1932

Abstract

Time-series observations form a critical element of oceanography. New interdisciplinary efforts launched in the past two decades complement the few earlier, longer-running time series to build a better, though still poorly resolved, picture of lower-frequency ocean variability, the climate processes that drive variability, and the implications for food web dynamics, carbon storage, and climate feedbacks. Time series also enlarge our understanding of ecological processes and are integral for improving models of physical-biogeochemical-ecological ocean dynamics. The major time-series observatories go well beyond simple monitoring of core ocean properties, although that important activity forms the critical center of all time-series efforts. Modern ocean time series have major process and experimental components, entrain ancillary programs, and have integrated modeling programs for deriving a better understanding of the observations and the changing, three-dimensional ocean in which the observatories are embedded.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.marine.010908.163801
2009-01-15
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/1/1/annurev.marine.010908.163801.html?itemId=/content/journals/10.1146/annurev.marine.010908.163801&mimeType=html&fmt=ahah

Literature Cited

  1. Al-Mutairi H. , Landry MR. . 2001.. Active export of carbon and nitrogen at Station ALOHA by diel migrant zooplankton. . Deep-Sea Res. II 48::2083103 [Google Scholar]
  2. Anderson TR. , Pondaven P. . 2003.. Non-Redfield carbon and nitrogen cycling in the Sargasso Sea: pelagic imbalances and export flux. . Deep-Sea Res. I 50::57391 [Google Scholar]
  3. Atkinson A. , Siegel V. , Pakhomov E. , Rothery P. . 2004.. Long-term decline in krill stock and increase in salps within the Southern Ocean. . Nature 432::1003 [Google Scholar]
  4. Bates NR. . 2001.. Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre. . Deep-Sea Res. II 48::150728 [Google Scholar]
  5. Bates NR. . 2007.. Interannual variability of the oceanic CO2 sink in the subtropical gyre of the North Atlantic Ocean over the last 2 decades. . J. Geophys. Res. 112::126 [Google Scholar]
  6. Beamish RJ. , Noakes DJ. , McFarlane GA. , Klyashtorin L. , Ivanov VV. , Kurashov V. . 1999.. The regime concept and natural trends in the production of Pacific salmon. . Can. J. Fish. Aquat. Sci. 56::51626 [Google Scholar]
  7. Beaugrand G. , Brander KM. , Lindley JA. , Souissi S. , Reid PC. . 2003.. Plankton effect on cod recruitment in the North Sea. . Nature 426::66164 [Google Scholar]
  8. Benitez-Nelson CR. , Bidigare RR. , Dickey TD. , Landry MR. , Leonard CL. , et al. 2007.. Mesoscale eddies drive increased silica export in the subtropical Pacific Ocean. . Science 316::101721 [Google Scholar]
  9. Benitez-Nelson CR. , McGillicuddy DJ. . 2008.. Mesoscale physical-biological-biogeochemical linkages in the open ocean: an introduction to the results of the E-Flux and EDDIES Programs. . Deep-Sea Res. II 55::113338 [Google Scholar]
  10. Billett DSM. , Bett BJ. , Rice AL. , Thurston MH. , Galèron J. , et al. 2001.. Long-term change in the megabenthos of the Porcupine Abyssal Plain (NE Atlantic). . Prog. Oceanogr. 50::32548 [Google Scholar]
  11. Boyd PW. , Doney SC. . 2002.. Modelling regional responses by marine pelagic ecosystems to global climate change. . Geophys. Res. Lett. 29::1806 [Google Scholar]
  12. Boyd PW. , Jickells T. , Law CS. , Blain S. , Boyle EA. , et al. 2007.. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. . Science 315::61217 [Google Scholar]
  13. Buesseler KO. , Lamborg CH. , Boyd PW. , Lam PJ. , Trull TW. , et al. 2007.. Revisiting carbon flux through the ocean's twilight zone. . Science 316::56770 [Google Scholar]
  14. Cane MA. . 1986.. El Niño. . Annu. Rev. Earth Planet. Sci. 14::4370 [Google Scholar]
  15. Carlson CA. , Ducklow HW. , Michaels AF. . 1994.. Annual flux of dissolved organic carbon from the euphotic zone in the northwestern Sargasso Sea. . Nature 371::4058 [Google Scholar]
  16. Carlson CA. , Giovannoni SJ. , Hansell DA. , Goldberg SJ. , Parsons R. , Vergin K. . 2004.. Interactions among dissolved organic carbon, microbial processes, and community structure in the mesopelagic zone of the northwestern Sargasso Sea. . Limnol. Oceanogr. 49::107383 [Google Scholar]
  17. Conte MH. , Dickey TD. , Weber JC. , Johnson RJ. , Knap AH. . 2003.. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. . Deep-Sea Res. I 50::115787 [Google Scholar]
  18. Conte MH. , Ralph N. , Ross EH. . 2001.. Seasonal and interannual variability in deep ocean particle fluxes at the Oceanic Flux Program (OFP)/Bermuda Atlantic Time-series (BATS) site in the western Sargasso Sea near Bermuda. . Deep-Sea Res. II 48::1471505 [Google Scholar]
  19. Conte MH. , Weber JC. , Ralph N. . 1998.. Episodic particle flux in the deep Sargasso Sea: an organic geochemical assessment. . Deep-Sea Res. I 45::181941 [Google Scholar]
  20. Cullen JJ. , Franks PJS. , Karl DM. , Longhurst AR. . 2002.. Physical influences on marine ecosystem dynamics. . In Biological-Physical Interactions in the Sea, ed. AR Robinson, JJ McCarthy, BJ Rothschild , pp. 297336. New York:: Wiley [Google Scholar]
  21. Cushing D. . 1978.. Biological effects of climate change. . Rapp. P.-v. Reun. Cons. Int. Explor. Mer 173::10716 [Google Scholar]
  22. Daniels RM. , Ducklow HW. , Richardson TL. . 2006.. Food web structure and biogeochemical processes during oceanic phytoplankton blooms: an inverse model analysis. . Deep-Sea Res. II 53::53254 [Google Scholar]
  23. Denman KL. . 2003.. Modelling planktonic ecosystems: parameterizing complexity. . Prog. Oceanogr. 57::42952 [Google Scholar]
  24. Denman KL. , Peña MA. . 1999.. A coupled 1-D biological/physical model of the northeast subarctic Pacific Ocean with iron limitation. . Deep-Sea Res. II 46::2877908 [Google Scholar]
  25. Deuser WG. . 1986.. Seasonal and interannual variations in deep-water particle fluxes in the Sargasso Sea and their relation to surface hydrography. . Deep-Sea Res. A 33::22546 [Google Scholar]
  26. Deuser WG. , Ross EH. . 1980.. Seasonal change in the flux of organic carbon to the deep Sargasso Sea. . Nature 283::36465 [Google Scholar]
  27. Deuser WG. , Ross EH. , Anderson RF. . 1981.. Seasonality in the supply of sediment to the deep Sargasso Sea and implications for the rapid transfer of matter to the deep ocean. . Deep-Sea Res. A 28::495505 [Google Scholar]
  28. deYoung B. . 2004.. Detecting regime shifts in the ocean: data considerations. . Prog. Oceanogr. 60::14364 [Google Scholar]
  29. Domack E. , Leventer A. , Burnett A. , Bindschadler R. , Convey P. , Kirby M. . 2003.. Antarctic Peninsula Climate Variability: Historical and Paleoenvironmental Perspectives. Washington, D. C.:: Am. Geophys. Union [Google Scholar]
  30. Doney SC. . 1996.. A synoptic atmospheric surface forcing data set and physical upper ocean model for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site. . J. Geophys. Res. (Oceans) 101::2561534 [Google Scholar]
  31. Doney SC. . 1999.. Major challenges confronting marine biogeochemical modeling. . Glob. Biogeochem. Cycles 13::70514 [Google Scholar]
  32. Doney SC. , Abbott MR. , Cullen JJ. , Karl DM. , Rothstein L. . 2004.. From genes to ecosystems: the ocean's new frontier. . Front. Ecol. Environ. 2::45766 [Google Scholar]
  33. Doney SC. , Anderson R. , Bishop J. , Caldeira K. , Carlson C. , et al. 2004.. Ocean carbon and climate change (OCCC): an implementation strategy for U.S. ocean carbon cycle science. Univ. Corp. Atmos. . Res, Boulder, Colo . 108 pp.
  34. Doney SC. , Fabry VJ. , Feely RA. , Kleypas JA. . 2009.. Ocean acidification: the other CO2 problem. . Annu. Rev. Mar. Sci. 1::16992 [Google Scholar]
  35. Doney SC. , Glover DM. , Najjar RG. . 1996.. A new coupled, one-dimensional biological-physical model for the upper ocean: applications to the JGOFS Bermuda Atlantic Time-series Study (BATS) site. . Deep-Sea Res. II 43::591624 [Google Scholar]
  36. Doney SC. , Lima I. , Moore JK. , Lindsay K. , Behrenfeld M. , et al. 2008.. Skill metrics for confronting global upper ocean ecosystem-biogeochemistry models against field and remote sensing data. . J. Marine Syst. In press doi:10.1016/j.jmarsys.2008.05.015 [Google Scholar]
  37. Dore JE. , Lukas R. , Sadler DW. , Karl DM. . 2003.. Climate-driven changes to the atmospheric CO2 sink in the subtropical North Pacific Ocean. . Nature 424::75457 [Google Scholar]
  38. Drazen JC. , Baldwin RJ. , Smith KL Jr. . 1998.. Sediment community response to a temporally varying food supply at an abyssal station in the NE Pacific. . Deep-Sea Res. II 45::893913 [Google Scholar]
  39. Duarte CM. , Cebrián J. , Marbà N. . 1992.. Uncertainty of detecting sea change. . Nature 356::190 [Google Scholar]
  40. Ducklow HW. , Baker K. , Martinson DG. , Quetin LB. , Ross RM. , et al. 2007.. Marine ecosystems: the West Antarctic Peninsula. . Philos. Trans. R. Soc. London Ser. B 362::6794 [Google Scholar]
  41. Ducklow HW. , Steinberg DK. , Buesseler KO. . 2001.. Upper ocean carbon export and the biological pump. . Oceanography 14::5058 [Google Scholar]
  42. Edwards M. , Richardson AJ. . 2004.. Impact of climate change on marine pelagic phenology and trophic mismatch. . Nature 430::88184 [Google Scholar]
  43. Emerson S. , Quay P. , Karl D. , Winn C. , Tupas L. , Landry M. . 1997.. Experimental determination of the organic carbon flux from open-ocean surface waters. . Nature 389::95154 [Google Scholar]
  44. Evans GT. 1999.. The role of local models and data sets in the Joint Global Ocean Flux Study. . Deep-Sea Res. I 46::136989 [Google Scholar]
  45. Evans GT. , Parslow JS. . 1985.. A model of annual plankton cycles. . Biol. Oceanogr. 3::32747 [Google Scholar]
  46. Fabry VJ. , Seibel BA. , Feely RA. , Orr JC. . 2008.. Impacts of ocean acidification on marine fauna and ecosystem processes. . ICES. J. Mar. Sci. 65::41432 [Google Scholar]
  47. Fasham MJR. , Balino B. , Bowles M. . 2001.. A new vision of ocean biogeochemistry after a decade of the Joint Global Ocean Flux Study (JGOFS). . Ambio Special Report 10::432 [Google Scholar]
  48. Fasham MJR. , Ducklow HW. , McKelvie SM. . 1990.. A nitrogen-based model of plankton dynamics in the oceanic mixed layer. . J. Mar. Res. 48::149 [Google Scholar]
  49. Fasham MJR. , Evans GT. , Kiefer DA. , Creasey M. , Leach H. . 1995.. The use of optimization techniques to model marine ecosystem dynamics at the JGOFS station at 47°N 20°W. . Philos. Trans. R. Soc. London Ser. B. 348::2039 [Google Scholar]
  50. Fasham MJR. , Flynn KJ. , Pondaven P. , Anderson TR. , Boyd PW. . 2006.. Development of a robust marine ecosystem model to predict the role of iron in biogeochemical cycles: a comparison of results for iron-replete and iron-limited areas, and the SOIREE iron-enrichment experiment. . Deep-Sea Res. I 53::33366 [Google Scholar]
  51. Fasham MJR. , Sarmiento JL. , Slater RD. , Ducklow HW. , Williams R. . 1993.. A seasonal three-dimensional ecosystem model of nitrogen cycling in the North Atlantic euphotic zone: a comparison of the model results with observations from Bermuda Station “S” and OWS “India”. . Glob. Biogeochem. Cycles 7::379416 [Google Scholar]
  52. Fennel K. , Losch M. , Schröter J. , Wenzel M. . 2001a.. Testing a marine ecosystem model: sensitivity analysis and parameter optimization. . J. Mar. Syst. 28::4563 [Google Scholar]
  53. Fennel K. , Spitz YH. , Letelier RM. , Abbott MR. , Karl DM. . 2001b.. A deterministic model for N2 fixation at stn. ALOHA in the subtropical North Pacific Ocean. . Deep-Sea Res. II 49::14974 [Google Scholar]
  54. Field DB. , Baumgartner TR. , Charles CD. , Ferreira-Bartrina V. , Ohman MD. . 2006.. Planktonic foraminifera of the California current reflect 20th-century warming. . Science 311::6366 [Google Scholar]
  55. Fitzwater S. , Knauer G. , Martin JH. . 1982.. Metal contamination and its effect on primary production measurements. . Limnol. Oceanogr. 27::54451 [Google Scholar]
  56. Follows MJ. , Dutkiewicz S. , Grant S. , Chisholm SW. . 2007.. Emergent biogeography of microbial communities in a model ocean. . Science 315::184346 [Google Scholar]
  57. Fox D. . 2007.. ECOLOGY: back to the no-analog future?. Science 316::82325 [Google Scholar]
  58. Fraser WR. , Hofmann EE. . 2003.. A predator's perspective on causal links between climate change, physical forcing and ecosystem response. . Mar. Ecol. Prog. Ser. 265::115 [Google Scholar]
  59. Friedrichs MAM. . 2001.. Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the Central Equatorial Pacific Ocean. . Deep-Sea Res. II 49::289319 [Google Scholar]
  60. Friedrichs MAM. , Dusenberry JA. , Anderson LA. , Armstrong R. , Chai F. , et al. 2007.. Assessment of skill and portability in regional marine biogeochemical models: the role of multiple planktonic groups. . J. Geophys. Res. 112::C08001 [Google Scholar]
  61. Frost BW. . 1987.. Grazing control of phytoplankton stock in the open subarctic Pacific Ocean: a model assessing the role of mesozooplankton, particularly the large calanoid copepods Neocalanus spp. . Marine Ecol. Prog. Ser. 39::4968 [Google Scholar]
  62. Fujii M. , Nojiri Y. , Yamanaka Y. , Kishi MJ. . 2002.. A one-dimensional ecosystem model applied to time-series Station KNOT. . Deep-Sea Res. II 49::544161 [Google Scholar]
  63. Glover DM. , Chandler CL. , Doney SC. , Buesseler KO. , Heimerdinger G. , et al. 2006.. The U.S. JGOFS data management experience. . Deep-Sea Res. II 53::793802 [Google Scholar]
  64. Glover DM. , Doney SC. , Mariano AJ. , Evans RH. , McCue SJ. . 2002.. Mesoscale variability in time-series data: satellite-based estimates for the U.S. JGOFS Bermuda Atlantic Time-Series Study (BATS) site. . J. Geophys. Res. (Oceans) 107:(C8):3092 [Google Scholar]
  65. Grebmeier JM. , Overland JE. , Moore SE. , Farley EV. , Carmack EC. , et al. 2006.. A major ecosystem shift in the Northern Bering Sea. . Science 311::146164 [Google Scholar]
  66. Greenland D. , Goodin DG. , Smith RC. , eds. 2003.. Climate Variability and Ecosystem Response at Long-Term Ecological Research Sites. New York:: Oxford Univ. Press. 480 pp. [Google Scholar]
  67. Gruber N. , Frenzel H. , Doney SC. , Marchesiello P. , McWilliams JC. , et al. 2006.. Eddy-resolving simulation of plankton ecosystem dynamics in the California Current System. . Deep-Sea Res. I 53::1483516 [Google Scholar]
  68. Gruber N. , Keeling CD. , Bates NR. . 2002.. Interannual variability in the North Atlantic Ocean carbon sink. . Science 298::237478 [Google Scholar]
  69. Gruber N. , Sarmiento JL. . 2002.. Large-scale biogeochemical/physical interactions in elemental cycles. . In The Sea. Biological-Physical Interactions in the Sea, ed. AR Robinson, JJ McCarthy, BJ Rothschild . New York City:: John Wiley & Sons [Google Scholar]
  70. Hansell DA. , Carlson CA. . 2001.. Biogeochemistry of total organic carbon and nitrogen in the Sargasso Sea: control by convective overturn. . Deep-Sea Res. II 48::164967 [Google Scholar]
  71. Hansell DA. , Carlson CA. , Suzuki Y. . 2002.. Dissolved organic carbon export with North Pacific Intermediate Water formation. . Glob. Biogeochem. Cycles 16:(1):1007 [Google Scholar]
  72. Hardy A. . 1935.. The continuous plankton recorder: a new method of survey. . Rapports et Proces-Verbaux des Reunions. Conseil International pour l'Exploration de la Mer 95 [Google Scholar]
  73. Hare SR. , Mantua NJ. . 2000.. Empirical evidence for North Pacific regime shifts in 1977 and 1989. . Prog. Oceanogr. 47::10345 [Google Scholar]
  74. Honjo S. , Manganini SJ. . 1993.. Annual biogenic particle fluxes to the interior of the North Atlantic Ocean; studied at 34°N 21°W and 48°N 21°W. . Deep-Sea Res. II 40::587607 [Google Scholar]
  75. Hood RR. , Bates NR. , Capone DG. , Olson DB. . 2001.. Modeling the effect of nitrogen fixation on carbon and nitrogen fluxes at BATS. . Deep-Sea Res. II 48::160948 [Google Scholar]
  76. Hood RR. , Laws EA. , Armstrong RA. , Bates NR. , Brown CW. , et al. 2006.. Pelagic functional group modeling: progress, challenges and prospects. . Deep-Sea Res. II 53::459512 [Google Scholar]
  77. Hurtt GC. , Armstrong RA. . 1996.. A pelagic ecosystem model calibrated with BATS data. . Deep-Sea Res. II 43::65383 [Google Scholar]
  78. Karl D. , Letelier R. , Hebel D. , Tupas L. , Dore J. , et al. 1995.. Ecosystem changes in the North Pacific subtropical gyre attributed to the 1991–92 El Niño. . Nature 373::23034 [Google Scholar]
  79. Karl DM. . 1999.. Minireviews: A sea of change: biogeochemical variability in the North Pacific Subtropical Gyre. . Ecosystems 2::181214 [Google Scholar]
  80. Karl DM. , Bidigare RR. , Letelier RM. . 2001a.. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis. . Deep-Sea Res. II 48::144970 [Google Scholar]
  81. Karl DM. , Christian JR. , Dore JE. , Hebel DV. , Letelier RM. , et al. 1996.. Seasonal and interannual variability in primary production and particle flux at Station ALOHA. . Deep-Sea Res. II 43::53968 [Google Scholar]
  82. Karl DM. , Dore JE. , Lukas R. , Michaels AF. , Bates NR. , Knap A. . 2001b.. Building the long-term picture: the U.S. JGOFS time-series programs. . Oceanography 14::617 [Google Scholar]
  83. Karl DM. , Lukas R. . 1996.. The Hawaii Ocean Time-series (HOT) Program: background, rationale and field implementation. . Deep-Sea Res. II 43::12956 [Google Scholar]
  84. Keeling CD. , Brix H. , Gruber N. . 2004.. Seasonal and long-term dynamics of the upper ocean carbon cycle at Station ALOHA near Hawaii. . Glob. Biogeochem. Cycles 18::126 [Google Scholar]
  85. Keeling CD. , Whorf TP. , Wahlen M. , Vanderplicht J. . 1995.. Interannual extremes in the rate of rise of atmospheric carbon-dioxide since 1980. . Nature 375::66670 [Google Scholar]
  86. Kleypas JA. , Doney SC. . 2001.. Nutrients, chlorophyll, primary production and related biogeochemical properties in the ocean mixed layer-A compilation of data collected at nine JGOFS sites. Boulder CO:: National Center for Atmosphere for Atmospheric Research [Google Scholar]
  87. Lampitt RS. , Antia AN. . 1997.. Particle flux in deep seas: regional characteristics and temporal variability. . Deep-Sea Res. I 44::1377403 [Google Scholar]
  88. Lampitt RS. , Bett BJ. , Kiriakoulakis K. , Popova EE. , Ragueneau O. , et al. 2001.. Material supply to the abyssal seafloor in the Northeast Atlantic. . Prog. Oceanogr. 50::2763 [Google Scholar]
  89. Large WG. , McWilliams JC. , Doney SC. . 1994.. Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. . Rev. Geophys. 32::363403 [Google Scholar]
  90. Lavaniegos BE. , Ohman MD. . 2007.. Coherence of long-term variations of zooplankton in two sectors of the California Current System. . Prog. Oceanogr. 75::4269 [Google Scholar]
  91. Laws EA. , Falkowski PG. , Smith WO Jr. , Ducklow HW. , McCarthy JJ. . 2000.. Temperature effects on export production in the open ocean. . Glob. Biogeochem. Cycles 14::123146 [Google Scholar]
  92. Le Quéré C. , Harrison SP. , Colin Prentice I. , Buitenhuis ET. , Aumont O. , et al. 2005.. Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. . Glob. Chang. Biol. 11::201640 [Google Scholar]
  93. Lefèvre N. , Watson AJ. , Olsen A. , Ríos AF. , Pérez FF. , Johannessen T. . 2004.. A decrease in the sink for atmospheric CO2 in the North Atlantic. . Geophys. Res. Lett. 31::14 [Google Scholar]
  94. Letelier RM. , Karl DM. , Abbott MR. , Flament P. , Freilich M. , et al. 2000.. Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre. . J. Geophys. Res. (Oceans) 105::2872339 [Google Scholar]
  95. Lima I. , Doney SC. . 2004.. A three-dimensional, multi-nutrient, size-structured ecosystem model for the North Atlantic. . Glob. Biogeochem. Cycles 18::GB3019 [Google Scholar]
  96. Lomas MW. , Bates NR. , Knap AH. , Karl DM. , Lukas R. , et al. 2002.. Refining our understanding of oceanic biogeochemistry and ecosystem functioning. . Eos Trans. Am. Geophys. Union 83::559 [Google Scholar]
  97. Longhurst AR. , Bedo AW. , Harrison WG. , Head EJH. , Sameoto DD. . 1990.. Vertical flux of respiratory carbon by oceanic diel migrant biota. . Deep-Sea Res. 37::68594 [Google Scholar]
  98. MacCall AD. 1996.. Patterns of low-frequency variability in fish populations of the California current. . Calif. Coop. Ocean. Fish. Invest. Rep. 37::10010 [Google Scholar]
  99. Magnuson JJ. . 1990.. Long-term ecological research and the invisible present. . BioScience 40::495501 [Google Scholar]
  100. McCarthy JJ. , Canziani OF. , Leary NA. , Dokken DJ. , White KS. , eds. 2001.. Climate Change 2001: Impacts, Adaptation, and Vulnerability. Cambridge, UK:: Cambridge Univ. Press. 1032 pp. [Google Scholar]
  101. McClain CR. , Arrigo K. , Tai K-S. , Turk D. . 1996.. Observations and simulations of physical and biological processes at ocean weather station P. . J. Geophys. Res. (Oceans) 101::3697713 [Google Scholar]
  102. McGillicuddy DJ Jr. , 2001.. The internal weather of the sea and its influences on ocean biogeochemistry. . Oceanography 14::7892 [Google Scholar]
  103. McGillicuddy DJ Jr. , Anderson LA. , Bates NR. , Bibby T. , Buesseler KO. , et al. 2007.. Eddy/wind interactions stimulate extraordinary mid-ocean plankton blooms. . Science 316::102126 [Google Scholar]
  104. McGillicuddy DJ Jr. , Anderson LA. , Doney SC. , Maltrud ME. . 2003.. Eddy-driven sources and sinks of nutrients in the upper ocean: Results from a 0.1° resolution model of the North Atlantic. . Global Biogeochem. Cycles 17::1035 [Google Scholar]
  105. McGillicuddy DJ Jr. , Kosnyrev VK. . 2001.. Dynamical interpolation of mesoscale flows in the TOPEX/Poseidon diamond surrounding the U.S. Joint Global Ocean Flux Study Bermuda Atlantic Time-series Study site. . J. Geophys. Res. (Oceans) 106C::664156 [Google Scholar]
  106. McGillicuddy DJ Jr. , Robinson AR. , Siegel DA. , Jannasch HW. , Johnson R. , et al. 1998.. Influence of mesoscale eddies on new production in the Sargasso Sea. . Nature 394::26366 [Google Scholar]
  107. McGowan JA. , Bograd SJ. , Lynn RJ. , Miller AJ. . 2003.. The biological response to the 1977 regime shift in the California Current. . Deep-Sea Res. II 50::256782 [Google Scholar]
  108. McGowan JA. , Cayan DR. , Dorman LM. . 1998.. Climate-ocean variability and ecosystem response in the Northeast Pacific. . Science 281::21017 [Google Scholar]
  109. McNeil JD. , Jannasch HW. , Dickey T. , McGillicuddy D. , Brzezinski M. , Sakamoto CM. . 1999.. New chemical, bio-optical and physical observations of upper ocean response to the passage of a mesoscale eddy off Bermuda. . J. Geophys. Res. (Oceans) 104::1553748 [Google Scholar]
  110. Meehl GA. , Washington WM. , Arblaster JM. , Bettge TW. , Strand WG. . 2000.. Anthropogenic forcing and decadal climate variability in sensitivity experiments of twentieth- and twenty-first-century climate. . J. Clim. 13::372844 [Google Scholar]
  111. Michaels AF. , Karl DM. , Capone DG. . 2001.. Element stoichiometry: new production and nitrogen fixation. . Oceanography 14::6877 [Google Scholar]
  112. Michaels AF. , Bates NR. , Buesseler KO. , Carlson CA. , Knap AH. . 1994.. Carbon-cycle imbalances in the Sargasso Sea. . Nature 372::53740 [Google Scholar]
  113. Moline MA. , Claustre H. , Frazer TK. , Schofield O. , Vernet M. . 2004.. Alteration of the food web along the Antarctic Peninsula in response to a regional warming trend. . Glob. Chang. Biol. 10::197380 [Google Scholar]
  114. Mongin M. , Nelson DM. , Pondaven P. , Brzezinski MA. , Tréguer P. . 2003.. Simulation of upper-ocean biogeochemistry with a flexible-composition phytoplankton model: C, N and Si cycling in the western Sargasso Sea. . Deep-Sea Res. I 50::144580 [Google Scholar]
  115. Moore JK. , Doney SC. , Kleypas JA. , Glover DM. , Fung IY. . 2002.. An intermediate complexity marine ecosystem model for the global domain. . Deep-Sea Res. II 49::40362 [Google Scholar]
  116. Neuer S. , Davenport R. , Freudenthal T. , Wefer G. , Llinas O. , et al. 2002.. Differences in the biological carbon pump at three subtropical ocean sites. . Geophys. Res. Lett. 29::1885 [Google Scholar]
  117. Neuer S. , Ratmeyer V. , Davenport R. , Fischer G. , Wefer G. . 1997.. Deep water particle flux in the Canary Island region: seasonal trends in relation to long-term satellite derived pigment data and lateral sources. . Deep-Sea Res. I 44::145166 [Google Scholar]
  118. Ohman MD. , Venrick EL. . 2003.. CalCOFI in a changing ocean. . Oceanography 16::7685 [Google Scholar]
  119. Olivieri RA. , Chavez FP. . 2000.. A model of plankton dynamics for the coastal upwelling system of Monterey Bay, California. . Deep-Sea Res. II 47::1077106 [Google Scholar]
  120. Olsen A. , Bellerby RGJ. , Johannessen T. , Omar AM. , Skjelvan I. . 2003.. Interannual variability in the wintertime air-sea flux of carbon dioxide in the northern North Atlantic, 1981–2001. . Deep-Sea Res. I 50::132338 [Google Scholar]
  121. Oschlies A. , Koeve W. , Garçon V. . 2000.. An eddy-permitting coupled physical-biological model of the North Atlantic 2. Ecosystem dynamics and comparison with satellite and JGOFS local studies data. . Glob. Biogeochem. Cycles 14::499523 [Google Scholar]
  122. Oschlies A. , Schartau M. . 2005.. Basin-scale performance of a locally optimized marine ecosystem model. . J. Mar. Res. 63::33558 [Google Scholar]
  123. Parmesan C. . 2006.. Ecological and evolutionary responses to recent climate change. . Annu. Rev. Ecol. Evol. Syst. 37::63769 [Google Scholar]
  124. Parry ML. , Canziani OF. , Palutikof JP. , van der Linden PJ. , Hanson CE. , eds. 2007.. Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK:: Cambridge Univ. Press. 976 pp. [Google Scholar]
  125. Platt T. , Denman KL. . 1975.. Spectral analysis in ecology. . Annu. Rev. Ecol. Evol. Syst. 6::189210 [Google Scholar]
  126. Rebstock GA. . 2002.. Climatic regime shifts and decadal-scale variability in calanoid copepod populations off southern California. . Glob. Chang. Biol. 8::7189 [Google Scholar]
  127. Richardson AJ. , Schoeman DS. . 2004.. Climate impact on plankton ecosystems in the Northeast Atlantic. . Science 305::160912 [Google Scholar]
  128. Riebesell U. , Zondervan I. , Rost B. , Tortell PD. , Zeebe RE. , Morel FMM. . 2000.. Reduced calcification of marine plankton in response to increased atmospheric CO2. . Nature 407::36467 [Google Scholar]
  129. Rodionov SN. 2004.. A sequential algorithm for testing climate regime shifts. . Geophys. Res. Lett. 31::L09204 [Google Scholar]
  130. Roemmich D. , McGowan J. . 1995.. Climatic warming and the decline of zooplankton in the California Current. . Science 267::132426 [Google Scholar]
  131. Ruhl HA. , Smith KL. . 2004.. Shifts in deep-sea community structure linked to climate and food supply. . Science 305::51315 [Google Scholar]
  132. Santana-Casiano JM. , González-Dávila M. , Rueda M-J. , Llinás O. , González-Dávila E-F. . 2007.. The interannual variability of oceanic CO2 parameters in the northeast Atlantic subtropical gyre at the ESTOC site. . Glob. Biogeochem. Cycles 21::116 [Google Scholar]
  133. Sheridan CC. , Landry MR. . 2004.. A 9-year increasing trend in mesozooplankton biomass at the Hawaii Ocean Time-Series Station ALOHA. . ICES J. Mar. Sci. 61::45763 [Google Scholar]
  134. Siegel DA. , McGillicuddy DJ Jr. , Fields EA. . 1999.. Mesoscale eddies, satellite altimetry, and new production in the Sargasso Sea. . J. Geophys. Res. (Oceans) 104::1335979 [Google Scholar]
  135. Smith KL. , Baldwin RJ. , Karl DM. , Boetius A. . 2002.. Benthic community responses to pulses in pelagic food supply: North Pacific Subtropical Gyre. . Deep-Sea Res. I 49::97190 [Google Scholar]
  136. Smith KL. Ruhl HA. , Kahru M. , Mitchell BG. , Kaufmann RS. , R.J. B , . 2006.. Climate effect on food supply to depths greater than 4,000 meters in the northeast Pacific. . Limnol. Oceanogr. 5::16676 [Google Scholar]
  137. Smith RC. , Domack EW. , Emslie SD. , Fraser WR. , Ainley DG. , et al. 1999.. Marine ecosystems sensitivity to historical climate change: Antarctic Peninsula. . BioScience 49::393404 [Google Scholar]
  138. Spitz YH. , Moisan JR. , Abbott MR. . 2001.. Configuring an ecosystem model using data from the Bermuda Atlantic Time-series (BATS). . Deep-Sea Res. II 48::173368 [Google Scholar]
  139. Spitz YH. , Moisan JR. , Abbott MR. , Richman JG. . 1998.. Data assimilation and a pelagic ecosystem model: parameterization using time-series observations. . J. Mar. Syst. 16::5168 [Google Scholar]
  140. Steinberg DK. , Carlson CA. , Bates NR. , Goldthwait SA. , Madin LP. , Michaels AF. . 2000.. Zooplankton vertical migration and the active transport of dissolved organic and inorganic carbon in the Sargasso Sea. . Deep-Sea Res. I 47::13758 [Google Scholar]
  141. Steinberg DK. , Carlson CA. , Bates NR. , Johnson RJ. , Michaels AF. , Knap AH. . 2001.. Overview of the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. . Deep-Sea Res. II 48::140547 [Google Scholar]
  142. Steinberg DK. , Lomas MW. , Madin LP. . 2008.. A long-term increase in zooplankton biomass at the Bermuda Atlantic Time-series Study (BATS) site in the Sargasso Sea. . In 2008 Ocean Sciences Meeting Program Abstracts. Orlando, Florida: [Google Scholar]
  143. Takahashi K. , Fujitani N. , Yanada M. . 2002.. Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–2000. . Prog. Oceanogr. 55::95112 [Google Scholar]
  144. Thunell R. , Benitez-Nelson C. , Varela R. , Astor Y. , Muller-Karger F. . 2007.. Particulate organic carbon fluxes along upwelling-dominated continental margins: rates and mechanisms. . Glob. Biogeochem. Cycles 21::GB1022 [Google Scholar]
  145. Timmermann A. , Oberhuber J. , Bacher A. , Esch M. , Latif M. , Roeckner E. . 1999.. Increased El Niño frequency in a climate model forced by future greenhouse warming. . Nature 398::69497 [Google Scholar]
  146. Toole DA. , Siegel DA. , Doney SC. . 2008.. An UV light-driven 1-D DMS biogeochemcial cycling model for the Sargasso Sea. . J. Geophys. Res. (Oceans) 113::G02009 [Google Scholar]
  147. Van Mooy BAS. , Devol AH. . 2008.. Assessing nutrient limitation of Prochlorococcus in the North Pacific subtropical gyre by using an RNA capture method. . Limnol. Oceanogr. 53::7888 [Google Scholar]
  148. Vaughan DG. , Marshall GJ. , Connolley WM. , Parkinson C. , Mulvaney R. , et al. 2003.. Recent rapid regional climate warming on the Antarctic Peninsula. . Clim. Chang. 60::24374 [Google Scholar]
  149. Venrick EL. , McGowan JA. , Cayan DR. , Hayward TL. . 1987.. Climate and chlorophyll a: long-term trends in the central North Pacific Ocean. . Science 238::7072 [Google Scholar]
  150. Volk T. , Hoffert MI. . 1985.. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-drive atmospheric CO2 changes. . Geophys. Monogr. 32::99110 [Google Scholar]
  151. Wakita M. , Watanabe S. , Watanabe YW. , Ono T. , Tsurushima N. , Tsunogai S. . 2005.. Temporal change of dissolved inorganic carbon in the subsurface water at Station KNOT (44°N, 155°E) in the Western North Pacific Subpolar Region. . J. Oceanogr. 61::12939 [Google Scholar]
  152. Walther G-R. , Post E. , Convey P. , Menzel A. , Parmesan C. , et al. 2002.. Ecological responses to recent climate change. . Nature 416::38995 [Google Scholar]
  153. Wang G. , Schimel D. . 2003.. Climate change, climate modes, and climate impacts. . Annu. Rev. Environ. Resour. 28::128 [Google Scholar]
  154. Wanninkhof R. , Olsen A. , Triñanes J. . 2007.. Air-sea CO2 fluxes in the Caribbean Sea from 2002–2004. . J. Mar. Syst. 66::27284 [Google Scholar]
  155. Weber L. , Völker C. , Schartau M. , Wolf-Gladrow DA. . 2005.. Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic Time-series Study site. . Glob. Biogeochem. Cycles 19::GB1019 [Google Scholar]
/content/journals/10.1146/annurev.marine.010908.163801
Loading
/content/journals/10.1146/annurev.marine.010908.163801
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error