1932

Abstract

Changing a single nucleotide in a genome can have profound consequences under some conditions, but the same change can have no consequences under others. Indeed, organisms can be surprisingly robust to environmental and genetic perturbations. Yet, the mechanisms underlying such robustness are controversial. Moreover, how they might affect evolutionary change remains enigmatic. Here, we review the recently appreciated central role of protein homeostasis in buffering and potentiating genetic variation and discuss how these processes mediate the critical influence of the environment on the relationship between genotype and phenotype. Deciphering how robustness emerges from biological organization and the mechanisms by which it is overcome in changing environments will lead to a more complete understanding of both fundamental evolutionary processes and diverse human diseases.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.40.110405.090412
2010-12-01
2025-05-18
Loading full text...

Full text loading...

/deliver/fulltext/genet/44/1/annurev.genet.40.110405.090412.html?itemId=/content/journals/10.1146/annurev.genet.40.110405.090412&mimeType=html&fmt=ahah

Literature Cited

  1. Agrawal AF. , Hadany L. , Otto SP. 1. . 2005.. The evolution of plastic recombination. . Genetics 171::80312 [Google Scholar]
  2. Albert R. , Jeong H. , Barabasi AL. 2. . 2000.. Error and attack tolerance of complex networks. . Nature 406::37882 [Google Scholar]
  3. Alberti S. , Halfmann R. , King O. , Kapila A. , Lindquist S. 3. . 2009.. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. . Cell 137::14658 [Google Scholar]
  4. Alon U. 4. . 2007.. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca Raton, FL:: CRC Press. 301 pp. [Google Scholar]
  5. Alon U. , Surette MG. , Barkai N. , Leibler S. 5. . 1999.. Robustness in bacterial chemotaxis. . Nature 397::16871 [Google Scholar]
  6. Anderson JB. , Sirjusingh C. , Parsons AB. , Boone C. , Wickens C. 6. , et al. 2003.. Mode of selection and experimental evolution of antifungal drug resistance in Saccharomyces cerevisiae. . Genetics 163::128798 [Google Scholar]
  7. Azevedo RB. , Lohaus R. , Srinivasan S. , Dang KK. , Burch CL. 7. . 2006.. Sexual reproduction selects for robustness and negative epistasis in artificial gene networks. . Nature 440::8790 [Google Scholar]
  8. Balch WE. , Morimoto RI. , Dillin A. , Kelly JW. 8. . 2008.. Adapting proteostasis for disease intervention. . Science 319::91619 [Google Scholar]
  9. Barabasi AL. , Albert R. 9. . 1999.. Emergence of scaling in random networks. . Science 286::50912 [Google Scholar]
  10. Barabasi AL. , Oltvai ZN. 10. . 2004.. Network biology: understanding the cell's functional organization. . Nat. Rev. Genet. 5::10113 [Google Scholar]
  11. Barbaric I. , Miller G. , Dear TN. 11. . 2007.. Appearances can be deceiving: phenotypes of knockout mice. . Brief Funct. Genomic Proteomic 6::91103 [Google Scholar]
  12. Barkai N. , Leibler S. 12. . 1997.. Robustness in simple biochemical networks. . Nature 387::91317 [Google Scholar]
  13. Bates G.13.  2003.. Huntingtin aggregation and toxicity in Huntington's disease. . Lancet 361::164244 [Google Scholar]
  14. Baumann P. , Baumann L. , Lai CY. , Rouhbakhsh D. , Moran NA. , Clark MA. 14. . 1995.. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. . Annu. Rev. Microbiol. 49::5594 [Google Scholar]
  15. Becskei A. , Serrano L. 15. . 2000.. Engineering stability in gene networks by autoregulation. . Nature 405::59093 [Google Scholar]
  16. Belda E. , Moya A. , Silva FJ. 16. . 2005.. Genome rearrangement distances and gene order phylogeny in gamma-proteobacteria. . Mol. Biol. Evol. 22::145667 [Google Scholar]
  17. Benfey PN. , Mitchell-Olds T. 17. . 2008.. From genotype to phenotype: systems biology meets natural variation. . Science 320::49597 [Google Scholar]
  18. Bjedov I. , Tenaillon O. , Gerard B. , Souza V. , Denamur E. 18. , et al. 2003.. Stress-induced mutagenesis in bacteria. . Science 300::14049 [Google Scholar]
  19. Bloom JD. , Labthavikul ST. , Otey CR. , Arnold FH. 19. . 2006.. Protein stability promotes evolvability. . Proc. Natl. Acad. Sci. USA 103::586974 [Google Scholar]
  20. Boone C. , Bussey H. , Andrews B. 20. . 2007.. Exploring genetic interactions and networks with yeast. . Nat. Rev. Genet. 8::43749 [Google Scholar]
  21. Borkovich KA. , Farrelly FW. , Finkelstein DB. , Taulien J. , Lindquist S. 21. . 1989.. Hsp82 is an essential protein that is required in higher concentrations for growth of cells at higher temperatures. . Mol. Cell Biol. 9::391930 [Google Scholar]
  22. Breslow DK. , Cameron DM. , Collins SR. , Schuldiner M. , Stewart-Ornstein J. 22. , et al. 2008.. A comprehensive strategy enabling high-resolution functional analysis of the yeast genome. . Nat. Methods 5::71118 [Google Scholar]
  23. Brookfield JF.23.  2001.. Evolution: the evolvability enigma. . Curr. Biol. 11::R1068 [Google Scholar]
  24. Bucciantini M. , Giannoni E. , Chiti F. , Baroni F. , Formigli L. 24. , et al. 2002.. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. . Nature 416::50711 [Google Scholar]
  25. Bult CJ. , Eppig JT. , Kadin JA. , Richardson JE. , Blake JA. 25. . 2008.. The Mouse Genome Database (MGD): mouse biology and model systems. . Nucleic Acids Res. 36::D72428 [Google Scholar]
  26. Bürger R. , Willensdorfer M. , Nowak MA. 26. . 2006.. Why are phenotypic mutation rates much higher than genotypic mutation rates?. Genetics 172::197206 [Google Scholar]
  27. Carroll SB.27.  2005.. Evolution at two levels: on genes and form. . PloS Biol. 3::e245 [Google Scholar]
  28. Charlesworth B.28.  1991.. Evolution. When to be diploid. . Nature 351::27374 [Google Scholar]
  29. Chen B. , Zhong D. , Monteiro A. 29. . 2006.. Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. . BMC Genomics 7::156 [Google Scholar]
  30. Citri A. , Harari D. , Shohat G. , Ramakrishnan P. , Gan J. 30. , et al. 2006.. Hsp90 recognizes a common surface on client kinases. . J. Biol. Chem. 281::1436169 [Google Scholar]
  31. Claverys JP. , Prudhomme M. , Martin B. 31. . 2006.. Induction of competence regulons as a general response to stress in Gram-positive bacteria. . Annu. Rev. Microbiol. 60::45175 [Google Scholar]
  32. Codoner FM. , Daros JA. , Sole RV. , Elena SF. 32. . 2006.. The fittest versus the flattest: experimental confirmation of the quasispecies effect with subviral pathogens. . PloS pathog. 2::e136 [Google Scholar]
  33. Collett MS. , Brugge JS. , Erikson RL. 33. . 1978.. Characterization of a normal avian cell protein related to the avian sarcoma virus transforming gene product. . Cell 15::136369 [Google Scholar]
  34. Costanzo M. , Baryshnikova A. , Bellay J. , Kim Y. , Spear ED. 34. , et al. 2010.. The genetic landscape of a cell. . Science 327::42531 [Google Scholar]
  35. 35.  Deleted in proof
  36. Cowen LE. , Lindquist SL. 36. . 2005.. Hsp90 potentiates the rapid evolution of new traits: drug resistance in diverse fungi. . Science 309::218589 [Google Scholar]
  37. Cox MM. , Battista JR. 37. . 2005.. Deinococcus radiodurans—the consummate survivor. . Nat. Rev. Microbiol. 3::88292 [Google Scholar]
  38. Cruz MC. , Goldstein AL. , Blankenship JR. , Del Poeta M. , Davis D. 38. , et al. 2002.. Calcineurin is essential for survival during membrane stress in Candida albicans. . Embo. J. 21::54659 [Google Scholar]
  39. de Visser JA. , Hermisson J. , Wagner GP. , Ancel Meyers L. , Bagheri-Chaichian H. 39. , et al. 2003.. Perspective: evolution and detection of genetic robustness. . Evolution 57::195972 [Google Scholar]
  40. Dean EJ. , Davis JC. , Davis RW. , Petrov DA. 40. . 2008.. Pervasive and persistent redundancy among duplicated genes in yeast. . PloS Genet. 4::e1000113 [Google Scholar]
  41. Depristo MA. , Weinreich DM. , Hartl DL. 41. . 2005.. Missense meanderings in sequence space: a biophysical view of protein evolution. . Nat. Rev. Genet. 6::67887 [Google Scholar]
  42. Deutschbauer AM. , Jaramillo DF. , Proctor M. , Kumm J. , Hillenmeyer ME. 42. , et al. 2005.. Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. . Genetics 169::191525 [Google Scholar]
  43. Dietzl G. , Chen D. , Schnorrer F. , Su KC. , Barinova Y. 43. , et al. 2007.. A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. . Nature 448::15156 [Google Scholar]
  44. Dobzhansky T.44.  1964.. Biology, molecular and organismic. . Am. Zool. 4::44352 [Google Scholar]
  45. Dobzhansky TG.45.  1937.. Genetics and the Origin of Species. New York:: Columbia Univ. Press [Google Scholar]
  46. Draghi JA. , Parsons TL. , Wagner GP. , Plotkin JB. 46. . 2010.. Mutational robustness can facilitate adaptation. . Nature 463::35355 [Google Scholar]
  47. Drummond DA. , Bloom JD. , Adami C. , Wilke CO. , Arnold FH. 47. . 2005.. Why highly expressed proteins evolve slowly. . Proc. Natl. Acad. Sci. USA 102::1433843 [Google Scholar]
  48. Drummond DA. , Wilke CO. 48. . 2008.. Mistranslation-induced protein misfolding as a dominant constraint on coding-sequence evolution. . Cell 134::34152 [Google Scholar]
  49. Du Z. , Park KW. , Yu H. , Fan Q. , Li L. 49. . 2008.. Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. . Nat. Genet. 40::46065 [Google Scholar]
  50. Eldar A. , Dorfman R. , Weiss D. , Ashe H. , Shilo BZ. , Barkai N. 50. . 2002.. Robustness of the BMP morphogen gradient in Drosophila embryonic patterning. . Nature 419::3048 [Google Scholar]
  51. Ellis N. , Gallant J. 51. . 1982.. An estimate of the global error frequency in translation. . Mol. Gen. Genet. 188::16972 [Google Scholar]
  52. Ellis RJ.52.  2007.. Protein misassembly: macromolecular crowding and molecular chaperones. . Adv. Exp. Med. Biol. 594::113 [Google Scholar]
  53. Espinosa-Soto C. , Wagner A. 53. . 2010.. Specialization can drive the evolution of modularity. . PloS Comput. Biol. 6::e1000719 [Google Scholar]
  54. Falsone SF. , Leptihn S. , Osterauer A. , Haslbeck M. , Buchner J. 54. . 2004.. Oncogenic mutations reduce the stability of SRC kinase. . J. Mol. Biol. 344::28191 [Google Scholar]
  55. Fares MA. , Barrio E. , Sabater-Munoz B. , Moya A. 55. . 2002.. The evolution of the heat-shock protein GroEL from Buchnera, the primary endosymbiont of aphids, is governed by positive selection. . Mol. Biol. Evol. 19::116270 [Google Scholar]
  56. Fares MA. , Moya A. , Barrio E. 56. . 2004.. GroEL and the maintenance of bacterial endosymbiosis. . Trends Genet. 20::41316 [Google Scholar]
  57. Fares MA. , Ruiz-González MX. , Moya A. , Elena SF. , Barrio E. 57. . 2002.. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. . Nature 417::398 [Google Scholar]
  58. Fayet O. , Louarn JM. , Georgopoulos C. 58. . 1986.. Suppression of the Escherichia coli dnaA46 mutation by amplification of the groES and groEL genes. . Mol. Gen. Genet. 202::43545 [Google Scholar]
  59. Fersht AR.59.  1998.. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding. New York:: W.H. Freeman. 650 pp. [Google Scholar]
  60. Fischer O. , Schmid-Hempel P. 60. . 2005.. Selection by parasites may increase host recombination frequency. . Biol Lett 1::19395 [Google Scholar]
  61. Fox DS. , Heitman J. 61. . 2002.. Good fungi gone bad: the corruption of calcineurin. . Bioessays 24::894903 [Google Scholar]
  62. Giaever G. , Chu AM. , Ni L. , Connelly C. , Riles L. 62. , et al. 2002.. Functional profiling of the Saccharomyces cerevisiae genome. . Nature 418::38791 [Google Scholar]
  63. Gibson G. , Hogness DS. 63. . 1996.. Effect of polymorphism in the Drosophila regulatory gene ultrabithorax on homeotic stability. . Science 271::2003 [Google Scholar]
  64. Gidalevitz T. , Ben-Zvi A. , Ho KH. , Brignull HR. 64. . 2006.. Progressive disruption of cellular protein folding in models of polyglutamine diseases. . Science 311::147174 [Google Scholar]
  65. Gidalevitz T. , Krupinski T. , Garcia S. , Morimoto RI. 65. . 2009.. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity. . PloS Genet. 5::e1000399 [Google Scholar]
  66. Gu Z. , Steinmetz LM. , Gu X. , Scharfe C. , Davis RW. , Li WH. 66. . 2003.. Role of duplicate genes in genetic robustness against null mutations. . Nature 421::6366 [Google Scholar]
  67. Hadany L. , Comeron JM. 67. . 2008.. Why are sex and recombination so common?. Ann. New York Acad. Sci. 1133::2643 [Google Scholar]
  68. Hadany L. , Otto SP. 68. . 2007.. The evolution of condition-dependent sex in the face of high costs. . Genetics 176::171327 [Google Scholar]
  69. Halfmann R. , Alberti S. , Lindquist S. 69. . 2010.. Prions, protein homeostasis, and phenotypic diversity. . Trends Cell Biol. 20::12533 [Google Scholar]
  70. Harrison R. , Papp B. , Pál C. , Oliver SG. , Delneri D. 70. . 2007.. Plasticity of genetic interactions in metabolic networks of yeast. . Proc. Natl. Acad. Sci. USA 104::230712 [Google Scholar]
  71. Hartl FU. , Hayer-Hartl M. 71. . 2009.. Converging concepts of protein folding in vitro and in vivo. . Nat. Struct. Mol. Biol. 16::57481 [Google Scholar]
  72. Hartwell LH. , Hopfield JJ. , Leibler S. , Murray AW. 72. . 1999.. From molecular to modular cell biology. . Nature 402::C4752 [Google Scholar]
  73. Heckman DS. , Geiser DM. , Eidell BR. , Stauffer RL. , Kardos NL. , Hedges SB. 73. . 2001.. Molecular evidence for the early colonization of land by fungi and plants. . Science 293::112933 [Google Scholar]
  74. Hillenmeyer ME. , Fung E. , Wildenhain J. , Pierce SE. , Hoon S. 74. , et al. 2008.. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. . Science 320::36265 [Google Scholar]
  75. Hoekstra HE. , Coyne JA. 75. . 2007.. The locus of evolution: evo devo and the genetics of adaptation. . Evolution 61::9951016 [Google Scholar]
  76. Houchmandzadeh B. , Wieschaus E. , Leibler S. 76. . 2002.. Establishment of developmental precision and proportions in the early Drosophila embryo. . Nature 415::798802 [Google Scholar]
  77. Huynen MA. , Stadler PF. , Fontana W. 77. . 1996.. Smoothness within ruggedness: the role of neutrality in adaptation. . Proc. Natl. Acad. Sci. USA 93::397401 [Google Scholar]
  78. Ihmels J. , Collins SR. , Schuldiner M. , Krogan N. , Weissman JS. 78. . 2007.. Backup without redundancy: genetic interactions reveal the cost of duplicate gene loss. . Mol. Syst. Biol. 3::86 [Google Scholar]
  79. Imai J. , Yahara I. 79. . 2000.. Role of HSP90 in salt stress tolerance via stabilization and regulation of calcineurin. . Mol. Cell Biol. 20::926270 [Google Scholar]
  80. Isalan M. , Lemerle C. , Michalodimitrakis K. , Horn C. , Beltrao P. 80. , et al. 2008.. Evolvability and hierarchy in rewired bacterial gene networks. . Nature 452::84045 [Google Scholar]
  81. Jenkins AJ. , March JB. , Oliver IR. , Masters M. 81. . 1986.. A DNA fragment containing the groE genes can suppress mutations in the Escherichia coli dnaA gene. . Mol. Gen. Genet. 202::44654 [Google Scholar]
  82. Jiang N. , Bao Z. , Zhang X. , Hirochika H. , Eddy SR. 82. , et al. 2003.. An active DNA transposon family in rice. . Nature 421::16367 [Google Scholar]
  83. Kacser H. , Burns JA. 83. . 1981.. The molecular basis of dominance. . Genetics 97::63966 [Google Scholar]
  84. Kamal A. , Thao L. , Sensintaffar J. , Zhang L. , Boehm MF. 84. , et al. 2003.. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. . Nature 425::40710 [Google Scholar]
  85. Kashtan N. , Alon U. 85. . 2005.. Spontaneous evolution of modularity and network motifs. . Proc. Natl. Acad. Sci. USA 102::1377378 [Google Scholar]
  86. Kashtan N. , Parter M. , Dekel E. , Mayo AE. , Alon U. 86. . 2009.. Extinctions in heterogeneous environments and the evolution of modularity. . Evolution 63::196475 [Google Scholar]
  87. Kitano H.87.  2004.. Biological robustness. . Nat. Rev. Genet. 5::82637 [Google Scholar]
  88. Kondrashov AS. , Crow JF. 88. . 1991.. Haploidy or diploidy: which is better?. Nature 351::31415 [Google Scholar]
  89. Korol AB. , Iliadi KG. 89. . 1994.. Increased recombination frequencies resulting from directional selection for geotaxis in Drosophila. . Heredity 72:(1):6468 [Google Scholar]
  90. Lander ES. , Linton LM. , Birren B. , Nusbaum C. , Zody MC. 90. , et al. 2001.. Initial sequencing and analysis of the human genome. . Nature 409::860921 [Google Scholar]
  91. Le Rouzic A. , Carlborg O. 91. . 2008.. Evolutionary potential of hidden genetic variation. . Trends Ecol. Evol. 23::3337 [Google Scholar]
  92. Lebel EG. , Masson J. , Bogucki A. , Paszkowski J. 92. . 1993.. Stress-induced intrachromosomal recombination in plant somatic cells. . Proc. Natl. Acad. Sci. USA 90::42226 [Google Scholar]
  93. Lehner B. , Crombie C. , Tischler J. , Fortunato A. , Fraser AG. 93. . 2006.. Systematic mapping of genetic interactions in Caenorhabditis elegans identifies common modifiers of diverse signaling pathways. . Nat. Genet. 38::896903 [Google Scholar]
  94. Lenski RE. , Barrick JE. , Ofria C. 94. . 2007.. Balancing robustness and evolvability. . PloS Biol. 4::e428 [Google Scholar]
  95. Levy SF. , Siegal ML. 95. . 2008.. Network hubs buffer environmental variation in Saccharomyces cerevisiae. . PloS Biol. 6::e264 [Google Scholar]
  96. Lindquist S. , Craig EA. 96. . 1988.. The heat-shock proteins. . Annu. Rev. Genet. 22::63177 [Google Scholar]
  97. Lindsley DL. , Sandler L. , Baker BS. , Carpenter AT. , Denell RE. 97. , et al. 1972.. Segmental aneuploidy and the genetic gross structure of the Drosophila genome. . Genetics 71::15784 [Google Scholar]
  98. Lipman DJ. , Wilbur WJ. 98. . 1991.. Modelling neutral and selective evolution of protein folding. . Proc Biol Sci 245::711 [Google Scholar]
  99. Luo J. , Solimini NL. , Elledge SJ. 99. . 2009.. Principles of cancer therapy: oncogene and non-oncogene addiction. . Cell 136::82337 [Google Scholar]
  100. Lusk RW. , Eisen MB. 100. . 2010.. Evolutionary mirages: selection on binding site composition creates the illusion of conserved grammars in Drosophila enhancers. . PloS Genet. 6::e1000829 [Google Scholar]
  101. Lynch M.101.  2007.. The Origins of Genome Architecture. Sunderland, MA:: Sinauer Associates, Inc.494 pp. [Google Scholar]
  102. Maisnier-Patin S. , Roth J. , Fredriksson A. , Nyström T. , Berg O. , Andersson D. 102. . 2005.. Genomic buffering mitigates the effects of deleterious mutations in bacteria. . Nat. Genet. 37::137679 [Google Scholar]
  103. Masel J. , Griswold CK. 103. . 2009.. The strength of selection against the yeast prion [PSI+]. . Genetics 181::105763 [Google Scholar]
  104. McClellan AJ. , Xia Y. , Deutschbauer AM. , Davis RW. , Gerstein M. , Frydman J. 104. . 2007.. Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. . Cell 131::12135 [Google Scholar]
  105. McClintock B.105.  1984.. The significance of responses of the genome to challenge. . Science 226::792801 [Google Scholar]
  106. Millson SH. , Truman AW. , King V. , Prodromou C. , Pearl LH. , Piper PW. 106. . 2005.. A two-hybrid screen of the yeast proteome for Hsp90 interactors uncovers a novel Hsp90 chaperone requirement in the activity of a stress-activated mitogen-activated protein kinase, Slt2p (Mpk1p). . Eukaryot. Cell 4::84960 [Google Scholar]
  107. Milo R. , Shen-Orr S. , Itzkovitz S. , Kashtan N. , Chklovskii D. , Alon U. 107. . 2002.. Network motifs: simple building blocks of complex networks. . Science 298::82427 [Google Scholar]
  108. Milton CC. , Ulane CM. , Rutherford S. 108. . 2006.. Control of canalization and evolvability by Hsp90. . PloS ONE 1::e75 [Google Scholar]
  109. Montville R. , Froissart R. , Remold SK. , Tenaillon O. , Turner PE. 109. . 2005.. Evolution of mutational robustness in an RNA virus. . PloS Biol. 3::e381 [Google Scholar]
  110. Moran NA.110.  1996.. Accelerated evolution and Muller's rachet in endosymbiotic bacteria. . Proc. Natl. Acad. Sci. USA 93::287378 [Google Scholar]
  111. Moxon R. , Bayliss C. , Hood D. 111. . 2006.. Bacterial contingency loci: the role of simple sequence DNA repeats in bacterial adaptation. . Annu. Rev. Genet. 40::30733 [Google Scholar]
  112. Nadeau JH.112.  2001.. Modifier genes in mice and humans. . Nat. Rev. Genet. 2::16574 [Google Scholar]
  113. Naito K. , Zhang F. , Tsukiyama T. , Saito H. , Hancock CN. 113. , et al. 2009.. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. . Nature 461::113034 [Google Scholar]
  114. Nakayashiki T. , Kurtzman CP. , Edskes HK. , Wickner RB. 114. . 2005.. Yeast prions [URE3] and [PSI+] are diseases. . Proc. Natl. Acad. Sci. USA 102::1057580 [Google Scholar]
  115. Nakonechny WS. , Teschke CM. 115. . 1998.. GroEL and GroES control of substrate flux in the in vivo folding pathway of phage P22 coat protein. . J. Biol. Chem. 273::2723644 [Google Scholar]
  116. Namy O. , Galopier A. , Martini C. , Matsufuji S. , Fabret C. , Rousset JP. 116. . 2008.. Epigenetic control of polyamines by the prion [PSI+]. . Nat. Cell Biol. 10::106975 [Google Scholar]
  117. Neel JV.117.  1941.. A relation between larval nutrition and the frequency of crossing over in the third chromosome of Drosophila melanogaster. . Genetics 26::50616 [Google Scholar]
  118. Nemecek J. , Nakayashiki T. , Wickner RB. 118. . 2009.. A prion of yeast metacaspase homolog (Mca1p) detected by a genetic screen. . Proc. Natl. Acad. Sci. USA 106::189296 [Google Scholar]
  119. Ng PC. , Henikoff S. 119. . 2006.. Predicting the effects of amino acid substitutions on protein function. . Annu. Rev. Genomics Hum. Genet. 7::6180 [Google Scholar]
  120. Nowak MA. , Boerlijst MC. , Cooke J. , Smith JM. 120. . 1997.. Evolution of genetic redundancy. . Nature 388::16771 [Google Scholar]
  121. Oppermann H. , Levinson W. , Bishop JM. 121. . 1981.. A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. . Proc. Natl. Acad. Sci. USA 78::106771 [Google Scholar]
  122. Orr HA.122.  2009.. Fitness and its role in evolutionary genetics. . Nat. Rev. Genet. 10::53139 [Google Scholar]
  123. Orr HA. , Otto SP. 123. . 1994.. Does diploidy increase the rate of adaptation?. Genetics 136::147580 [Google Scholar]
  124. Otto SP.124.  2007.. The evolutionary consequences of polyploidy. . Cell 131::45262 [Google Scholar]
  125. Otto SP. , Goldstein DB. 125. . 1992.. Recombination and the evolution of diploidy. . Genetics 131::74551 [Google Scholar]
  126. Otto SP. , Yong P. 126. . 2002.. The evolution of gene duplicates. . Adv. Genet. 46::45183 [Google Scholar]
  127. Pal C. , Papp B. , Hurst LD. 127. . 2001.. Highly expressed genes in yeast evolve slowly. . Genetics 158::92731 [Google Scholar]
  128. Papp B. , Pal C. , Hurst LD. 128. . 2004.. Metabolic network analysis of the causes and evolution of enzyme dispensability in yeast. . Nature 429::66164 [Google Scholar]
  129. Partridge L. , Barton NH. 129. . 2000.. Evolving evolvability. . Nature 407::45758 [Google Scholar]
  130. Patel BK. , Gavin-Smyth J. , Liebman SW. 130. . 2009.. The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. . Nat. Cell Biol. 11::34449 [Google Scholar]
  131. Perrot V. , Richerd S. , Valero M. 131. . 1991.. Transition from haploidy to diploidy. . Nature 351::31517 [Google Scholar]
  132. Phillips PC.132.  1998.. The language of gene interaction. . Genetics 149::116771 [Google Scholar]
  133. Phillips PC. , Otto SP. , Whitlock MC. 133. . 2000.. Beyond the average: the evolutionary importance of gene interactions and variability of epistatic effects. . In Epistasis and the Evolutionary Process, ed. JB Wolf, ED Brodie, MJ Wade , pp.2038. New York:: Oxford Univ. Press USA [Google Scholar]
  134. Picard D. , Khursheed B. , Garabedian MJ. , Fortin MG. , Lindquist SL. , Yamamoto KR. 134. . 1990.. Reduced levels of Hsp90 compromise steroid receptor action in vivo. . Nature 348::16668 [Google Scholar]
  135. Prill RJ. , Iglesias PA. , Levchenko A. 135. . 2005.. Dynamic properties of network motifs contribute to biological network organization. . PloS Biol. 3::e343 [Google Scholar]
  136. Proulx SR. , Phillips PC. 136. . 2005.. The opportunity for canalization and the evolution of genetic networks. . Am. Nat. 165::14762 [Google Scholar]
  137. Queitsch C. , Sangster TA. , Lindquist SL. 137. . 2002.. Hsp90 as a capacitor of phenotypic variation. . Nature 417::61824 [Google Scholar]
  138. Rando OJ. , Verstrepen KJ. 138. . 2007.. Timescales of genetic and epigenetic inheritance. . Cell 128::65568 [Google Scholar]
  139. Rocha EP. , Danchin A. 139. . 2004.. An analysis of determinants of amino acids substitution rates in bacterial proteins. . Mol. Biol. Evol. 21::10816 [Google Scholar]
  140. Ruden DM. , Garfinkel MD. , Sollars VE. , Lu X. 140. . 2003.. Waddington's widget: Hsp90 and the inheritance of acquired characters. . Semin. Cell Dev. Biol. 14::30110 [Google Scholar]
  141. Rutherford SL. , Lindquist SL. 141. . 1998.. Hsp90 as a capacitor for morphological evolution. . Nature 396::33642 [Google Scholar]
  142. Ryder E. , Ashburner M. , Bautista-Llacer R. , Drummond J. , Webster J. 142. , et al. 2007.. The DrosDel deletion collection: a Drosophila genomewide chromosomal deficiency resource. . Genetics 177::61529 [Google Scholar]
  143. Sangster TA. , Bahrami A. , Wilczek A. , Watanabe E. , Schellenberg K. 143. , et al. 2007.. Phenotypic diversity and altered environmental plasticity in Arabidopsis thaliana with reduced Hsp90 levels. . PloS ONE 2::e648 [Google Scholar]
  144. Sangster TA. , Lindquist S. , Queitsch C. 144. . 2004.. Under cover: causes, effects and implications of Hsp90-mediated genetic capacitance. . Bioessays 26::34862 [Google Scholar]
  145. Sangster TA. , Salathia N. , Undurraga S. , Milo R. , Schellenberg K. 145. , et al. 2008.. HSP90 affects the expression of genetic variation and developmental stability in quantitative traits. . Proc. Natl. Acad. Sci. USA 105::296368 [Google Scholar]
  146. Sato S. , Ishikawa H. 146. . 1997.. Expression and control of an operon from an intracellular symbiont which is homologous to the groE operon. . J. Bacteriol. 179::23004 [Google Scholar]
  147. Schmalhausen II.147.  1949.. Factors of Evolution. Philadelphia, PA:: Blakiston [Google Scholar]
  148. Sekimoto T. , Oda T. , Pozo FM. , Murakumo Y. , Masutani C. 148. , et al. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. . Mol. Cell 37::7989 [Google Scholar]
  149. Shaw RJ. , Bonawitz ND. , Reines D. 149. . 2002.. Use of an in vivo reporter assay to test for transcriptional and translational fidelity in yeast. . J. Biol. Chem. 277::2442026 [Google Scholar]
  150. Shorter J. , Lindquist SL. 150. . 2005.. Prions as adaptive conduits of memory and inheritance. . Nat. Rev. Genet. 6::43550 [Google Scholar]
  151. Silva FJ. , Latorre A. , Moya A. 151. . 2003.. Why are the genomes of endosymbiotic bacteria so stable?. Trends Genet. 19::17680 [Google Scholar]
  152. Smith DF. , Toft DO. 152. . 2008.. The intersection of steroid receptors with molecular chaperones: observations and questions. . Mol. Endocrinol. 22:(10):222940 [Google Scholar]
  153. Smith V. , Chou KN. , Lashkari D. , Botstein D. , Brown PO. 153. . 1996.. Functional analysis of the genes of yeast chromosome V by genetic footprinting. . Science 274::206974 [Google Scholar]
  154. Sniegowski PD. , Murphy HA. 154. . 2006.. Evolvability. . Curr. Biol. 16::R83134 [Google Scholar]
  155. Sollars V. , Lu X. , Xiao L. , Wang X. , Garfinkel MD. , Ruden DM. 155. . 2003.. Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. . Nat. Genet. 33::7074 [Google Scholar]
  156. Specchia V. , Piacentini L. , Tritto P. , Fanti L. , D'Alessandro R. 156. , et al. 2010.. Hsp90 prevents phenotypic variation by suppressing the mutagenic activity of transposons. . Nature 463::66265 [Google Scholar]
  157. Stelling J. , Sauer U. , Szallasi Z. , Doyle FJ 3rd. , Doyle J. 157. . 2004.. Robustness of cellular functions. . Cell 118::67585 [Google Scholar]
  158. Tahbaz N. , Carmichael JB. , Hobman TC. 158. . 2001.. GERp95 belongs to a family of signal-transducing proteins and requires Hsp90 activity for stability and Golgi localization. . J. Biol. Chem. 276::4329499 [Google Scholar]
  159. Thompson DA. , Desai MM. , Murray AW. 159. . 2006.. Ploidy controls the success of mutators and nature of mutations during budding yeast evolution. . Curr. Biol. 16::158190 [Google Scholar]
  160. Tischler J. , Lehner B. , Chen N. , Fraser AG. 160. . 2006.. Combinatorial RNA interference in Caenorhabditis elegans reveals that redundancy between gene duplicates can be maintained for more than 80 million years of evolution. . Genome Biol. 7::R69 [Google Scholar]
  161. Tischler J. , Lehner B. , Fraser AG. 161. . 2008.. Evolutionary plasticity of genetic interaction networks. . Nat. Genet. 40::39091 [Google Scholar]
  162. Tokuriki N. , Tawfik DS. 162. . 2009.. Chaperonin overexpression promotes genetic variation and enzyme evolution. . Nature 459::66873 [Google Scholar]
  163. Tong AH. , Evangelista M. , Parsons AB. , Xu H. , Bader GD. 163. , et al. 2001.. Systematic genetic analysis with ordered arrays of yeast deletion mutants. . Science 294::236468 [Google Scholar]
  164. Tong AH. , Lesage G. , Bader GD. , Ding H. , Xu H. 164. , et al. 2004.. Global mapping of the yeast genetic interaction network. . Science 303::80813 [Google Scholar]
  165. True HL. , Berlin I. , Lindquist SL. 165. . 2004.. Epigenetic regulation of translation reveals hidden genetic variation to produce complex traits. . Nature 431::18487 [Google Scholar]
  166. True HL. , Lindquist SL. 166. . 2000.. A yeast prion provides a mechanism for genetic variation and phenotypic diversity. . Nature 407::47783 [Google Scholar]
  167. Tyedmers J. , Madariaga ML. , Lindquist S. 167. . 2008.. Prion switching in response to environmental stress. . PloS Biol. 6::e294 [Google Scholar]
  168. Van Dyk TK. , Gatenby AA. , LaRossa RA. 168. . 1989.. Demonstration by genetic suppression of interaction of GroE products with many proteins. . Nature 342::45153 [Google Scholar]
  169. van Kleunen M. , Fischer M. , Schmid B. 169. . 2001.. Effects of intraspecific competition on size variation and reproductive allocation in a clonal plant. . Oikos 94::51524 [Google Scholar]
  170. Verstrepen KJ. , Jansen A. , Lewitter F. , Fink GR. 170. . 2005.. Intragenic tandem repeats generate functional variability. . Nat. Genet. 37::98690 [Google Scholar]
  171. Waddington CH.171.  1942.. Canalization of development and the inheritance of acquired characters. . Nature 150::56365 [Google Scholar]
  172. Waddington CH.172.  1952.. Selection of the genetic basis for an acquired character. . Nature 169::278 [Google Scholar]
  173. Waddington CH.173.  1953.. Genetic assimilation of an acquired character. . Evolution 7::11826 [Google Scholar]
  174. Waddington CH.174.  1956.. Genetic assimilation of the bithorax phenotype. . Evolution 10::113 [Google Scholar]
  175. Waddington CH.175.  1959.. Canalization of development and genetic assimilation of acquired characters. . Nature 183::165455 [Google Scholar]
  176. Wagner A.176.  2000.. Robustness against mutations in genetic networks of yeast. . Nat. Genet. 24::35561 [Google Scholar]
  177. Wagner A.177.  2008.. Neutralism and selectionism: a network-based reconciliation. . Nat. Rev. Genet. 9::96574 [Google Scholar]
  178. Wagner GP. , Pavlicev M. , Cheverud JM. 178. . 2007.. The road to modularity. . Nat. Rev. Genet. 8::92131 [Google Scholar]
  179. West SA. , Gemmill AW. , Graham A. , Viney ME. , Read AF. 179. . 2001.. Immune stress and facultative sex in a parasitic nematode. . J. Evol. Biol. 14::33337 [Google Scholar]
  180. West-Eberhard MJ.180.  2003.. Developmental Plasticity and Evolution. Oxford, UK:: Oxford Univ. Press. 816 pp. [Google Scholar]
  181. White TC. 181. . 1997.. Increased mRNA levels of ERG16, CDR, and MDR1 correlate with increases in azole resistance in Candida albicans isolates from a patient infected with human immunodeficiency virus. . Antimicrob. Agents Chemother. 41::148287 [Google Scholar]
  182. Whitesell L. , Lindquist SL. 182. . 2005.. HSP90 and the chaperoning of cancer. . Nat. Rev. Cancer 5::76172 [Google Scholar]
  183. Whitesell L. , Mimnaugh EG. , De Costa B. , Myers CE. , Neckers LM. 183. . 1994.. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. . Proc. Natl. Acad. Sci. USA 91::832428 [Google Scholar]
  184. Wilke CO. , Wang JL. , Ofria C. , Lenski RE. , Adami C. 184. . 2001.. Evolution of digital organisms at high mutation rates leads to survival of the flattest. . Nature 412::33133 [Google Scholar]
  185. Willensdorfer M. , Bürger R. , Nowak MA. 185. . 2007.. Phenotypic mutation rates and the abundance of abnormal proteins in yeast. . PloS Comput. Biol. 3::e203 [Google Scholar]
  186. Wilson DS. , Wilson EO. 186. . 2007.. Rethinking the theoretical foundation of sociobiology. . Q. Rev. Biol. 82::32748 [Google Scholar]
  187. Winzeler EA. , Shoemaker DD. , Astromoff A. , Liang H. , Anderson K. 187. , et al. 1999.. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. . Science 285::9016 [Google Scholar]
  188. Xu Y. , Lindquist SL. 188. . 1993.. Heat-shock protein Hsp90 governs the activity of pp60v-src kinase. . Proc. Natl. Acad. Sci. USA 90::707478 [Google Scholar]
  189. Xu Y. , Singer MA. , Lindquist SL. 189. . 1999.. Maturation of the tyrosine kinase c-src as a kinase and as a substrate depends on the molecular chaperone Hsp90. . Proc. Natl. Acad. Sci. USA 96::10914 [Google Scholar]
  190. Yeyati PL. , Bancewicz RM. , Maule J. , van Heyningen V. 190. . 2007.. Hsp90 selectively modulates phenotype in vertebrate development. . PloS Genet. 3::e43 [Google Scholar]
  191. Young JC. , Agashe VR. , Siegers K. , Hartl FU. 191. . 2004.. Pathways of chaperone-mediated protein folding in the cytosol. . Nat. Rev. Mol. Cell Biol. 5::78191 [Google Scholar]
  192. Zeyl C.192.  2004.. Experimental studies on ploidy evolution in yeast. . FEMS Microbiol. Lett. 233::18792 [Google Scholar]
  193. Zeyl C. , Vanderford T. , Carter M. 193. . 2003.. An evolutionary advantage of haploidy in large yeast populations. . Science 299::55558 [Google Scholar]
  194. Zhao R. , Davey M. , Hsu YC. , Kaplanek P. , Tong A. 194. , et al. 2005.. Navigating the chaperone network: an integrative map of physical and genetic interactions mediated by the Hsp90 chaperone. . Cell 120::71527 [Google Scholar]
/content/journals/10.1146/annurev.genet.40.110405.090412
Loading
/content/journals/10.1146/annurev.genet.40.110405.090412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error