1932

Abstract

Polyploidy is a common mode of evolution in flowering plants. The profound effects of polyploidy on gene expression appear to be caused more by hybridity than by genome doubling. Epigenetic mechanisms underlying genome-wide changes in expression are as yet poorly understood; only methylation has received much study, and its importance varies among polyploids. Genetic diploidization begins with the earliest responses to genome merger and doubling; less is known about chromosomal diploidization. Polyploidy duplicates every gene in the genome, providing the raw material for divergence or partitioning of function in homoeologous copies. Preferential retention or loss of genes occurs in a wide range of taxa, suggesting that there is an underlying set of principles governing the fates of duplicated genes. Further studies are required for general patterns to be elucidated, involving different plant families, kinds of polyploidy, and polyploids of different ages.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genet.42.110807.091524
2008-12-01
2024-10-15
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.genet.42.110807.091524
Loading
/content/journals/10.1146/annurev.genet.42.110807.091524
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error