswamy V, Donner LJ, Phillips VTJ, Klein SA. 31.  et al. 2007. Modeling the interactions between aerosols and liquid water cloud with a self-consistent cloud scheme in a general circulation model. J. Atmos. Sci. 64:1189–1209 [Google Scholar]
  32. Cantrell W, Heymsfield A. 32.  2005. Production of ice in tropospheric clouds: a review. Bull. Am. Meteorol. Soc. 86:795–807 [Google Scholar]
  33. Lock AP, Brown AR, Bush MR, Martin M, Smith RNB. 33.  2000. A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Mon. Weather Rev. 128:3187–99 [Google Scholar]
  34. Alexander MJ, Dunkerton TJ. 34.  1999. A spectral parameterization of mean-flow forcing due to breaking gravity waves. J. Atmos. Sci. 56:4167–82 [Google Scholar]
  35. Garner ST. 35.  2005. A topographic drag closure built on an analytical base flux. J. Atmos. Sci. 62:2302–15 [Google Scholar]
  36. Gill AE. 36.  1982. Atmosphere-Ocean Dynamics New York: Academic662pp. [Google Scholar]
  37. Clarke A, Church J, Gould J. 37.  2001. Ocean processes and climate phenomena. Ocean Circulation and Climate, International Geophysics Series G Siedler, J Church, J Gould 7711–30 San Diego: Academic [Google Scholar]
  38. Simpson JJ, Paulson CA. 38.  1979. Mid-ocean observations of atmospheric radiation. Q. J. R. Meteorol. Soc. 105:487–502 [Google Scholar]
  39. Ohlmann JC. 39.  2003. Ocean radiant heating in climate models. J. Climate 16:1337–51 [Google Scholar]
  40. Denman K, Miyake M. 40.  1973. Upper layer modification at Ocean Station Papa: observations and simulation. J. Phys. Oceanogr. 3:185–96 [Google Scholar]
  41. Marshall J, Schott F. 41.  1999. Open-ocean convection: observations, theory and models. Rev. Geophys. 37:1–64 [Google Scholar]
  42. Pond S, Pickard GL. 42.  2000. Introductory Dynamical Oceanography Chippenham, UK: Rowe329pp. [Google Scholar]
  43. Danabasoglu G, McWilliams JC. 43.  1995. Sensitivity of the global ocean general circulation to parameterizations of mesoscale tracer transports. J. Climate 8:2967–87 [Google Scholar]
  44. Philander SG. 44.  1990. El Niño, La Niña and the Southern Oscillation San Diego: Academic293pp. [Google Scholar]
  45. Hibler WD, Flato GM. 45.  1992. Sea-ice models. Climate System Modeling KE Trenberth 413–36 New York: Cambridge Univ. Press [Google Scholar]
  46. Milly PCD, Shmakin AB. 46.  2002. Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model. J. Hydrometeorol. 3:283–99 [Google Scholar]
  47. Dickinson RE, Oleson KW, Bonan G, Hoffman F, Thornton P. 47.  et al. 2006. The Community Land Model and its climate statistics as a component of the Community Climate System Model. J. Climate 19:2302–24 [Google Scholar]
  48. Cox P, Betts R, Jones C, Spall S, Totterdell I. 48.  2000. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408:184–87 [Google Scholar]
  49. Bamber JL, Alley RB, Joughin I. 49.  2007. Rapid response of modern day ice sheets to external forcing. Earth Planet. Sci. Lett. 257:1–13 [Google Scholar]
  50. Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R. 50.  et al. 2007. Changes in atmospheric constituents and radiative forcing. See Ref. 2 129–234
  51. 51. Intergov. Panel Clim. Change (IPCC) 2007. Summary for Policy Makers. See Ref. 2 1–18
  52. Lohmann U, Quaas J, Kinne S, Feichter J. 52.  2007. Different approaches for constraining global climate models of the anthropogenic indirect aerosol effect. Bull. Am. Meteorol. Soc. 88:243–49 [Google Scholar]
  53. Boucher O, Lohmann U. 53.  1995. The sulfate-CCN-cloud albedo effect: a sensitivity study with two general circulation models. Tellus B47:281–300 [Google Scholar]
  54. Cosimo JC. 54.  1999. Bootstrap sea ice concentrations for NIMBUS-7 SMMR and DMSP SSM/I Natl. Snow Ice Data Cent. http://nsidc.org/data/nsidc-0079.html [Google Scholar]
  55. Jochum M, Danabasoglu G, Holland MM, Kwon Y-O, Large WG. 55.  2008. Ocean viscosity and climate. J. Geophys. Res. 113:C06017doi:10.1029/2007JC004575 [Google Scholar]
  56. Stroeve J, Holland MM, Meier W, Scambos T, Serreze M. 56.  2007. Arctic sea ice decline: faster than forecast. Geophys. Res. Lett. 34:L09501 [Google Scholar]
  57. Holland MM, Bitz CM, Tremblay B. 57.  2006. Future abrupt reductions in the summer Arctic sea ice. Geophys. Res. Lett. 33:L23503 [Google Scholar]
  58. Madden RA, Julian PR. 58.  1972. Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29:1109–23 [Google Scholar]
  59. Matthews AJ, Singhruck P, Heywood KJ. 59.  2008. Deep ocean impact of a Madden-Julian oscillation observed by Argo floats. Science 318:1765–69 [Google Scholar]
  60. Miura H, Satoh M, Nasuno T, Noda AT, Oouchi K. 60.  2008. A Madden-Julian oscillation event realistically simulated by a global cloud resolving model. Science 318:1763–65 [Google Scholar]
  61. Neale R, Richter JH, Jochum M. 61.  2008. The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate. 21:In press [Google Scholar]
  62. Lin J-L, Kiladis GN, Mapes BE, Weickmann KM, Sperber KP. 62.  et al. 2006. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: convective signals. J. Climate 19:2665–90 [Google Scholar]
  63. Wittenberg AT, Rosati A, Lau N-C, Ploshay JJ. 63.  2006. GFDL's CM2 global coupled climate models. Part III: Tropical Pacific climate and ENSO. J. Climate 19:698–722 [Google Scholar]
  64. Knutson TR, Delworth TL, Dixon KW, Held IM, Lu J. 64.  et al. 2006. Assessment of twentieth-century regional surface trends using the GFDL CM2 coupled models. J. Climate 19:1624–51 [Google Scholar]
  65. Meehl GA, Washington WM, Santer BD, Collins WD, Arblaster JM. 65.  et al. 2006. Climate change projections for the twenty-first century and climate change commitment in the CCSM3. J. Climate 19:2597–616 [Google Scholar]
  66. Kiehl JT, Shields CA. 66.  2005. Climate simulation of the latest Permian: implications for mass extinction. Geology 33:757–60 [Google Scholar]
  67. Khodri M, Cane MA, Kukla G, Gavin J, Braconnot P. 67.  2005. The impact of precession changes on the Arctic climate during the last interglacial-glacial transition. Earth Planet. Sci. Lett. 236:285–304 [Google Scholar]
  68. Vettoretti G, Peltier WR. 68.  2003. On Post-Eemian glacial inception. Part I: The impact of summer seasonal temperature bias. J. Climate 16:889–911 [Google Scholar]
  69. Vettoretti G, Peltier WR. 69.  2003. On Post-Eemian glacial inception. Part II: Elements of a “cryospheric moisture pump.”. J. Climate 16:912–27 [Google Scholar]
/content/journals/10.1146/annurev.environ.33.020707.160752
Loading
/content/journals/10.1146/annurev.environ.33.020707.160752
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error