1932

Abstract

Rising atmospheric carbon dioxide (CO), primarily from human fossil fuel combustion, reduces ocean pH and causes wholesale shifts in seawater carbonate chemistry. The process of ocean acidification is well documented in field data, and the rate will accelerate over this century unless future CO emissions are curbed dramatically. Acidification alters seawater chemical speciation and biogeochemical cycles of many elements and compounds. One well-known effect is the lowering of calcium carbonate saturation states, which impacts shell-forming marine organisms from plankton to benthic molluscs, echinoderms, and corals. Many calcifying species exhibit reduced calcification and growth rates in laboratory experiments under high-CO conditions. Ocean acidification also causes an increase in carbon fixation rates in some photosynthetic organisms (both calcifying and noncalcifying). The potential for marine organisms to adapt to increasing CO and broader implications for ocean ecosystems are not well known; both are high priorities for future research. Although ocean pH has varied in the geological past, paleo-events may be only imperfect analogs to current conditions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.marine.010908.163834
2009-01-15
2025-03-21
Loading full text...

Full text loading...

/deliver/fulltext/marine/1/1/annurev.marine.010908.163834.html?itemId=/content/journals/10.1146/annurev.marine.010908.163834&mimeType=html&fmt=ahah

Literature Cited

  1. Agegian CR. . 1985.. The biogeochemical ecology of Porolithon gardineri (Foslie). Ph.D. Thesis . Univ. Hawaii.178 pp. [Google Scholar]
  2. Andersson AJ. , Bates NR. , Mackenzie FT. . 2007.. Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from Devil's Hole, Bermuda. . Aquat. Geochem. 13::23764 [Google Scholar]
  3. Andersson AJ. , Mackenzie FT. , Lerman A. . 2005.. Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. . Am. J. Sci. 305::875918 [Google Scholar]
  4. Armstrong JL. , Boldt JL. , Cross AD. , Moss JH. , Davis ND. , et al. 2005.. Distribution, size, and interannual, seasonal and diel food habits of northern Gulf of Alaska juvenile pink salmon, Oncorhynchus gorbuscha. . Deep Sea Res. II 52::24765 [Google Scholar]
  5. Armstrong RA. , Lee C. , Hedges JI. , Honjo S. , Wakeham SG. . 2002.. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. . Deep Sea Res. II 49::21936 [Google Scholar]
  6. Attrill MJ. , Wright J. , Edwards M. . 2007.. Climate-related increases in jellyfish frequency suggest a more gelatinous future for the North Sea. . Limnol. Oceanogr. 52::48085 [Google Scholar]
  7. Balch WM. , Drapeau D. , Bowler B. , Booth E. . 2007.. Prediction of pelagic calcification rates using satellite measurements. . Deep Sea Res. II 54::47895 [Google Scholar]
  8. Barcelos e Ramos J. , Biswas H. , Schultz KG. , LaRoche J. , Riebesell U. . 2007.. Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. . Glob. Biogeochem. Cycles 21::GB2028 [Google Scholar]
  9. Bates NR. 2002.. Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange. . Limnol. Oceanogr. 47::4352 [Google Scholar]
  10. Bathmann UV. , Noji TT. , von Bodungen B. . 1991.. Sedimentation of pteropods in the Norwegian Sea in autumn. . Deep Sea Res. 38::134160 [Google Scholar]
  11. Beardall J. , Raven JA. . 2004.. The potential effects of global climate change in microalgal photosynthesis, growth and ecology. . Phycologia 43::3145 [Google Scholar]
  12. Behrenfeld MJRT. , O'Malley DA. , Siegel CR. , McClain JL. , Sarmiento GC. , et al. 2006.. Climate-driven trends in contemporary ocean productivity. . Nature 444::75255 [Google Scholar]
  13. Berelson WM. , Balch WM. , Najjar R. , Feely RA. , Sabine C. , Lee K. . 2007.. Relating estimates of CaCO3 production, export, and dissolution in the water column to measurements of CaCO3 rain into sediment traps and dissolution on the sea floor: a revised global carbonate budget. . Glob. Biogeochem. Cycles 21: [Google Scholar]
  14. Bessat F. , Buigues D. . 2001.. Two centuries of variation in coral growth in a massive Porites colony from Moorea (French Polynesia): a response of ocean-atmosphere variability from south central Pacific. . Palaeogeogr. Palaeoclim. Palaeoecol. 175::38192 [Google Scholar]
  15. Bijma J. 1991.. Lunar pulses of carbonate output by spinose planktonic Foraminifera. . In Protozoa and Their Role in Marine Processes, ed. PC Reid, CM Turley, PH Burkill , pp. 35354. Plymouth:: Elsevier [Google Scholar]
  16. Bijma J. , Honisch B. , Zeebe RE. . 2002.. Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on “Carbonate ion concentration in glacial-age deepwaters of the Caribbean Sea” by W.S. Broecker and E. Clark. . Geochem. Geophys. Geosys. 3:(11):1064 [Google Scholar]
  17. Bijma J. , Spero HJ. , Lea DW. . 1999.. Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results). . In Use of Proxies in Paleoceanography: Examples from the South Atlantic, ed. G Fischer, G Wefer , pp. 489512. Springer-Verlag [Google Scholar]
  18. Blamart D. , Rollion-Bard C. , Meibom A. , Cuif JP. , Juillet-Leclerc A. , Dauphin Y. . 2007.. Correlation of boron isotopic composition with ultrastructure in the deep-sea coral Lophelia pertusa: implications for biomineralization and paleo-pH. . Geochem. Geophys. Geosys. 8::Q12001 [Google Scholar]
  19. Borowitzka MA. 1981.. Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and Amphiroa foliacea. . Mar. Biol. 62::1723 [Google Scholar]
  20. Boyd PW. , Doney SC. . 2002.. Modelling regional responses by marine pelagic ecosystems to global climate change. . Geophys. Res. Lett. 29::1806 [Google Scholar]
  21. Boyd P. , Doney SC. . 2003.. The impact of climate change and feedback process on the ocean carbon cycle. . In Ocean Biogeochemistry, ed. M. Fasham , pp. 15793. Springer [Google Scholar]
  22. Boyd P. , Doney SC. , Strzepek R. , Dusenberry J. , Lindsay K. , Fung I. . 2008.. Climate-mediated changes to mixed-layer properties in the Southern Ocean: assessing the phytoplankton response. . Biogeosciences 5::84764 [Google Scholar]
  23. Brewer PG. , Sarmiento JL. , Smethie WM. . 1985.. The Transient Tracers in the Ocean (TTO) program—the North-Atlantic Study, 1981—the Tropical Atlantic Study, 1983. . J. Geophys. Res. Oceans 90::69035 [Google Scholar]
  24. Broecker WS. 2003.. The oceanic CaCO3 cycle. . In The Oceans and Marine Geochemistry, Treatise on Geochemistry, ed. H Elderfield , pp. 52949. London:: Elsevier [Google Scholar]
  25. Broecker W. , Clark E. . 2001.. A dramatic Atlantic dissolution event at the onset of the last glaciation. . Geochem. Geophys. Geosystems 2::1065 [Google Scholar]
  26. Broecker WS. , Takahashi T. . 1978.. Relationship between lysocline depth and in situ carbonate ion concentration. . Deep Sea Res. 25::6595 [Google Scholar]
  27. Broecker WS. , Takahashi T. . 1966.. Calcium carbonate precipitation on the Bahama Banks. . J. Geophys. Res. 71::1575602 [Google Scholar]
  28. Bruland KW. , Lohan MC. . 2004.. The control of trace metals in seawater. . In The Oceans and Marine Geochemistry, Treatise on Geochemistry, Vol. 6. ed. H. Elderfield . Elsevier [Google Scholar]
  29. Burkhardt S. , Amoroso G. , Riebesell U. , Sültemeyer D. . 2001.. CO2 and HCO3 uptake in marine diatoms acclimated to different CO2 concentrations. . Limnol. Oceanogr. 46::137891 [Google Scholar]
  30. Byrne RH. , Kump LR. , Cantrell KJ. . 1988.. The influence of temperature and pH on trace metal speciation in seawater. . Mar. Chem. 25::16381 [Google Scholar]
  31. Byrne RH. 2002.. Inorganic speciation of dissolved elements in seawater: the influence of pH on concentration ratios. . Geochem. Trans. 3::11 [Google Scholar]
  32. Caldeira K. , Wickett ME. . 2003.. Anthropogenic carbon and ocean pH. . Nature 425::365 [Google Scholar]
  33. Caldeira K. , Wickett ME. . 2005.. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. . J. Geophys. Res Oceans 110::C09S4 [Google Scholar]
  34. Chung SN. , Lee K. , Feely RA. , Sabine CL. , Millero FJ. , et al. 2003.. Calcium carbonate budget in the Atlantic Ocean based on water column inorganic carbon chemistry. . Glob. Biogeochem. Cycles 17::1093 [Google Scholar]
  35. Chung SN. , Park GH. , Lee K. , Key RM. , Millero FJ. , et al. 2004.. Postindustrial enhancement of aragonite undersaturation in the upper tropical and subtropical Atlantic Ocean: the role of fossil fuel CO2. . Limnol. Oceanogr. 49::31521 [Google Scholar]
  36. Cooper TF. , De'Ath G. , Fabricius KE. , Lough JM. . 2008.. Declining coral calcification in massive Porites in two nearshore regions of the northern Great Barrier Reef. . Glob. Chang. Biol. 14::52938 [Google Scholar]
  37. Craig H. , Turekian KK. . 1976.. GEOSECS Program—1973–1976. . Earth Planet. Sci. Lett. 32::21719 [Google Scholar]
  38. Craig H. , Turekian KK. . 1980.. The GEOSECS Program—1976–1979. . Earth Planet. Sci. Lett. 49::26365 [Google Scholar]
  39. Crutzen PJ. 2006.. Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma?. Clim. Chang. 77::21120 [Google Scholar]
  40. Delille B. , Harlay J. , Zondervan I. , Jacquet S. , Chou L. , et al. 2005.. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. . Glob. Biogeochem. Cycles 19::GB2023 [Google Scholar]
  41. Dickens GR. , Oneil JR. , Rea DK. , Owen RM. . 1995.. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. . Paleoceanography 10::96571 [Google Scholar]
  42. Doney SC. , Schimel DS. . 2007.. Carbon and climate system coupling on timescales from the Precambrian to the Anthropocene. . Annu. Rev. Environ. Resour. 32::3166 [Google Scholar]
  43. Doney SC. , Mahowald N. , Lima I. , Feely RA. , Mackenzie FT. , et al. 2007.. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. . Proc. Natl. Acad. Sci. USA 104::1458085 [Google Scholar]
  44. Ehlers A. , Worm B. , Reusch TBH. . 2008.. Importance of genetic diversity in eelgrass Zostera marina for its resilience to global warming. . Mar. Ecol. Prog. Ser. 355::17 [Google Scholar]
  45. Engel A. , Zondervan I. , Aerts K. , Beaufort L. , Benthien A. , et al. 2005.. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. . Limnol. Oceanogr. 50:(2):493507 [Google Scholar]
  46. Fabry VJ. 1990.. Shell growth rates of pteropod and heteropod mollusks and aragonite production in the open ocean—implications for the marine carbonate system. . J. Mar. Res. 48::20922 [Google Scholar]
  47. Fabry VJ. 2008.. Marine calcifiers in a high-CO2 ocean. . Science 320::102022 [Google Scholar]
  48. Fabry VJ. , Seibel BA. , Feely RA. , Orr JC. . 2008.. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES. . J. Mar. Sci. 65::41432 [Google Scholar]
  49. Feely RA. , Byrne RH. , Acker JG. , Betzer PR. , Chen CTA. , et al. 1988.. Winter summer variations of calcite and aragonite saturation in the northeast Pacific. . Mar. Chem. 25::22741 [Google Scholar]
  50. Feely RA. , Chen CTA. . 1982.. The effect of excess CO2 on the calculated calcite and aragonite saturation horizons in the northeast Pacific. . Geophys. Res. Lett. 9::129497 [Google Scholar]
  51. Feely RA. , Orr J. , Fabry VJ. , Kleypas JA. , Sabine CL. , Landgon C. . 2008.. Present and future changes in seawater chemistry due to ocean acidification. . In AGU Monograph on the Science and Technology of Carbon Sequestration. ed. B.J. McPherson, E.T. Sundquist . Am. Geophys. Union. In press [Google Scholar]
  52. Feely RA. , Sabine CL. , Hernandez-Ayon JM. , Ianson D. , Hales B. . 2008.. Evidence for upwelling of corrosive “acidified” water onto the continental shelf. . Science 320::149092 [Google Scholar]
  53. Feely RA. , Sabine CL. , Lee K. , Berelson W. , Kleypas J. , et al. 2004.. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. . Science 305::36266 [Google Scholar]
  54. Feely RA. , Sabine CL. , Lee K. , Millero FJ. , Lamb MF. , et al. 2002.. In situ calcium carbonate dissolution in the Pacific Ocean. . Glob. Biogeochem. Cycles 16::1144 [Google Scholar]
  55. Fine M. , Tchernov D. . 2007.. Scleractinian coral species survive and recover from decalcification. . Science 315::1811 [Google Scholar]
  56. Foster MS. 2001.. Rhodoliths: between rocks and soft places. . J. Phycol. 37::19 [Google Scholar]
  57. Fu F-X. , Warner ME. , Zhang Y. , Feng Y. , Hutchins DA. . 2007.. Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios of marine Synechococcus and Prochlorococcus (cyanobacteria). . J. Phycol. 43::48596 [Google Scholar]
  58. Gattuso JP. , Frankignoulle M. , Bourge I. , Romaine S. , Buddemeier RW. . 1998.. Effect of calcium carbonate saturation of seawater on coral calcification. . Glob. Planet. Chang. 18::3746 [Google Scholar]
  59. Gattuso JP. , Pichon M. , Frankignoulle M. . 1995.. Biological control of air-sea CO2 fluxes: effect of photosynthetic and calcifying marine organisms and ecosystems. . Mar. Ecol. Prog. Ser. 129::30712 [Google Scholar]
  60. Gazeau F. , Quiblier C. , Jansen JM. , Gattuso J-P. , Middelburg JJ. , Heip CHR. . 2007.. Impact of elevated CO2 on shellfish calcification. . Geophys. Res. Lett 34::L07603 [Google Scholar]
  61. Gehlen M. , Gangsto R. , Schneider B. , Bopp L. , Aumont O. , Ethe C. . 2007.. The fate of pelagic CaCO3 production in a high CO2 ocean: a model study. . Biogeosciences 4::50519 [Google Scholar]
  62. Giordano M. , Beardall J. , Raven JA. . 2005.. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. . Ann. Rev. Plant Biol. 56::99131 [Google Scholar]
  63. Gruber N. , Friedlingstein P. , Field CB. , Valentini R. , Heimann M. , et al. 2004.. The vulnerability of the carbon cycle in the 21st century: an assessment of carbon-climate-human interactions. . In The Global Carbon Cycle: Integrating Humans, Climate and the Natural World, ed. CB Field, MR Raupach , pp. 4576. Washington, DC:: Island Press [Google Scholar]
  64. Guinotte JM. , Buddemeier RW. , Kleypas JA. . 2003.. Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. . Coral Reefs 22::5518 [Google Scholar]
  65. Guinotte JM. , Fabry VJ. . 2008.. Ocean acidification and its potential effects on marine ecosystems. . Ann. New York Acad. Sci. 1134::32042 [Google Scholar]
  66. Guinotte JM. , Orr J. , Cairns S. , Freiwald A. , Morgan L. , George R. . 2006.. Will human-induced changes in seawater chemistry alter the distribution of deep-sea scleractinian corals?. Front. Ecol. Environ. 4::14146 [Google Scholar]
  67. Hall-Spencer JM. , Rodolfo-Metalpa R. , Martin S. , Ransome E. , Fine M. , et al. 2008.. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. . Nature 454::9699 [Google Scholar]
  68. Hein M. , Sand-Jensen K. . 1997.. CO2 increases oceanic primary production. . Nature 388::526 [Google Scholar]
  69. Henderson C. 2006.. Ocean acidification: the other CO2 problem. . New Scientist. http://environment.newscientist.com/article/mg19125631.200 [Google Scholar]
  70. Honisch B. , Hemming NG. , Grottoli AG. , Amat A. , Hanson GN. , Buma J. . 2004.. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. . Geochim. Cosmochim. Acta 68::367585 [Google Scholar]
  71. Honjo S. , Manganini SJ. , Krishfield RA. , Francois R. . 2008.. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. . Prog. Oceanogr. 76::21785 [Google Scholar]
  72. Hutchins DA. , Fe F-X. , Zhang Y. , Warner ME. , Feng Y. , et al. 2007.. CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates, and elemental ratios: implications for past, present, and future ocean biogeochemistry. . Limnol. Oceanogr. 52:(4):12931304 [Google Scholar]
  73. Iglesias-Rodríguez MD. , Halloran PR. , Rickaby REM. , Hall IR. , Colmenero-Hidalgo E. , et al. 2008.. Phytoplankton calcification in a high CO2 world. . Science 320::33639 [Google Scholar]
  74. Invers O. , Zimmeran RC. , Alberte RS. , Perez M. , Romero J. . 2001.. Inorganic carbon sources for seagrass photosynthesis: an experimental evaluation of bicarbonate use in species inhabiting temperate waters. . J. Exp. Mar. Biol. Ecol. 265::203217 [Google Scholar]
  75. Kawahata H. , Suzuki A. , Goto K. . 1999.. Coral reefs as sources of atmospheric CO2—spatial distribution of PCO2 in Majuro Atoll. . Geochem. J. 33::295303 [Google Scholar]
  76. Kayanne H. , Hata H. , Kudo S. , Yamano H. , Watanabe A. , et al. 2005.. Seasonal and bleaching-induced changes in coral reef metabolism and CO2 flux. . Glob. Biogeochem. Cycles 19::GB3015 [Google Scholar]
  77. Keeling CD. , Rakestraw NW. , Waterman LS. . 1965.. Carbon dioxide in surface waters of the Pacific Ocean. 1. Measurements of the distribution. . J. Geophys. Res. 70::608797 [Google Scholar]
  78. Kennett JP. , Stott LD. . 1991.. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Paleocene. . Nature 353::22529 [Google Scholar]
  79. Klaas C. , Archer DE. . 2002.. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. . Glob. Biogeochem. Cycles 16::1116 [Google Scholar]
  80. Kleypas JA. , Buddemeier RW. , Archer D. , Gattuso JP. , Langdon C. , Opdyke BN. . 1999.. Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. . Science 284::11820 [Google Scholar]
  81. Kleypas JA. , Buddemeier RW. , Gattuso JP. . 2001.. The future of coral reefs in an age of global change. . Int. J. Earth Sci. 90::42637 [Google Scholar]
  82. Kleypas JA. , Feely RA. , Fabry VJ. , Langdon C. , Sabine CL. , Robbins LL. . 2006.. Impacts of ocean acidification on coral reefs and other marine calcifiers: a guide for future research. . 88 pp. Report of a workshop sponsored by NSF, NOAA, and the U.S. Geological Survey. St. Petersburg, Florida: [Google Scholar]
  83. Krogh A. . 1904.. On the tension of carbonic acid in natural waters and especially in the sea. . Medd. Groenl. 26::231342 [Google Scholar]
  84. Kuffner IB. , Andersson AJ. , Jokiel PL. , Rodgers KS. , Mackenzie FT. . 2008.. Decreased abundance of crustose coralline algae due to ocean acidification. . Nat. Geosci. 1::77140 [Google Scholar]
  85. Kurihara H. , Kato S. , Ishimatsu A. . 2007.. Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. . Aquat. Biol. 1::9198 [Google Scholar]
  86. Kurihara H. , Shirayama Y. . 2004.. Effects of increased atmospheric CO2 on sea urchin early development. . Mar. Ecol. Prog. Ser. 274::16169 [Google Scholar]
  87. Lalli CM. , Gilmer RW. . 1989.. Pelagic Snails: The Biology of Holoplanktonic Gastropod Mollusks. Stanford:: Stanford Univ. Press. 275 pp. [Google Scholar]
  88. Langdon C. , Atkinson MJ. . 2005.. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. . J. Geophys. Res. Oceans 110::C09S7 [Google Scholar]
  89. Langdon C. , Broecker WS. , Hammond DE. , Glenn E. , Fitzsimmons K. , et al. 2003.. Effect of elevated CO2 on the community metabolism of an experimental coral reef. . Glob. Biogeochem. Cycles 17::1011 [Google Scholar]
  90. Langdon C. , Takahashi T. , Sweeney C. , Chipman D. , Goddard J. , et al. 2000.. Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. . Glob. Biogeochem. Cycles 14::63954 [Google Scholar]
  91. Langer MR. , Geisen M. , Baumann K-H. , Kläs J. , Riebesell U. , et al. 2006.. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. . Geochem. Geophys. Geosys. 7::Q09006 [Google Scholar]
  92. Leclercq N. , Gattuso JP. , Jaubert J. . 2000.. CO2 partial pressure controls the calcification rate of a coral community. . Glob. Chang. Biol. 6::32934 [Google Scholar]
  93. Lee K. . 2001.. Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon. . Limnol. Oceanogr. 46::128797 [Google Scholar]
  94. Lough JM. 2004.. A strategy to improve the contribution of coral data to high-resolution paleoclimatology. . Palaeogeogr. Palaeoclim. Palaeoecol. 204::11543 [Google Scholar]
  95. Lough JM. , Barnes DJ. . 1997.. Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. . J. Exp. Mar. Biol. Ecol. 211::2967 [Google Scholar]
  96. Lough JM. , Barnes DJ. . 2000.. Environmental controls on growth of the massive coral Porites. . J. Exp. Mar. Biol. Ecol. 245::22543 [Google Scholar]
  97. Lüthi D. , Le Floch M. , Bereiter B. , Blunier T. , Barnola J-M. , et al. 2008.. High-resolution carbon dioxide concentration record 650,000-800,000 years before present. . Nature 453::37982 [Google Scholar]
  98. Mackenzie FT. , Lerman A. . 2006.. Carbon in the Geobiosphere—Earth's Outer Shell. Dordrecht, The Netherlands:: Springer. 402 pp. [Google Scholar]
  99. Mackenzie FT. , Morse JW. . 1992.. Sedimentary carbonates through Phanerozoic time. . Geochim. Cosmochim. Acta 56::328195 [Google Scholar]
  100. Manzello DP. , Kleypas JA. , Budd DA. , Eakin CM. , Glynn PW. , Langdon C. . 2008.. Poorly cemented coral reefs of the eastern tropical Pacific: possible insights into reef development in a high CO2 world. . Proc. Nat. Acad. Sci. USA. In press [Google Scholar]
  101. Martin CL. , Tortell PD. . 2006.. Bicarbonate transport and extracellular carbonic anhydrase activity in Bering Sea phytoplankton assemblages: results from isotope disequilibrium experiments. . Limnol Oceanogr 51::211121 [Google Scholar]
  102. Marubini F. , Atkinson MJ. . 1999.. Effects of lowered pH and elevated nitrate on coral calcification. . Mar. Ecol. Prog. Ser. 188::11721 [Google Scholar]
  103. Marubini F. , Davies PS. . 1996.. Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. . Mar. Biol. 127::31928 [Google Scholar]
  104. Michaelidis B. , Ouzounis C. , Paleras A. , Pörtner HO. . 2005.. Effects of long-term moderate hypercapnia on acid-base balance and growth rate in marine mussels Mytilus galloprovincialis. . Mar. Ecol. Prog. Ser. 293::109118 [Google Scholar]
  105. Miles H. , Widdicombe S. , Spicer JI. , Hall-Spencer J. . 2007.. Effects of anthropogenic seawater acidification on acid-base balance in the sea urchin Psammechinus miliaris. . Mar. Pollut. Bull. 54::8996 [Google Scholar]
  106. Millero FJ. , Pierrot D. , Lee K. , Wanninkhof R. , Feely R. , et al. 2002.. Dissociation constants for carbonic acid determined from field measurements. . Deep Sea Res. I Oceanogr. Res. Papers 49::170523 [Google Scholar]
  107. Milliman JD. . 1993.. Production and accumulation of calcium carbonate in the ocean—budget of a nonsteady state. . Glob. Biogeochem. Cycles 7::92757 [Google Scholar]
  108. Milliman JD. , Droxler AW. . 1996.. Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. . Geol. Rundsch. 85::496504 [Google Scholar]
  109. Moore JK. , Doney SC. , Lindsay K. . 2004.. Upper ocean ecosystem dynamics and iron cycling in a global three-dimensional model. . Glob. Biogeochem. Cycles 18::GB4028 [Google Scholar]
  110. Mucci A. 1983.. The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one atmosphere total pressure. . Am. J. Sci. 283::78099 [Google Scholar]
  111. Murnane RJ. , Sarmiento JL. , Le Quere C. . 1999.. Spatial distribution of air-sea CO2 fluxes and the interhemispheric transport of carbon by the oceans. . Glob. Biogeochem. Cycles 13::287305 [Google Scholar]
  112. Orr JC. , Fabry VJ. , Aumont O. , Bopp L. , Doney SC. , et al. 2005.. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. . Nature 437::68186 [Google Scholar]
  113. Palacios S. , Zimmerman RC. . 2007.. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. . Mar. Ecol. Prog. Ser. 344::113 [Google Scholar]
  114. Palmer MR. , Pearson PN. , Cobb SJ. . 1998.. Reconstructing past ocean pH-depth profiles. . Science 282::146871 [Google Scholar]
  115. Pane L. , Feletti M. , Francomacaro B. , Mariottini GL. . 2004.. Summer coastal zooplankton biomass and copepod community structure near the Italian Terra Nova Base (Terra Nova Bay, Ross Sea, Antarctica). . J. Plankton Res. 26:(12):147988 [Google Scholar]
  116. Passow U. . 2004.. Switching perspectives: Do mineral fluxes determine particulate organic carbon fluxes or vice versa?. Geochem. Geophys. Geosyst. 5::Q04002 [Google Scholar]
  117. Pearson PN. , Palmer MR. . 2002.. The boron isotope approach to paleo-pCO2 estimation. . Geochim. Cosmochim. Acta 66::A586 [Google Scholar]
  118. Pelejero C. , Calvo E. , McCulloch MT. , Marshall JF. , Gagan MK. , et al. 2005.. Preindustrial to modern interdecadal variability in coral reef pH. . Science 309::22047 [Google Scholar]
  119. Precht WF. , Aronson RB. . 2004.. Climate flickers and range shifts of reef corals. . Front. Ecol. Environ. 2::30714 [Google Scholar]
  120. Rees SA. , Opdyke BN. , Wilson PA. , Henstock TJ. . 2007.. Significance of Halimeda bioherms to the global carbonate budget based on a geological sediment budget for the Northern Great Barrier Reef, Australia. . Coral Reefs 26::17788 [Google Scholar]
  121. Reynaud S. , Leclercq N. , Romaine-Lioud S. , Ferrier-Pages C. , Jaubert J. , Gattuso JP. . 2003.. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. . Glob. Chang. Biol. 9::166068 [Google Scholar]
  122. Riebesell U. , Schulz KG. , Bellerby RGJ. , Botros M. , Fritsche P. , et al. 2007.. Enhanced biological carbon consumption in a high CO2 ocean. . Nature 450::54548 [Google Scholar]
  123. Riebesell U. , Zondervan I. , Rost B. , Tortell PD. , Zeebe RE. , Morel FMM. . 2000.. Reduced calcification of marine plankton in response to increased atmospheric CO2. . Nature 407::36467 [Google Scholar]
  124. Ries JB. . 2005.. Aragonite production in calcite seas: effect of seawater Mg/Ca ratio on the calcification and growth of the calcareous alga Penicillus capitatus. . Paleobiology 31::44558 [Google Scholar]
  125. Ries JB. , Cohen AL. , McCorkle DC. . 2008.. Marine biocalcifiers exhibit mixed responses to CO2-induced ocean acidification. 11th Int. Coral Reef Symp., Ft. Lauderdale [Google Scholar]
  126. Ries JB. , Stanley SM. , Hardie LA. . 2006.. Scleractinian corals produce calcite, and grow more slowly, in artificial Cretaceous seawater. . Geology 34::52528 [Google Scholar]
  127. Roberts JM. , Wheeler AJ. , Freiwald A. . 2006.. Reefs of the deep: the biology and geology of cold-water coral ecosystems. . Science 312::54347 [Google Scholar]
  128. Rost B. , Riebesell U. , Burkhardt S. . 2003.. Carbon acquisition of bloom-forming marine phytoplankton. . Limnol. Oceanogr. 48::5567 [Google Scholar]
  129. Rost B. , Riebesell U. . 2004.. Coccolithophores and the biological pump: responses to environmental changes. . In Coccolithophores—From Molecular Processes to Global Impact, ed. Thierstein HR, Young JR , pp. 7699. Springer [Google Scholar]
  130. Royal Society. 2005.. Ocean acidification due to increasing atmospheric carbon dioxide. . London:: The Royal Society, 57 pp. [Google Scholar]
  131. Sabine CL. , Feely RA. . 2007.. The oceanic sink for carbon dioxide. . In Greenhouse Gas Sinks, ed. D Reay, N Hewitt, J Grace, K Smith , pp. 3149. Oxfordshire:: CABI Publishing [Google Scholar]
  132. Sabine CL. , Feely RA. , Gruber N. , Key RM. , Lee K. , et al. 2004.. The oceanic sink for anthropogenic CO2. . Science 305::36771 [Google Scholar]
  133. Sabine CL. , Key RM. , Feely RA. , Greeley D. . 2002.. Inorganic carbon in the Indian Ocean: distribution and dissolution processes. . Glob. Biogeochem. Cycles 16::1067 [Google Scholar]
  134. Sanyal A. , Hemming NG. , Broecker WS. , Lea DW. , Spero HJ. , Hanson GN. . 1996.. Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. . Paleoceanography 11::51317 [Google Scholar]
  135. Sarmiento JL. , Dunne J. , Gnanadesikan A. , Key RM. , Matsumoto K. , Slater R. . 2002.. A new estimate of the CaCO3 to organic carbon export ratio. . Glob. Biogeochem. Cycles 16::1107 [Google Scholar]
  136. Sciandra A. , Harlay J. , Lefevre D. , Lemee R. , Rimmelin P. , et al. 2003.. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation. . Mar. Ecol. Prog. Ser. 261::11122 [Google Scholar]
  137. Shirayama Y. , Thorton H. . 2005.. Effect of increased atmospheric CO2 on shallow water marine benthos. . J. Geophys. Res. 110::C09S08 [Google Scholar]
  138. Short FT. , Neckles HA. . 1999.. The effects of global climate change on seagrasses. . Aquat. Bot. 63::16996 [Google Scholar]
  139. Smith AD. , Roth AA. . 1979.. Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. . Mar. Biol. 52::21725 [Google Scholar]
  140. Smith SV. , Buddemeier RW. . 1992.. Global change and coral reef ecosystems. . Annu. Rev. Ecol. Syst. 23::89118 [Google Scholar]
  141. Solomon S. , Qin D. , Manning M. , Chen Z. , Marquis M. , et al. 2007.. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York:: Cambridge Univ. Press [Google Scholar]
  142. Spero HJ. , Bijma J. , Lea DW. , Bemis BE. . 1997.. Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. . Nature 390::497500 [Google Scholar]
  143. Spicer JI. , Raffo A. , Widdicombe S. . 2007.. Influence of CO2-related seawater acidification on extracellular acid-base balance in the velvet swimming crab, Necora puber. . Mar. Biol. 151::111725 [Google Scholar]
  144. Stanley GD. , Fautin DG. . 2001.. The origins of modern corals. . Science 291::191314 [Google Scholar]
  145. Stanley SM. , Hardie LA. . 1998.. Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry. . Palaeogeogr. Palaeoclim. Palaeoecol. 144::319 [Google Scholar]
  146. Stanley SM. , Hardie LA. . 2001.. Secular variation in Phanerozoic marine biocalcification and the original mineralogy and mode of calcification of receptaculitids: a reply. . Palaeogeogr. Palaeoclim. Palaeoecol. 168::36364 [Google Scholar]
  147. Stanley SM. , Ries JB. , Hardie LA. . 2005.. Seawater chemistry, coccolithophore population growth, and the origin of Cretaceous chalk. . Geology 33::59396 [Google Scholar]
  148. Takahashi T. 1961.. Carbon dioxide in the atmosphere and in Atlantic Ocean water. . J. Geophys. Res. 66::47794 [Google Scholar]
  149. Takahashi T. , Broecker WS. , Bainbridge AE. , Weiss RF. . 1980.. Carbonate chemistry of the Atlantic, Pacific, and Indian Oceans: The results of the GEOSECS expeditions, 1973–1978 National Science Foundation. . Washington D.C.: [Google Scholar]
  150. Takahashi T. , Sutherland SC. , Feely RA. , Wanninkhof R. . 2006.. Decadal change of surface water pCO2 in the North Pacific: a synthesis of 35 years of observations. . J. Geophys. Res. 111::C07S05 [Google Scholar]
  151. Tortell PD. , Morel FMM. . 2002.. Sources of inorganic carbon for phytoplankton in the eastern Subtropical and Equatorial Pacific Ocean. . Limnol. Oceanogr. 47::101222 [Google Scholar]
  152. Tortell PD. , Reinfelder JR. , Morel FMM. . 1997.. Active uptake of bicarbonate by diatoms. . Nature 390:(6657):24344 [Google Scholar]
  153. Turley C. 2005.. The other CO2 problem. . openDemocracy. http://www.acamedia.info/sciences/sciliterature/globalw/reference/carol_turley.html
  154. Tyrrell T. , Holligan PM. , Mobley CD. . 1999.. Optical impacts of oceanic coccolithophore blooms. . J. Geophys. Res. 104:(C2):322341 [Google Scholar]
  155. Weiner S. , Dove PM. . 2003.. An overview of biomineralization processes and the problem of the vital effect. . In Biomineralization, Reviews in Mineralogy and Geochemistry . Volume 54. eds. PM Dove, JJ De Yoreo, S Weiner , pp. 129. Mineralog. Soc. Am.:, Geochem. Soc. [Google Scholar]
  156. Wood R. . 2001.. Reef Evolution. Oxford:: Oxford Univ. Press. 414 pp. [Google Scholar]
  157. Wood HL. , Spicer JI. , Widdicombe S. . 2008.. Ocean acidification may increase calcification rates, but at a cost. . Proc. R. Soc. London Ser. B 275::176773 [Google Scholar]
  158. Yates KK. , Halley RB. . 2006.. CO32- concentration and pCO2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii. . Biogeosciences 3::35769 [Google Scholar]
  159. Young JR. . 1994.. Functions of coccoliths. . In Coccolithophores, ed. A Winter, WG Seisser , pp. 6382. New York:: Cambridge Univ. Press [Google Scholar]
  160. Young JR. , Geisen M. , Probert I. . 2005.. A review of selected aspects of coccolithophore biology with implications for paleobiodiversity estimation. . Micropaleontology 51::26788 [Google Scholar]
  161. Zachos JC. , Dickens GR. , Zeebe RE. . 2008.. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. . Nature 451::27983 [Google Scholar]
  162. Zachos JC. , Lohmann KC. , Walker JCG. , Wise SW. . 1993.. Abrupt climate change and transient climates during the Paleogene—a marine perspective. . J. Geol. 101::191213 [Google Scholar]
  163. Zachos JC. , Rohl U. , Schellenberg SA. , Sluijs A. , Hodell DA. , et al. 2005.. Rapid acidification of the ocean during the Paleocene-Eocene thermal maximum. . Science 308::161115 [Google Scholar]
  164. Zachos JC. , Wara MW. , Bohaty S. , Delaney ML. , Petrizzo MR. , et al. 2003.. A transient rise in tropical sea surface temperature during the Paleocene-Eocene thermal maximum. . Science 302::155154 [Google Scholar]
  165. Zeebe RE. , Wolf-Gladrow D. . 2001.. CO2 in Seawater: Equilibrium, Kinetics, Isotopes. Amsterdam:: Elsevier Science, B.V.346 pp. [Google Scholar]
  166. Zimmerman RC. , Kohrs DG. , Steller DL. , Alberte RS. . 1997.. Impacts of CO2-enrichment on productivity and light requirements of eelgrass. . Plant Physiol. 115::599607 [Google Scholar]
  167. Zondervan I. 2007.. The effects of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. . Deep Sea Res. II 54::52137 [Google Scholar]
  168. Zondervan I. , Rost B. , Riebesell U. . 2002.. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. . J. Exp. Mar. Biol. Ecol. 272::5570 [Google Scholar]
  169. Zondervan I. , Zeebe RE. , Rost B. , Riebesell U. . 2001.. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2. . Glob. Biogeochem. Cycles 15::50716 [Google Scholar]
/content/journals/10.1146/annurev.marine.010908.163834
Loading
/content/journals/10.1146/annurev.marine.010908.163834
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error