1932

Abstract

Abstract

The hepatitis C virus (HCV) is a remarkably successful pathogen, establishing persistent infection in more than two-thirds of those who contract it. Its success is related to its abilities to blunt innate antiviral pathways and to evade adaptive immune responses. These two themes may be related. We propose that HCV takes advantage of the impaired innate response to delay the organization of an effective adaptive immune attack. The tolerogenic liver environment may provide cover, prolonging this delay. HCV's error-prone replication strategy permits rapid evolution under immune pressure. Persistent high levels of viral antigens may contribute to immune exhaustion. Finally, the virus may benefit from the efficient enlistment of memory T and B cells in the pursuit of a moving target.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.immunol.25.022106.141602
2007-04-23
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/iy/25/1/annurev.immunol.25.022106.141602.html?itemId=/content/journals/10.1146/annurev.immunol.25.022106.141602&mimeType=html&fmt=ahah

Literature Cited

  1. Wasley A, Alter MJ. 2000. Epidemiology of hepatitis C: geographic differences and temporal trends. Semin. Liver Dis. 20:1–16 [Google Scholar]
  2. Shepard CW, Finelli L, Alter MJ. 2005. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis. 5:558–67 [Google Scholar]
  3. Leroux-Roels G. 2005. Development of prophylactic and therapeutic vaccines against hepatitis C virus. Expert Rev. Vaccines 4:351–71 [Google Scholar]
  4. Dienstag JL, McHutchison JG. 2006. American Gastroenterological Association technical review on the management of hepatitis C. Gastroenterology 130:231–64 [Google Scholar]
  5. Heathcote J, Main J. 2005. Treatment of hepatitis C. J. Viral Hepat. 12:223–35 [Google Scholar]
  6. Afdhal NH. 2004. The natural history of hepatitis C. Semin. Liver Dis. 24:Suppl. 23–8 [Google Scholar]
  7. Brown RS. 2005. Hepatitis C and liver transplantation. Nature 436:973–78 [Google Scholar]
  8. Mayo MJ. 2003. Extrahepatic manifestations of hepatitis C infection. Am. J. Med. Sci. 325:135–48 [Google Scholar]
  9. Bartenschlager R, Frese M, Pietschmann T. 2004. Novel insights into hepatitis C virus replication and persistence. Adv. Virus Res. 63:71–180 [Google Scholar]
  10. Lindenbach BD, Rice CM. 2005. Unravelling hepatitis C virus replication from genome to function. Nature 436:933–38 [Google Scholar]
  11. Branch AD, Stump DD, Gutierrez JA, Eng F, Walewski JL. 2005. The hepatitis C virus alternate reading frame (ARF) and its family of novel products: the alternate reading frame protein/F-protein, the double-frameshift protein, and others. Semin. Liver Dis. 25:105–17 [Google Scholar]
  12. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE. et al. 1998. Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 282:103–7 [Google Scholar]
  13. Layden TJ, Mika B, Wiley TE. 2000. Hepatitis C kinetics: mathematical modeling of viral response to therapy. Semin. Liver Dis. 20:173–83 [Google Scholar]
  14. Wieland SF, Chisari FV. 2005. Stealth and cunning: hepatitis B and hepatitis C viruses. J. Virol. 79:9369–80 [Google Scholar]
  15. Bigger CB, Brasky KM, Lanford RE. 2001. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J. Virol. 75:7059–66 [Google Scholar]
  16. Hsu M, Zhang J, Cheng-Mayer C, Rice CM, McKeating JA. 2003. Hepatitis C virus glycoproteins mediate pH-dependent fusion and cell entry of pseudotyped retroviral particles. Proc. Natl. Acad. Sci. USA 100:7271–76 [Google Scholar]
  17. Bartosch B, Dubuisson J, Cosset FL. 2003. Infectious hepatitis C virus pseudoparticles containing functional E1-E2 envelope protein complexes. J. Exp. Med. 197:633–42 [Google Scholar]
  18. Bartenschlager R. 2006. Hepatitis C virus molecular clones: from cDNA to infectious virus particles in cell culture. Curr. Opin. Microbiol. 9:416–22 [Google Scholar]
  19. Lindenbach BD, Meuleman P, Ploss A, Vanwolleghem T, Syder AJ. et al. 2006. Cell culture-grown hepatitis C virus is infectious in vivo and can be recultured in vitro. Proc. Natl. Acad. Sci. USA 103:3805–9 [Google Scholar]
  20. Guha C, Lee SW, Chowdhury NR, Chowdhury JR. 2005. Cell culture models and animal models of viral hepatitis. Part II: hepatitis C. Lab. Anim. (N. Y.) 34:39–47 [Google Scholar]
  21. Bukh J. 2004. A critical role for the chimpanzee model in the study of hepatitis C. Hepatology 39:1469–75 [Google Scholar]
  22. Su AI, Pezacki JP, Wodicka L, Brideau AD, Supekova L. et al. 2002. Genomic analysis of the host response to hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 99:15669–74 [Google Scholar]
  23. Thimme R, Bukh J, Spangenberg HC, Wieland S, Pemberton J. et al. 2002. Viral and immunological determinants of hepatitis C virus clearance, persistence, and disease. Proc. Natl. Acad. Sci. USA 99:15661–68 [Google Scholar]
  24. Zhu H, Zhao H, Collins CD, Eckenrode SE, Run Q. et al. 2003. Gene expression associated with interferon alfa antiviral activity in an HCV replicon cell line. Hepatology 37:1180–88 [Google Scholar]
  25. Kawai T, Akira S. 2006. Innate immune recognition of viral infection. Nat. Immunol. 7:131–37 [Google Scholar]
  26. Loo YM, Owen DM, Li K, Erickson AK, Johnson CL. et al. 2006. Viral and therapeutic control of IFN-β promoter stimulator 1 during hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 103:6001–6 [Google Scholar]
  27. Johnson CL, Gale MJ. 2006. CARD games between virus and host get a new player. Trends Immunol. 27:1–4 [Google Scholar]
  28. Hiscott J, Lin R, Nakhaei P, Paz S. 2006. MasterCARD: a priceless link to innate immunity. Trends Mol. Med. 12:53–56 [Google Scholar]
  29. Foy E, Li K, Sumpter RJ, Loo YM, Johnson CL. et al. 2005. Control of antiviral defenses through hepatitis C virus disruption of retinoic acid-inducible gene-I signaling. Proc. Natl. Acad. Sci. USA 102:2986–91 [Google Scholar]
  30. Meylan E, Curran J, Hofmann K, Moradpour D, Binder M. et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167–72 [Google Scholar]
  31. Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 102:17717–22 [Google Scholar]
  32. Seth RB, Sun L, Ea CK, Chen ZJ. 2005. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF 3. Cell 122:669–82 [Google Scholar]
  33. Li K, Chen Z, Kato N, Gale MJ, Lemon SM. 2005. Distinct poly(I-C) and virus-activated signaling pathways leading to interferon-β production in hepatocytes. J. Biol. Chem. 280:16739–47 [Google Scholar]
  34. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783–801 [Google Scholar]
  35. Li K, Foy E, Ferreon JC, Nakamura M, Ferreon AC. et al. 2005. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc. Natl. Acad. Sci. USA 102:2992–97 [Google Scholar]
  36. Gale MJ, Foy EM. 2005. Evasion of intracellular host defense by hepatitis C virus. Nature 436:939–45 [Google Scholar]
  37. Thimme R, Lohmann V, Weber F. 2006. A target on the move: innate and adaptive immune escape strategies of hepatitis C virus. Antiviral Res. 69:129–41 [Google Scholar]
  38. Sen GC. 2001. Viruses and interferons. Annu. Rev. Microbiol. 55:255–81 [Google Scholar]
  39. Taguchi T, Nagano-Fujii M, Akutsu M, Kadoya H, Ohgimoto S. et al. 2004. Hepatitis C virus NS5A protein interacts with 2′,5′-oligoadenylate synthetase and inhibits antiviral activity of IFN in an IFN sensitivity-determining region-independent manner. J. Gen. Virol. 85:959–69 [Google Scholar]
  40. Han JQ, Barton DJ. 2002. Activation and evasion of the antiviral 2′-5′ oligoadenylate synthetase/ribonuclease L pathway by hepatitis C virus mRNA. RNA 8:512–25 [Google Scholar]
  41. Taylor DR, Shi ST, Romano PR, Barber GN, Lai MMC. 1999. Inhibition of the interferon-inducible protein kinase PKR by the HCV E2 protein. Science 285:107–10 [Google Scholar]
  42. Noguchi T, Satoh S, Noshi T, Hatada E, Fukuda R. et al. 2001. Effects of mutation in hepatitis C virus nonstructural protein 5A on interferon resistance mediated by inhibition of PKR kinase activity in mammalian cells. Microbiol. Immunol. 45:829–40 [Google Scholar]
  43. Gimenez-Barcons M, Wang C, Chen M, Sanchez-Tapias JM, Saiz JC, Gale MJ. 2005. The oncogenic potential of hepatitis C virus NS5A sequence variants is associated with PKR regulation. J. Interferon Cytokine Res. 25:152–64 [Google Scholar]
  44. Crispe IN. 2003. Hepatic T cells and liver tolerance. Nat. Rev. Immunol. 3:51–62 [Google Scholar]
  45. Racanelli V, Rehermann B. 2006. The liver as an immunological organ. Hepatology 43:S54–62 [Google Scholar]
  46. Godfrey DI, Kronenberg M. 2004. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114:1379–88 [Google Scholar]
  47. Durante-Mangoni E, Wang R, Shaulov A, He Q, Nasser I. et al. 2004. Hepatic CD1d expression in hepatitis C virus infection and recognition by resident proinflammatory CD1d-reactive T cells. J. Immunol. 173:2159–66 [Google Scholar]
  48. Lucas M, Gadola S, Meier U, Young NT, Harcourt G. et al. 2003. Frequency and phenotype of circulating Vα24/Vβ11 double-positive natural killer T cells during hepatitis C virus infection. J. Virol. 77:2251–57 [Google Scholar]
  49. Guidotti LG, Chisari FV. 2001. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19:65–91 [Google Scholar]
  50. Salazar-Mather TP, Hokeness KL. 2006. Cytokine and chemokine networks: pathways to antiviral defense. Curr. Top. Microbiol. Immunol. 303:29–46 [Google Scholar]
  51. Munz C, Steinman RM, Fujii S. 2005. Dendritic cell maturation by innate lymphocytes: coordinated stimulation of innate and adaptive immunity. J. Exp. Med. 202:203–7 [Google Scholar]
  52. Jinushi M, Takehara T, Tatsumi T, Kanto T, Miyagi T. et al. 2004. Negative regulation of NK cell activities by inhibitory receptor CD94/NKG2A leads to altered NK cell-induced modulation of dendritic cell functions in chronic hepatitis C virus infection. J. Immunol. 173:6072–81 [Google Scholar]
  53. Khakoo SI, Thio CL, Martin MP, Brooks CR, Gao X. et al. 2004. HLA and NK cell inhibitory receptor genes in resolving hepatitis C virus infection. Science 305:872–74 [Google Scholar]
  54. Parham P. 2004. Immunology. NK cells lose their inhibition. Science 305:786–87 [Google Scholar]
  55. Tseng CTK, Klimpel GR. 2001. Binding of the hepatitis C virus envelope protein E2 to CD81 inhibits natural killer cell functions. J. Exp. Med. 195:43–50 [Google Scholar]
  56. Crotta S, Stilla A, Wack A, D’Andrea A, Nuti S. et al. 2001. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J. Exp. Med. 195:35–42 [Google Scholar]
  57. Pachiadakis I, Pollara G, Chain BM, Naoumov NV. 2005. Is hepatitis C virus infection of dendritic cells a mechanism facilitating viral persistence. Lancet Infect. Dis. 5:296–304 [Google Scholar]
  58. Kanto T, Hayashi N, Takehara T, Tatsumi T, Kuzushita N. et al. 1999. Impaired allostimulatory capacity of peripheral blood dendritic cells recovered from hepatitis C virus-infected individuals. J. Immunol. 162:5584–91 [Google Scholar]
  59. Auffermann-Gretzinger S, Keeffe EB, Levy S. 2001. Impaired dendritic cell maturation in patients with chronic, but not resolved, hepatitis C virus infection. Blood 97:3171–76 [Google Scholar]
  60. Bain C, Fatmi A, Zoulim F, Zarski JP, Trepo C, Inchauspe G. 2001. Impaired allostimulatory function of dendritic cells in chronic hepatitis C infection. Gastroenterology 120:512–24 [Google Scholar]
  61. Longman RS, Talal AH, Jacobson IM, Albert ML, Rice CM. 2004. Presence of functional dendritic cells in patients chronically infected with hepatitis C virus. Blood 103:1026–29 [Google Scholar]
  62. Longman RS, Talal AH, Jacobson IM, Rice CM, Albert ML. 2005. Normal functional capacity in circulating myeloid and plasmacytoid dendritic cells in patients with chronic hepatitis C. J. Infect. Dis. 192:497–503 [Google Scholar]
  63. Piccioli D, Tavarini S, Nuti S, Colombatto P, Brunetto M. et al. 2005. Comparable functions of plasmacytoid and monocyte-derived dendritic cells in chronic hepatitis C patients and healthy donors. J. Hepatol. 42:61–67 [Google Scholar]
  64. Larsson M, Babcock E, Grakoui A, Shoukry N, Lauer G. et al. 2004. Lack of phenotypic and functional impairment in dendritic cells from chimpanzees chronically infected with hepatitis C virus. J. Virol. 78:6151–61 [Google Scholar]
  65. Rollier C, Drexhage JA, Verstrepen BE, Verschoor EJ, Bontrop RE. et al. 2003. Chronic hepatitis C virus infection established and maintained in chimpanzees independent of dendritic cell impairment. Hepatology 38:851–58 [Google Scholar]
  66. Dolganiuc A, Kodys K, Kopasz A, Marshall C, Do T. et al. 2003. Hepatitis C virus core and nonstructural protein 3 proteins induce pro- and anti-inflammatory cytokines and inhibit dendritic cell differentiation. J. Immunol. 170:5615–24 [Google Scholar]
  67. Sarobe P, Lasarte JJ, Zabaleta A, Arribillaga L, Arina A. et al. 2003. Hepatitis C virus structural proteins impair dendritic cell maturation and inhibit in vivo induction of cellular immune responses. J. Virol. 77:10862–71 [Google Scholar]
  68. Li W, Krishnadas DK, Li J, Tyrrell DL, Agrawal B. 2006. Induction of primary human T cell responses against hepatitis C virus-derived antigens NS3 or core by autologous dendritic cells expressing hepatitis C virus antigens: potential for vaccine and immunotherapy. J. Immunol. 176:6065–75 [Google Scholar]
  69. Lozach PY, Lortat-Jacob H, de Lacroix de Lavalette A, Staropoli I, Foung S. et al. 2003. DC-SIGN and L-SIGN are high affinity binding receptors for hepatitis C virus glycoprotein E2. J. Biol. Chem. 278:20358–66 [Google Scholar]
  70. Pohlmann S, Zhang J, Baribaud F, Chen Z, Leslie G. et al. 2003. Hepatitis C virus glycoproteins interact with DC-SIGN and DC-SIGNR. J. Virol. 77:4070–80 [Google Scholar]
  71. Lozach PY, Amara A, Bartosch B, Virelizier JL, Arenzana-Seisdedos F. et al. 2004. C-type lectins L-SIGN and DC-SIGN capture and transmit infectious hepatitis C virus pseudotype particles. J. Biol. Chem. 279:32035–45 [Google Scholar]
  72. Cormier EG, Durso RJ, Tsamis F, Boussemart L, Manix C. et al. 2004. L-SIGN (CD209L) and DC-SIGN (CD209) mediate transinfection of liver cells by hepatitis C virus. Proc. Natl. Acad. Sci. USA 101:14067–72 [Google Scholar]
  73. Laporte J, Bain C, Maurel P, Inchauspe G, Agut H, Cahour A. 2003. Differential distribution and internal translation efficiency of hepatitis C virus quasispecies present in dendritic and liver cells. Blood 101:52–57 [Google Scholar]
  74. Racanelli V, Rehermann B. 2003. Hepatitis C virus infection: when silence is deception. Trends Immunol. 24:456–64 [Google Scholar]
  75. Shoukry NH, Cawthon AG, Walker CM. 2004. Cell-mediated immunity and the outcome of hepatitis C virus infection. Annu. Rev. Microbiol. 58:391–424 [Google Scholar]
  76. Bowen DG, Walker CM. 2005. Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 436:946–52 [Google Scholar]
  77. Rehermann B, Nascimbeni M. 2005. Immunology of hepatitis B virus and hepatitis C virus infection. Nat. Rev. Immunol. 5:215–29 [Google Scholar]
  78. Major ME, Mihalik K, Puig M, Rehermann B, Nascimbeni M. et al. 2002. Previously infected and recovered chimpanzees exhibit rapid responses that control hepatitis C virus replication upon rechallenge. J. Virol. 76:6586–95 [Google Scholar]
  79. Mehta SH, Cox A, Hoover DR, Wang XH, Mao Q. et al. 2002. Protection against persistence of hepatitis C. Lancet 359:1478–83 [Google Scholar]
  80. Lanford RE, Guerra B, Chavez D, Bigger C, Brasky KM. et al. 2004. Cross-genotype immunity to hepatitis C virus. J. Virol. 78:1575–81 [Google Scholar]
  81. Grakoui A, Shoukry NH, Woollard DJ, Han JH, Hanson HL. et al. 2003. HCV persistence and immune evasion in the absence of memory T cell help. Science 302:659–62 [Google Scholar]
  82. Shoukry NH, Grakoui A, Houghton M, Chien DY, Ghrayeb J. et al. 2003. Memory CD8+ T cells are required for protection from persistent hepatitis C virus infection. J. Exp. Med. 197:1645–55 [Google Scholar]
  83. Rosa D, Saletti G, De Gregorio E, Zorat F, Comar C. et al. 2005. Activation of naive B lymphocytes via CD81, a pathogenetic mechanism for hepatitis C virus-associated B lymphocyte disorders. Proc. Natl. Acad. Sci. USA 102:18544–49 [Google Scholar]
  84. Kittlesen DJ, Chianese-Bullock KA, Yao ZQ, Braciale TJ, Hahn YS. 2000. Interaction between complement receptor gC1qR and hepatitis C virus core protein inhibits T-lymphocyte proliferation. J. Clin. Invest. 106:1239–49 [Google Scholar]
  85. Gerlach JT, Diepolder HM, Jung MC, Gruener NH, Schraut WW. et al. 1999. Recurrence of hepatitis C virus after loss of virus-specific CD4+ T-cell response in acute hepatitis C. Gastroenterology 117:933–41 [Google Scholar]
  86. Urbani S, Amadei B, Fisicaro P, Pilli M, Missale G. et al. 2005. Heterologous T cell immunity in severe hepatitis C virus infection. J. Exp. Med. 201:675–80 [Google Scholar]
  87. Thimme R, Oldach D, Chang KM, Steiger C, Ray SC, Chisari FV. 2001. Determinants of viral clearance and persistence during acute hepatitis C virus infection. J. Exp. Med. 194:1395–406 [Google Scholar]
  88. Woollard DJ, Grakoui A, Shoukry NH, Murthy KK, Campbell KJ, Walker CM. 2003. Characterization of HCV-specific Patr class II restricted CD4+ T cell responses in an acutely infected chimpanzee. Hepatology 38:1297–306 [Google Scholar]
  89. Cox AL, Mosbruger T, Lauer GM, Pardoll D, Thomas DL, Ray SC. 2005. Comprehensive analyses of CD8+ T cell responses during longitudinal study of acute human hepatitis C. Hepatology 42:104–12 [Google Scholar]
  90. Cooper S, Erickson AL, Adams EJ, Kansopon J, Weiner AJ. et al. 1999. Analysis of a successful immune response against hepatitis C virus. Immunity 10:439–49 [Google Scholar]
  91. Lechner F, Wong DK, Dunbar PR, Chapman R, Chung RT. et al. 2000. Analysis of successful immune responses in persons infected with hepatitis C virus. J. Exp. Med. 191:1499–512 [Google Scholar]
  92. Ulsenheimer A, Gerlach JT, Gruener NH, Jung MC, Schirren CA. et al. 2003. Detection of functionally altered hepatitis C virus-specific CD4 T cells in acute and chronic hepatitis C. Hepatology 37:1189–98 [Google Scholar]
  93. Shoukry NH, Sidney J, Sette A, Walker CM. 2004. Conserved hierarchy of helper T cell responses in a chimpanzee during primary and secondary hepatitis C virus infections. J. Immunol. 172:483–92 [Google Scholar]
  94. Schulze zur Wiesch J, Lauer GM, Day CL, Kim AY, Ouchi K. et al. 2005. Broad repertoire of the CD4+ Th cell response in spontaneously controlled hepatitis C virus infection includes dominant and highly promiscuous epitopes. J. Immunol. 175:3603–13 [Google Scholar]
  95. Day CL, Lauer GM, Robbins GK, McGovern B, Wurcel AG. et al. 2002. Broad specificity of virus-specific CD4+ T-helper-cell responses in resolved hepatitis C virus infection. J. Virol. 76:12584–95 [Google Scholar]
  96. Lauer GM, Ouchi K, Chung RT, Nguyen TN, Day CL. et al. 2002. Comprehensive analysis of CD8+-T-cell responses against hepatitis C virus reveals multiple unpredicted specificities. J. Virol. 76:6104–13 [Google Scholar]
  97. He XS, Rehermann B, Lopez-Labrador FX, Boisvert J, Cheung R. et al. 1999. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proc. Natl. Acad. Sci. USA 96:5692–97 [Google Scholar]
  98. Spangenberg HC, Viazov S, Kersting N, Neumann-Haefelin C, McKinney D. et al. 2005. Intrahepatic CD8+ T-cell failure during chronic hepatitis C virus infection. Hepatology 42:828–37 [Google Scholar]
  99. Wedemeyer H, He XS, Nascimbeni M, Davis AR, Greenberg HB. et al. 2002. Impaired effector function of hepatitis C virus-specific CD8+ T cells in chronic hepatitis C virus infection. J. Immunol. 169:3447–58 [Google Scholar]
  100. Klenerman P, Lucas M, Barnes E, Harcourt G. 2002. Immunity to hepatitis C virus: stunned but not defeated. Microbes Infect. 4:57–65 [Google Scholar]
  101. Lauer GM, Barnes E, Lucas M, Timm J, Ouchi K. et al. 2004. High resolution analysis of cellular immune responses in resolved and persistent hepatitis C virus infection. Gastroenterology 127:924–36 [Google Scholar]
  102. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM. et al. 2002. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat. Med. 8:379–85 [Google Scholar]
  103. Wherry EJ, Ahmed R. 2004. Memory CD8 T-cell differentiation during viral infection. J. Virol. 78:5535–45 [Google Scholar]
  104. Castellino F, Germain RN. 2006. Cooperation between CD4+ and CD8+ T cells: when, where, and how. Annu. Rev. Immunol. 24:519–40 [Google Scholar]
  105. Moskophidis D, Lechner F, Pircher H, Zinkernagel RM. 1993. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells. Nature 362:758 [Google Scholar]
  106. Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. 2003. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J. Virol. 77:4911–27 [Google Scholar]
  107. Matloubian M, Concepcion RJ, Ahmed R. 1994. CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J. Virol. 68:8056–63 [Google Scholar]
  108. Kalams SA, Walker BD. 1998. The critical need for CD4 help in maintaining effective cytotoxic T lymphocyte responses. J. Exp. Med. 188:2199–204 [Google Scholar]
  109. Day CL, Seth NP, Lucas M, Appel H, Gauthier L. et al. 2003. Ex vivo analysis of human memory CD4 T cells specific for hepatitis C virus using MHC class II tetramers. J. Clin. Invest. 112:831–42 [Google Scholar]
  110. Erickson AL, Kimura Y, Igarashi S, Eichelberger J, Houghton M. et al. 2001. The outcome of hepatitis C virus infection is predicted by escape mutations in epitopes targeted by cytotoxic T lymphocytes. Immunity 15:883–95 [Google Scholar]
  111. Bowen DG, Walker CM. 2005. Mutational escape from CD8+ T cell immunity: HCV evolution, from chimpanzees to man. J. Exp. Med. 201:1709–14 [Google Scholar]
  112. Timm J, Lauer GM, Kavanagh DG, Sheridan I, Kim AY. et al. 2004. CD8 epitope escape and reversion in acute HCV infection. J. Exp. Med. 200:1593–604 [Google Scholar]
  113. Neumann-Haefelin C, McKiernan S, Ward S, Viazov S, Spangenberg HC. et al. 2006. Dominant influence of an HLA-B27 restricted CD8+ T cell response in mediating HCV clearance and evolution. Hepatology 43:563–72 [Google Scholar]
  114. Ray SC, Fanning L, Wang XH, Netski DM, Kenny-Walsh E, Thomas DL. 2005. Divergent and convergent evolution after a common-source outbreak of hepatitis C virus. J. Exp. Med. 201:1753–59 [Google Scholar]
  115. Cox AL, Mosbruger T, Mao Q, Liu Z, Wang XH. et al. 2005. Cellular immune selection with hepatitis C virus persistence in humans. J. Exp. Med. 201:1741–52 [Google Scholar]
  116. Meyer-Olson D, Shoukry NH, Brady KW, Kim H, Olson DP. et al. 2004. Limited T cell receptor diversity of HCV-specific T cell responses is associated with CTL escape. J. Exp. Med. 200:307–19 [Google Scholar]
  117. Komatsu H, Lauer G, Pybus OG, Ouchi K, Wong D. et al. 2006. Do antiviral CD8+ T cells select hepatitis C virus escape mutants? Analysis in diverse epitopes targeted by human intrahepatic CD8+ T lymphocytes. J. Viral Hepat. 13:121–30 [Google Scholar]
  118. Urbani S, Amadei B, Cariani E, Fisicaro P, Orlandini A. et al. 2005. The impairment of CD8 responses limits the selection of escape mutations in acute hepatitis C virus infection. J. Immunol. 175:7519–29 [Google Scholar]
  119. Chang KM, Rehermann B, McHutchison JG, Pasquinelli C, Southwood S. et al. 1997. Immunological significance of cytotoxic T lymphocyte epitope variants in patients chronically infected by the hepatitis C virus. J. Clin. Invest. 100:2376–85 [Google Scholar]
  120. Welsh RM, Selin LK. 2002. No one is naive: the significance of heterologous T-cell immunity. Nat. Rev. Immunol. 2:417–26 [Google Scholar]
  121. Brehm MA, Selin LK, Welsh RM. 2004. CD8 T cell responses to viral infections in sequence. Cell. Microbiol. 6:411–21 [Google Scholar]
  122. Rehermann B, Shin EC. 2005. Private aspects of heterologous immunity. J. Exp. Med. 201:667–70 [Google Scholar]
  123. Cornberg M, Chen AT, Wilkinson LA, Brehm MA, Kim SK. et al. 2006. Narrowed TCR repertoire and viral escape as a consequence of heterologous immunity. J. Clin. Invest. 116:1443–56 [Google Scholar]
  124. McMichael AJ. 1998. The original sin of killer T cells. Nature 394:421–22 [Google Scholar]
  125. Wedemeyer H, Mizukoshi E, Davis AR, Bennink JR, Rehermann B. 2001. Cross-reactivity between hepatitis C virus and influenza A virus determinant-specific cytotoxic T cells. J. Virol. 75:11392–400 [Google Scholar]
  126. Kennedy PT, Urbani S, Moses RA, Amadei B, Fisicaro P. et al. 2006. The influence of T cell cross-reactivity on HCV-peptide specific human T cell response. Hepatology 43:602–11 [Google Scholar]
  127. Limmer A, Ohl J, Kurts C, Ljunggren HG, Reiss Y. et al. 2000. Efficient presentation of exogenous antigen by liver endothelial cells to CD8+ T cells results in antigen-specific T-cell tolerance. Nat. Med. 6:1348–54 [Google Scholar]
  128. Bowen DG, Zen M, Holz L, Davis T, McCaughan GW, Bertolino P. 2004. The site of primary T cell activation is a determinant of the balance between intrahepatic tolerance and immunity. J. Clin. Invest. 114:701–12 [Google Scholar]
  129. Major ME, Dahari H, Mihalik K, Puig M, Rice CM. et al. 2004. Hepatitis C virus kinetics and host responses associated with disease and outcome of infection in chimpanzees. Hepatology 39:1709–20 [Google Scholar]
  130. Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN. 2006. Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440:890–95 [Google Scholar]
  131. Kakimi K, Lane TE, Wieland S, Asensio VC, Campbell IL. et al. 2001. Blocking chemokine responsive to γ-2/interferon (IFN)-γ inducible protein and monokine induced by IFN-γ activity in vivo reduces the pathogenetic but not the antiviral potential of hepatitis B virus-specific cytotoxic T lymphocytes. J. Exp. Med. 194:1755–66 [Google Scholar]
  132. Frese M, Schwärzle V, Barth K, Krieger N, Lohmann V. et al. 2002. Interferon-γ inhibits replication of subgenomic and genomic hepatitis C virus RNAs. Hepatology 35:694–703 [Google Scholar]
  133. Machida K, Cheng KT, Sung VM, Lee KJ, Levine AM, Lai MM. 2004. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J. Virol. 78:8835–43 [Google Scholar]
  134. Shin EC, Protzer U, Untergasser A, Feinstone SM, Rice CM. et al. 2005. Liver-directed gamma interferon gene delivery in chronic hepatitis C. J. Virol. 79:13412–20 [Google Scholar]
  135. Friedman SL. 2004. Mechanisms of disease: mechanisms of hepatic fibrosis and therapeutic implications. Nat. Clin. Pract. Gastroenterol. Hepatol. 1:98–105 [Google Scholar]
  136. Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP. et al. 2006. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 439:682–87 [Google Scholar]
  137. Isogawa M, Furuichi Y, Chisari FV. 2005. Oscillating CD8+ T cell effector functions after antigen recognition in the liver. Immunity 23:53–63 [Google Scholar]
  138. Sugimoto K, Ikeda F, Stadanlick J, Nunes FA, Alter HJ, Chang KM. 2003. Suppression of HCV-specific T cells without differential hierarchy demonstrated ex vivo in persistent HCV infection. Hepatology 38:1437–48 [Google Scholar]
  139. Boettler T, Spangenberg HC, Neumann-Haefelin C, Panther E, Urbani S. et al. 2005. T cells with a CD4+CD25+ regulatory phenotype suppress in vitro proliferation of virus-specific CD8+ T cells during chronic hepatitis C virus infection. J. Virol. 79:7860–67 [Google Scholar]
  140. Manigold T, Shin EC, Mizukoshi E, Mihalik K, Murthy KK. et al. 2006. Foxp3+CD4+CD25+ T cells control virus-specific memory T cells in chimpanzees that recovered from hepatitis C. Blood 107:4424–32 [Google Scholar]
  141. Boyer O, Saadoun D, Abriol J, Dodille M, Piette JC. et al. 2004. CD4+CD25+ regulatory T-cell deficiency in patients with hepatitis C-mixed cryoglobulinemia vasculitis. Blood 103:3428–30 [Google Scholar]
  142. Pasare C, Medzhitov R. 2003. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 299:1033–36 [Google Scholar]
  143. Accapezzato D, Francavilla V, Paroli M, Casciaro M, Chircu LV. et al. 2004. Hepatic expansion of a virus-specific regulatory CD8+ T cell population in chronic hepatitis C virus infection. J. Clin. Invest. 113:963–72 [Google Scholar]
  144. Logvinoff C, Major ME, Oldach D, Heyward S, Talal A. et al. 2004. Neutralizing antibody response during acute and chronic hepatitis C virus infection. Proc. Natl. Acad. Sci. USA 101:10149–54 [Google Scholar]
  145. Takaki A, Wiese M, Maertens G, Depla E, Seifert U. et al. 2000. Cellular immune responses persist and humoral responses decrease two decades after recovery from a single-source outbreak of hepatitis C. Nat. Med. 6:578–82 [Google Scholar]
  146. Bartosch B, Bukh J, Meunier JC, Granier C, Engle RE. et al. 2003. In vitro assay for neutralizing antibody to hepatitis C virus: evidence for broadly conserved neutralization epitopes. Proc. Natl. Acad. Sci. USA 100:14199–204 [Google Scholar]
  147. Meunier JC, Engle RE, Faulk K, Zhao M, Bartosch B. et al. 2005. Evidence for cross-genotype neutralization of hepatitis C virus pseudoparticles and enhancement of infectivity by apolipoprotein C1. Proc. Natl. Acad. Sci. USA 102:4560–65 [Google Scholar]
  148. Netski DM, Mosbruger T, Depla E, Maertens G, Ray SC. et al. 2005. Humoral immune response in acute hepatitis C virus infection. Clin. Infect. Dis. 41:667–75 [Google Scholar]
  149. Youn JW, Park SH, Lavillette D, Cosset FL, Yang SH. et al. 2005. Sustained E2 antibody response correlates with reduced peak viremia after hepatitis C virus infection in the chimpanzee. Hepatology 42:1429–36 [Google Scholar]
  150. Farci P, Shimoda A, Coiana A, Diaz G, Peddis G. et al. 2000. The outcome of acute hepatitis C predicted by the evolution of the viral quasispecies. Science 288:339–44 [Google Scholar]
  151. Choo QL, Kuo G, Ralston R, Weiner A, Chien D. et al. 1994. Vaccination of chimpanzees against infection by the hepatitis C virus. Proc. Natl. Acad. Sci. USA 91:1294–98 [Google Scholar]
  152. Farci P, Shimoda A, Wong D, Cabezon T, De Gioannis D. et al. 1996. Prevention of hepatitis C virus infection in chimpanzees by hyperimmune serum against the hypervariable region 1 of the envelope 2 protein. Proc. Natl. Acad. Sci. USA 93:15394–99 [Google Scholar]
  153. Bresee JS, Mast EE, Coleman PJ, Baron MJ, Schonberger LB. et al. 1996. Hepatitis C virus infection associated with administration of intravenous immune globulin. A cohort study. JAMA 276:1563–67 [Google Scholar]
  154. Yu MW, Bartosch B, Zhang P, Guo Z, Renzi PM. et al. 2004. Neutralizing antibodies to hepatitis C virus (HCV) in immune globulins derived from anti-HCV-positive plasma. Proc. Natl. Acad. Sci. USA 101:7705–10 [Google Scholar]
  155. Burton DR. 2002. Antibodies, viruses and vaccines. Nat. Rev. Immunol. 2:706–13 [Google Scholar]
  156. McKeating JA, Zhang LQ, Logvinoff C, Flint M, Zhang J. et al. 2004. Diverse hepatitis C virus glycoproteins mediate viral infection in a CD81 dependent manner. J. Virol. 78:8496–505 [Google Scholar]
  157. Hermine O, Lefrere F, Bronowicki JP, Mariette X, Jondeau K. et al. 2002. Regression of splenic lymphoma with villous lymphocytes after treatment of hepatitis C virus infection. N. Engl. J. Med. 347:89–94 [Google Scholar]
  158. Suarez F, Lortholary O, Hermine O, Lecuit M. 2006. Infection-associated lymphomas derived from marginal zone B cells: a model of antigen-driven lymphoproliferation. Blood 107:3034–44 [Google Scholar]
  159. Ni J, Hembrador E, Di Bisceglie AM, Jacobson IM, Talal AH. et al. 2003. Accumulation of B lymphocytes with a naive, resting phenotype in a subset of hepatitis C patients. J. Immunol. 170:3429 [Google Scholar]
  160. Sung VM, Shimodaira S, Doughty AL, Picchio GR, Can H. et al. 2003. Establishment of B-cell lymphoma cell lines persistently infected with hepatitis C virus in vivo and in vitro: the apoptotic effects of virus infection. J. Virol. 77:2134–46 [Google Scholar]
  161. Mellor J, Haydon G, Blair C, Livingstone W, Simmonds P. 1998. Low level or absent in vivo replication of hepatitis C virus and hepatitis G virus/GB virus C in peripheral blood mononuclear cells. J. Gen. Virol. 79:Pt. 4705–14 [Google Scholar]
  162. Radkowski M, Gallegos-Orozco JF, Jablonska J, Colby TV, Walewska-Zielecka B. et al. 2005. Persistence of hepatitis C virus in patients successfully treated for chronic hepatitis C. Hepatology 41:106–14 [Google Scholar]
  163. Layden-Almer JE, Ribeiro RM, Wiley T, Perelson AS, Layden TJ. 2003. Viral dynamics and response differences in HCV-infected African American and white patients treated with IFN and ribavirin. Hepatology 37:1343–50 [Google Scholar]
  164. Lanford RE, Guerra B, Lee H, Chavez D, Brasky KM, Bigger CB. 2006. Genomic response to interferon-α in chimpanzees: implications of rapid downregulation for hepatitis C kinetics. Hepatology 43:961–72 [Google Scholar]
  165. Kamal SM, Fehr J, Roesler B, Peters T, Rasenack JW. 2002. Peginterferon alone or with ribavirin enhances HCV-specific CD4 T-helper 1 responses in patients with chronic hepatitis C. Gastroenterology 123:1070–83 [Google Scholar]
  166. Cramp ME, Rossol S, Chokshi S, Carucci P, Williams R, Naoumov NV. 2000. Hepatitis C virus-specific T-cell reactivity during interferon and ribavirin treatment in chronic hepatitis C. Gastroenterology 118:346–55 [Google Scholar]
  167. Rahman F, Heller T, Sobao Y, Mizukoshi E, Nascimbeni M. et al. 2004. Effects of antiviral therapy on the cellular immune response in acute hepatitis C. Hepatology 40:87–97 [Google Scholar]
  168. Lauer GM, Lucas M, Timm J, Ouchi K, Kim AY. et al. 2005. Full-breadth analysis of CD8+ T-cell responses in acute hepatitis C virus infection and early therapy. J. Virol. 79:12979–88 [Google Scholar]
  169. Missale G, Cariani E, Lamonaca V, Ravaggi A, Rossini A. et al. 1997. Effects of interferon treatment on the antiviral T-cell response in hepatitis C virus genotype 1b- and genotype 2c-infected patients. Hepatology 26:792–97 [Google Scholar]
  170. Kaplan DE, Sugimoto K, Ikeda F, Stadanlick J, Valiga M. et al. 2005. T-cell response relative to genotype and ethnicity during antiviral therapy for chronic hepatitis C. Hepatology 41:1365–75 [Google Scholar]
  171. Barnes E, Harcourt G, Brown D, Lucas M, Phillips R. et al. 2002. The dynamics of T-lymphocyte responses during combination therapy for chronic hepatitis C virus infection. Hepatology 36:743–54 [Google Scholar]
  172. Narumi S, Tominaga Y, Tamaru M, Shimai S, Okumura H. et al. 1997. Expression of IFN-inducible protein-10 in chronic hepatitis. J. Immunol. 158:5536–44 [Google Scholar]
  173. Apolinario A, Diago M, Lo Iacono O, Lorente R, Perez C. et al. 2004. Increased circulating and intrahepatic T-cell-specific chemokines in chronic hepatitis C: relationship with the type of virological response to peginterferon plus ribavirin combination therapy. Aliment. Pharmacol. Ther. 19:551–62 [Google Scholar]
  174. Butera D, Marukian S, Iwamaye AE, Hembrador E, Chambers TJ. et al. 2005. Plasma chemokine levels correlate with the outcome of antiviral therapy in patients with hepatitis C. Blood 106:1175–82 [Google Scholar]
/content/journals/10.1146/annurev.immunol.25.022106.141602
Loading
/content/journals/10.1146/annurev.immunol.25.022106.141602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error