1932

Abstract

▪ Abstract 

Autism is one of the most heritable complex disorders, with compelling evidence for genetic factors and little or no support for environmental influence. The estimated prevalence of autism has increased since molecular genetic studies began, owing to loosening of diagnostic criteria and, more importantly, to more complete ascertainment strategies. This has led to a reduction in the sibling relative risk, but strong heritability estimates remain. It is essential to recognize that genetics is the only current approach to understanding the pathophysiology of autism in which there is not the usual concern about whether one is studying a consequence rather than a cause. There are hundreds, if not thousands, of patients with autism spectrum disorder with documented single-gene mutations or chromosomal abnormalities. Autism may be one of the most complex, yet strongly genetic, disorders in which chromosomal disorders, relatively rare highly penetrant mutations, and multiplicative effects of common variants all have support in different cases and families. The field of complex genetics is replete with many researchers and reviewers who want to promote their overly focused interest in one method at the exclusion of others. However, it is essential that the restricted interests of patients with autism not be reflected in overly restrictive genetic approaches if we are to better understand the genetics of autism in the most expeditious and thorough manner.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.genom.5.061903.180050
2004-09-22
2024-06-20
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.genom.5.061903.180050
Loading

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error