1932

Abstract

Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.marine.010908.163930
2009-01-15
2025-01-25
Loading full text...

Full text loading...

/deliver/fulltext/marine/1/1/annurev.marine.010908.163930.html?itemId=/content/journals/10.1146/annurev.marine.010908.163930&mimeType=html&fmt=ahah

Literature Cited

  1. Adam P. . 2002.. Saltmarshes in a time of change. . Environ. Conserv. 29::3961 [Google Scholar]
  2. Adamowicz SC. , Roman CT. . 2002.. Initial Ecosystem Response of Salt Marshes to Ditch Plugging and Pool Creation: Experiments at Rachel Carson National Wildlife Refuge (Maine). Newington, NH:: U.S. Fish and Wildlife Service, Region 5 [Google Scholar]
  3. Adamowicz SC. , Roman CT. . 2005.. Salt marsh pools: a quantitative analysis of geomorphic and geographic features. . Wetlands 25::27988 [Google Scholar]
  4. Ainsworth EA. , Long SP. . 2005.. What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. . New Phytol. 165::35172 [Google Scholar]
  5. Alberti J. , Escapa M. , Daleo P. , Iribarne O. , Silliman BR. , Bertness MD. . 2007.. Local and geographic variation in grazing intensity by herbivorous crabs in SW Atlantic salt marshes. . Mar. Ecol. Prog. Ser. 349::23543 [Google Scholar]
  6. Alberti J. , Escapa M. , Iribarne O. , Silliman BR. , Bertness MD. . 2008.. Crab herbivory regulates plant facilitative and competitive processes in Argentinean marshes. . Ecology 89::15564 [Google Scholar]
  7. Álvarez-Rogel J. , Ramos Aparicio MJ. , Delgado Iniesta MJ. , Arnaldos Lozano R. . 2004.. Metals in soils and above-ground biomass of plants from a salt marsh polluted by mine wastes in the coast of the Mar Menor Lagoon, SE Spain. . Fresenius Environ. Bull. 13::274 [Google Scholar]
  8. An SQ. , Gu BH. , Zhou CF. , Wang ZS. , Deng ZF. , et al. 2007.. Spartina invasion in China: Implications for invasive species management and future research. . Weed Res. 47::18391 [Google Scholar]
  9. Atwater BF. , Conard SG. , Dowden JN. , Hedel CW. , MacDonald RL. , Savage W. . 1979.. History, landforms, and vegetation of the estuary's tidal marshes. . In San Francisco Bay: The Urbanized Estuary, Investigations into the Natural History of San Francisco Bay and Delta with Reference to the Influence of Man, ed. TJ Conomos, AE Leviton, M Berson , pp. 34785. San Francisco, CA:: Pacific Division of the American Association for the Advancement of Science [Google Scholar]
  10. Balletto JH. , Heimbuch MV. , Mahoney HJ. . 2005.. Delaware Bay salt marsh restoration: Mitigation for a power plant cooling water system in New Jersey, USA. . Ecol. Eng. 25::20413 [Google Scholar]
  11. Barras J. , Beville S. , Britsch D. , Hartley S. , Hawes S. , et al. 2004.. Historical and projected coastal Louisiana land changes: 1978–2050. . USGS Open-File Report 03-334, 39 p. [Google Scholar]
  12. Bartlett KB. , Bartlett DS. , Harriss RC. , Sebacher DI. . 1987.. Methane emissions along a salt marsh salinity gradient. . Biogeochemistry 4::183202 [Google Scholar]
  13. Bertness MD. , Crain CM. , Holdredge C. , Sala N. . 2008.. Eutrophication and consumer control of New England salt marsh primary productivity. . Conserv. Biol. 22::13139 [Google Scholar]
  14. Bertness MD. , Ellison AM. . 1987.. Determinants of pattern in a New England salt marsh plant community. . Ecol. Monogr. 57::12947 [Google Scholar]
  15. Bertness MD. , Ewanchuk PJ. , Silliman BR. . 2002.. Anthropogenic modification of New England salt marsh landscapes. . PNAS 99::139598 [Google Scholar]
  16. Bertness MD. , Silliman BR. . 2008.. Consumer control of salt marshes driven by human disturbance. . Conserv. Biol. 22::61823 [Google Scholar]
  17. Bockstael NE. , Myrick Freeman A III. , Kopp RJ. , Portney PR. , Smith VK. . 2000.. On measuring economic values for nature. . Environ. Sci. Technol. 34::138489 [Google Scholar]
  18. Boesch DF. , Turner RE. . 1984.. Dependence of fishery species on salt marshes: The role of food and refuge. . Estuaries 7::46068 [Google Scholar]
  19. Bortolus A. , Iribarne O. . 1999.. Effects of the SW Atlantic burrowing crab Chasmagnathus granulata on a Spartina salt marsh. . Mar. Ecol. Prog. Ser. 178::7988 [Google Scholar]
  20. Bos D. , Loonen MJJE. , Stock M. , Hofeditz F. , Van Der Graaf AJ. , Bakker JP. . 2005.. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. . J. Nat. Conserv. 13::115 [Google Scholar]
  21. Bourn WS. , Cottam C. . 1950.. Some Biological Effects of Ditching Tidewater Marshes. . U.S. Dep. Int. Fish Wildl. Serv. Res. Rep.19 [Google Scholar]
  22. Brewer JS. , Levine JM. , Bertness MD. . 1998.. Interactive effects of elevation and burial with wrack on plant community structure in some Rhode Island salt marshes. . J. Ecol. 86::12536 [Google Scholar]
  23. Bridbury AR. . 1955.. England and the Salt Trade in the Later Middle Ages. New York:: Oxford Univ. Press, 198 pp. [Google Scholar]
  24. Bromberg KD. , Bertness MD. . 2005.. Reconstructing New England salt marsh losses using historical maps. . Estuaries 28::82332 [Google Scholar]
  25. Brusati ED. , Grosholz ED. . 2006.. Native and introduced ecosystem engineers produce contrasting effects on estuarine infaunal communities. . Biol. Invasions 8::68395 [Google Scholar]
  26. Buchsbaum R. . 2001.. Coastal marsh management. . In Applied Wetlands Science and Technology, ed. D Kent , pp. 32350. Boca Raton:: Lewis Publisher [Google Scholar]
  27. Butzer KW. . 2002.. French wetland agriculture in Atlantic Canada and its European roots: Different avenues to historical diffusion. . Ann. Assoc. Am. Geogr. 92::45170 [Google Scholar]
  28. Cahoon DR. . 2006.. A review of major storm impacts on coastal wetland elevations. . Estuaries Coasts 29::88998 [Google Scholar]
  29. Carlton JT. . 1979.. History, Biogeography, and Ecology of the Introduced Marine and Estuarine Invertebrates of the Pacific Coast of North America. Davis:: Univ. California [Google Scholar]
  30. Chambers RM. , Meyerson LA. , Saltonstall K. . 1999.. Expansion of Phragmites australis into tidal wetlands of North America. . Aquat. Bot. 64::26173 [Google Scholar]
  31. Chapman VJ. . 1977.. Introduction. . In Wet Coastal Ecosystems, ed. VJ Chapman , pp. 130. New York:: Elsevier [Google Scholar]
  32. Chmura GL. , Anisfeld SC. , Cahoon DR. , Lynch JC. . 2003.. Global carbon sequestration in tidal, saline wetland soils. . Glob. Biogeochem. Cycles 17::111133 [Google Scholar]
  33. Clarke JA. , Harrington BA. , Hruby T. , Wasserman FE. . 1984.. The effect of ditching for mosquito control on salt marsh use by birds in Rowley, Massachusetts. . J. Field Ornithol. 55::16080 [Google Scholar]
  34. Conesa HM. , Jiménez-Cárceles FJ. . 2007.. The Mar Menor lagoon (SE Spain): A singular natural ecosystem threatened by human activities. . Mar. Poll. Bull. 54::83949 [Google Scholar]
  35. Conner WH. , Day JW Jr. , Baumann RH. , Randall JM. . 1989.. Influence of hurricanes on coastal ecosystems along the northern Gulf of Mexico. . Wetlands Ecol. Manag. 1::4556 [Google Scholar]
  36. Costanza R. , D'Arge R. , DeGroot R. , Farber S. , Grasso M. , et al. 1997.. The value of the world's ecosystem services and natural capital. . Nature 387::25380 [Google Scholar]
  37. Costanza R. , Wilson M. , Troy A. , Voinov A. , Liu S. . 2007.. Valuing New Jersey's Natural Capital: An Assessment of the Economic Value of the State's Natural Resources. New Jersey:: Department of Environmental Protection [Google Scholar]
  38. Crain CM. , Bromberg KD. , Dionne M. . 2008.. Hydrologic alteration of New England tidal marshes by mosquito ditching and tidal restriction. . In Anthropogenic Modification of North American Salt Marshes, ed. BR Silliman, MD Bertness, D Strong . In press [Google Scholar]
  39. Crain CM. , Silliman BR. , Bertness SL. , Bertness MD. . 2004.. Physical and biotic drivers of plant distribution across estuarine salinity gradients. . Ecology 85::253949 [Google Scholar]
  40. Crooks JA. . 2001.. Assessing invader roles within changing ecosystems: Historical and experimental perspectives on an exotic mussel in an urbanized lagoon. . Biol. Invasions 3::2336 [Google Scholar]
  41. Crooks JA. . 2002.. Characterizing ecosystem-level consequences of biological invasions: The role of ecosystem engineers. . Oikos 97::15366 [Google Scholar]
  42. Crooks JA. , Khim HS. . 1999.. Architectural vs biological effects of a habitat-altering, exotic mussel, Musculista senhousia. . J. Exp. Mar. Biol. Ecol. 240::5375 [Google Scholar]
  43. Czakó M. , Feng X. , He Y. , Liang D. , Márton L. . 2006.. Transgenic Spartina alterniflora for phytoremediation. . Environ. Geochem. Health 28::10310 [Google Scholar]
  44. Daehler CC. , Strong DR. . 1996.. Status, prediction and prevention of introduced cordgrass Spartina spp. invasions in Pacific estuaries, USA. . Biol. Conserv. 78::5158 [Google Scholar]
  45. Daigh FC. , MacCreary D. , Stearns LA. . 1938.. Factors affecting the vegetative cover of Delaware marshes. . Proc. N. J. Mosq. Exterm. Comm. 25::20916 [Google Scholar]
  46. Day JW Jr. , Scarton F. , Rismondo A. , Are D. . 1998.. Rapid deterioration of a salt marsh in Venice Lagoon, Italy. . J. Coastal Res. 14::58390 [Google Scholar]
  47. Deegan LA. , Bowen JL. , Drake D. , Fleeger JW. , Friedrichs CT. , et al. 2007.. Susceptibility of salt marshes to nutrient enrichment and predator removal. . Ecol. Appl. 17::S4263 [Google Scholar]
  48. Dijkema KS. . 1987.. Changes in salt-marsh area in the Netherlands Wadden Sea after 1600. . In Vegetation Between Land and Sea, ed. AHL Huiskes, CWPM Blom, J Rozema . Boston, MA:: Dr. W. Junk Publishers [Google Scholar]
  49. Dijkema KS. . 1990.. Salt and brackish marshes around the Baltic Sea and adjacent parts of the North Sea: Their vegetation and management. . Biol. Conserv. 51::191209 [Google Scholar]
  50. Donnelly JP. , Bertness MD. . 2001.. Rapid shoreward encroachment of salt marsh cordgrass in response to accelerated sea-level rise. . Proc. Natl. Acad. Sci. 98::1421823 [Google Scholar]
  51. Doody JP. . 1992.. The conservation of British saltmarshes. . In Saltmarshes: Morphodynamics, Conservation and Engineering Significance, ed. LJR Allen, K Pye , pp. 184. Cambridge, UK:: Cambridge Univ. Press [Google Scholar]
  52. Erickson JE. , Megonigal JP. , Peresta G. , Drake BG. . 2007.. Salinity and sea level mediate elevated CO2 effects on C3-C4 plant interactions and tissue nitrogen in a Chesapeake Bay tidal wetland. . Glob. Change Biol. 13::20215 [Google Scholar]
  53. Ewanchuk PJ. , Bertness MD. . 2004.. The role of waterlogging in maintaining forb pannes in northern New England salt marshes. . Ecology 85::156874 [Google Scholar]
  54. Ford MA. , Grace JB. . 1998.. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. . J. Ecol. 86::97482 [Google Scholar]
  55. Ganong WF. 1903.. The vegetation of the Bay of Fundy salt and diked marshes: an ecological study. . Bot. Gaz. 36::16186 [Google Scholar]
  56. Giblin AE. , Bourg A. , Valiela I. , Teal JM. . 1980.. Uptake and losses of heavy metals in sewage sludge by a New England salt marsh. . Am. J. Bot. 67::105968 [Google Scholar]
  57. Gough L. , Grace JB. . 1998.. Effects of flooding, salinity and herbivory on coastal plant communities, Louisiana, United States. . Oecologia 117::52735 [Google Scholar]
  58. Hatvany MG. . 2003.. Marshlands: Four Centuries of Environmental Change on the Shores of the St. Lawrence. Quebec, Canada:: Les Presses de l'Universite Laval. 184 pp. [Google Scholar]
  59. Hazelden J. , Boorman LA. . 2001.. Soils and ‘managed retreat’ in South East England. . Soil Use Manag. 17::15054 [Google Scholar]
  60. Hey DL. . 2002.. Nitrogen farming; Harvesting a different crop. . Restoration Ecol. 10::110 [Google Scholar]
  61. Hoeksema RJ. . 2007.. Three stages in the history of land reclamation in The Netherlands. . Irrig. Drain. 56::S11326 [Google Scholar]
  62. Hood WG. . 2004.. Indirect environmental effects of dikes on estuarine tidal channels: Thinking outside of the dike for habitat restoration and monitoring. . Estuaries 27::27382 [Google Scholar]
  63. Hulsman K. , Dale PER. , Kay BH. . 1989.. The runnelling method of habitat modification: An environment-focused tool for salt marsh mosquito management. . J. Am. Mosq. Control Assoc. 5::22634 [Google Scholar]
  64. IPCC IPoCC, ed. 2007.. Climate Change 2007: The Physical Science Basis. New York:: Cambridge Univ. Press [Google Scholar]
  65. Isacch JP. , Holz S. , Ricci L. , Martinez MM. . 2004.. Post-fire vegetation change and bird use of a salt marsh in coastal Argentina. . Wetlands 24::23543 [Google Scholar]
  66. Jefferies RL. . 1997.. Long-term damage to subarctic coastal ecosystems by geese: ecological indicators and measures of ecosystem dysfunction. . In Disturbance and Recovery in Arctic Lands: An Ecological Perspective, ed. RM Crawford . Boston:: Springer [Google Scholar]
  67. Jefferies RL. , Perkins N. . 1977.. The effects on the vegetation of the additions of inorganic nutrients to salt marsh soils at Stiffkey, Norfolk. . J. Ecol. 65::86782 [Google Scholar]
  68. Jones CG. , Lawton JH. , Shachak M. . 1997.. Positive and negative effects of organisms as physical ecosystem engineers. . Ecology 78::194657 [Google Scholar]
  69. Kearney MS. , Grace RE. , Stevenson JC. . 1988.. Marsh loss in Nanticoke Estuary, Chesapeake Bay. . Geogr. Rev. 78::20520 [Google Scholar]
  70. Kiehl K. , Esselink P. , Bakker JP. . 1997.. Nutrient limitation and plant species composition in temperate salt marshes. . Oecologia 111::32530 [Google Scholar]
  71. King SE. , Lester JN. . 1995.. The value of salt marsh as a sea defence. . Mar. Poll. Bull. 30::18089 [Google Scholar]
  72. Kiviat E. , Hamilton E. . 2001.. Phragmites use by Native North Americans. . Aquat. Bot. 69::34157 [Google Scholar]
  73. Knottnerus OS. . 2005.. History of human settlement, cultural change and interference with the marine environment. . Helgoland Mar. Res. 59::28 [Google Scholar]
  74. Kriwoken LK. , Hedge P. . 2000.. Exotic species and estuaries: managing Spartina anglica in Tasmania, Australia. . Ocean Coastal Manag. 43::57384 [Google Scholar]
  75. Laszlo P. . 2001.. Salt: Grain of Life. New York:: Columbia University Press. 193 pp. [Google Scholar]
  76. Leendertse PC. , Scholten MCT. , Van Der Wal JT. . 1996.. Fate and effects of nutrients and heavy metals in experimental salt marsh ecosystems. . Environ. Poll. 94::1929 [Google Scholar]
  77. LeJemtel Hostle F. . 2004.. Poitou-Charentes: GastronomyA Cuisine Based on the Gifts of Surf and Turf. http://www.France.com/docs/111.html [Google Scholar]
  78. Lenssen GM. , Lamers J. , Stroetenga M. , Rozema J. . 1993.. Interactive effects of atmospheric CO2 enrichment, salinity and flooding on growth of C3 (Elymus athericus) and C4 (Spartina anglica) salt marsh species. . Vegetatio 104/105::37988 [Google Scholar]
  79. Lesser CR. , Murphy FJ. , Lake RW. . 1976.. Some effects of grid system mosquito control ditching on salt marsh biota in Delaware. . Mosq. News 36::6977 [Google Scholar]
  80. Levin LA. , Boesch DF. , Covich A. , Dahm C. , Erséus C. , et al. 2001.. The function of marine critical transition zones and the importance of sediment biodiversity. . Ecosystems 4::43051 [Google Scholar]
  81. Levin LA. , Neira C. , Grosholz ED. . 2006.. Invasive cordgrass modifies wetland trophic function. . Ecology 87::41932 [Google Scholar]
  82. Levin PS. , Ellis J. , Petrik R. , Hay ME. . 2002.. Indirect effects of feral horses on estuarine communities. . Conserv. Biol. 16::136471 [Google Scholar]
  83. Levine JM. , Brewer JS. , Bertness MD. . 1998.. Nutrients, competition and plant zonation in a New England salt marsh. . J. Ecol. 86::28592 [Google Scholar]
  84. Lotze HK. . 2005.. Radical changes in the Wadden Sea fauna and flora over the last 2,000 years. . Helgol. Mar. Res. 59::7183 [Google Scholar]
  85. Lotze HK. , Lenihan HS. , Bourque BJ. , Bradbury RH. , Cooke RG. , et al. 2006.. Depletion, degradation, and recovery potential of estuaries and coastal seas. . Science 312::18069 [Google Scholar]
  86. Magenheimer JF. , Moore TR. , Chmura GL. , Daoust RJ. . 1996.. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick. . Estuaries 19::13945 [Google Scholar]
  87. Meier D. . 2004.. Man and environment in the marsh area of Schleswig-Holstein from Roman until late Medieval times. . Quat. Int. 112::5569 [Google Scholar]
  88. Mendelssohn IA. , Morris JT. . 1999.. Ecophysiological controls on the productivity of Spartina alterniflora. . In Concepts and Controversies in Tidal Marsh Ecology, ed. M Weinstein, D Kreeger , pp. 5980. Boston:: Kluwer Academic Publishers [Google Scholar]
  89. Michener WK. , Blood ER. , Bildstein KL. , Brinson MM. , Gardner LR. . 1997.. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. . Ecol. Appl. 7::770801 [Google Scholar]
  90. Minchinton TE. , Bertness MD. . 2003.. Disturbance-mediated competition and the spread of Phragmites australis in a coastal marsh. . Ecol. Appl. 13::140016 [Google Scholar]
  91. Minchinton TE. , Simpson JC. , Bertness MD. . 2006.. Mechanisms of exclusion of native coastal marsh plants by an invasive grass. . J. Ecol. 94::34254 [Google Scholar]
  92. Mitsch WJ. , Gosselink JG. . 2000.. Wetlands. . New York:: John Wiley & Sons, , 3rd. edition [Google Scholar]
  93. Moeller I. , Spencer T. , French JR. . 1996.. Wind wave attenuation over saltmarsh surfaces: Preliminary results from Norfolk, England. . J. Coast. Res. 12::100916 [Google Scholar]
  94. Morris JT. , Sundareshwar PV. , Nietch CT. , Kjerfve B. , Cahoon DR. . 2002.. Responses of coastal wetlands to rising sea level. . Ecology 83::286977 [Google Scholar]
  95. Moy LD. , Levin LA. . 1991.. Are Spartina marshes a replaceable resource? A functional approach to evaluation of marsh creation efforts. . Estuaries 14::116 [Google Scholar]
  96. Neckles HA. , Dionne M. , Burdick DM. , Roman CT. , Buchsbaum R. , Hutchins E. . 2002.. A monitoring protocol to assess tidal restoration of salt marshes on local and regional scales. . Restor. Ecol. 10::55663 [Google Scholar]
  97. Neira C. , Grosholz ED. , Levin LA. , Blake R. . 2006.. Mechanisms generating modification of benthos following tidal flat invasion by a Spartina hybrid. . Ecol. App. 16::13911404 [Google Scholar]
  98. Nesbit DM. 1885.. Tide marshes of the United States. . Washington, DC:: U.S. Dep. Agric. Sp. Rep. No. 7 [Google Scholar]
  99. Nieva FJJ. , Castellanos EM. , Castillo JM. , Figueroa ME. . 2005.. Clonal growth and tiller demography of the invader cordgrass Spartina densiflora Brongn. at two contrasting habitats in SW European salt marsh. . Wetlands 25::12229 [Google Scholar]
  100. Nixon SW. . 1980.. Between coastal marshes and coastal waters—a review of twenty years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. . In Estuarine and Wetland Processes, ed. P Hamilton, K MacDonald , pp. 437523. New York:: Plenum Publ. Corp. [Google Scholar]
  101. Nixon SW. . 1982.. The ecology of New England high salt marshes: a community profile. Washington, DC:: U.S. Dep. Int. Fish Wildl. Serv. FWS/OBS-81/55. 70 pp. [Google Scholar]
  102. Odum EP. . 1971.. Fundamentals of Ecology. Philadelphia:: Saunders [Google Scholar]
  103. Odum WE. . 1988.. Comparative ecology of tidal freshwater and salt marshes. . Annu. Rev. Ecol. Syst. 19::14776 [Google Scholar]
  104. Orson RA. . 1999.. A paleoecological assessment of Phragmites australis in New England tidal marshes: changes in plant community structure during the last few millennia. . Biol. Invasions 1::14958 [Google Scholar]
  105. Pethick J. . 2002.. Estuarine and tidal wetland restoration in the United Kingdom: Policy versus practice. . Restor. Ecol. 10::43137 [Google Scholar]
  106. Pinder DA. , Witherick ME. . 1990.. Port industrialization, urbanization and wetland loss. . In Wetlands: A Threatened Landscape, ed. M Williams , pp. 23566. Oxford, UK:: Basil Blackwell [Google Scholar]
  107. Portnoy JW. . 1999.. Salt marsh diking and restoration: Biogeochemical implication of altered wetland hydrology. . Environ. Manag. 24::11120 [Google Scholar]
  108. Portnoy JW. , Giblin AE. . 1997.. Effects of historic tidal restrictions on salt marsh sediment chemistry. . Biogeochemistry 36::275303 [Google Scholar]
  109. Posey MH. , Alphin TD. , Powell CM. . 1997.. Plant and infaunal communities associated with a created marsh. . Estuaries 20::4247 [Google Scholar]
  110. Powers WL. , Teeter TAH. . 1922.. Land Drainage. New York:: John Wiley & Sons, Inc. [Google Scholar]
  111. Provost MW. . 1977.. Source reduction in salt-marsh mosquito control: past and future. . Mosq. News 37::68998 [Google Scholar]
  112. Ranwell DS. . 1967.. World resources of Spartina townsendii (sensu lato) and economic use of Spartina marshland. . J. Appl. Ecol. 4::23956 [Google Scholar]
  113. Raposa KB. , Roman CT. , Heltshe JF. . 2003.. Monitoring nekton as a bioindicator in shallow estuarine habitats. . Environ. Monit. Assess. 81::23955 [Google Scholar]
  114. Raybould AF. , Gray AJ. , Lawrence MJ. , Marshall DF. . 1991.. The evolution of Spartina anglica C.E. Hubbard (Gramineae): Genetic variation and status of the parental species in Britain. . J. Linn. Soc. 44::36980 [Google Scholar]
  115. Reed A. , Moisan G. . 1971.. The Spartina tidal marshes of the St. Lawrence Estuary and their importance to aquatic birds. . Nat. Can. 98::90521 [Google Scholar]
  116. Reise K. . 2005.. Coast of change: habitat loss and transformations in the Wadden Sea. . Helgol. Mar. Res. 59::912 [Google Scholar]
  117. Resh VH. . 2001.. Mosquito control and habitat modification: case history studies of San Francisco Bay wetlands. . In Bioassessment and Management of North American Freshwater Wetlands, ed. RB Rader, DP Batzer, SA Wissinger . New York:: John Wiley & Sons, Inc. [Google Scholar]
  118. Rogers K. , Saintilan N. , Heijnis H. . 2005.. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence and sea level rise. . Estuaries 28::55159 [Google Scholar]
  119. Roman CT. , Niering WA. , Warren RS. . 1984.. Salt marsh vegetation change in response to tidal restriction. . Environ. Manag. 8::14150 [Google Scholar]
  120. Roman CT. , Peck JA. , Allen JR. , King JW. , Appleby PG. . 1997.. Accretion of a New England (U.S.A.) salt marsh in response to inlet migration, storms, and sea-level rise. . Estuar. Coast. Shelf Sci. 45::71727 [Google Scholar]
  121. Roman CT. , Raposa KB. , Adamowicz SC. , James-Pirri J. , Catena JG. . 2002.. Quantifying vegetation and nekton response to tidal restoration of a New England salt marsh. . Restor. Ecol. 10::45060 [Google Scholar]
  122. Rozema J. , Dorel F. , Janissen R. , Lenssen G. , Broekman R. , et al. 1991.. Effect of elevated atmospheric CO2 on growth, photosynthesis and water relations of salt marsh grass species. . Aquat. Bot. 39::4555 [Google Scholar]
  123. Rozema J. , Leendertse P. , Bakker JP. , van Wijnen H. . 2000.. Nitrogen and vegetation dynamics in European salt marshes. . In Concepts and Controversies in Tidal Marsh Ecology, ed. M Weinstein , pp. 46991. Hingham, MA:: Kluwer Academic Publishers [Google Scholar]
  124. Russell HS. . 1976.. A Long, Deep Furrow. Hanover, NH:: Univ. Press of New England. 672 pp. [Google Scholar]
  125. Saltonstall K. . 2002.. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. . Proc. Natl. Acad. Sci. 99::244549 [Google Scholar]
  126. Sanlaville P. . 2002.. The deltaic complex of the lower Mesopotamian plain and its evolution through millennia. . In The Iraqi Marshlands, ed. E Nicholson, P Clark , pp. 13350. London, UK:: AMAR Int. Charit. Found. Polit. Publi. [Google Scholar]
  127. Seasholes NS. . 2003.. Gaining Ground. Boston, MA:: MIT Press. 533 pp. [Google Scholar]
  128. Sebold KR. . 1992.. From Marsh to Farm: The Landscape Transformation of Coastal New Jersey. Washington, DC:: Natl. Park Serv., U.S. Dep. Int. [Google Scholar]
  129. Sebold KR. . 1998.. The Low Green Prairies of the Sea: Economic Usage and Cultural Construction of the Gulf of Maine Salt Marshes. Orono, ME:: Univ. Maine [Google Scholar]
  130. Shisler JK. , Jobbins DM. . 1977.. Salt marsh productivity as affected by the selective ditching technique, open marsh water management. . Mosq. News 37::63136 [Google Scholar]
  131. Shoreline Study. 2005.. South San Francisco Bay Shoreline Study: Project Management Plan. Funded U.S. Army Corps Eng./Santa Clara Valley Water District/Calif. State Coastal Conservancy San Francisco [Google Scholar]
  132. Shutes RBE. . 2001.. Artificial wetlands and water quality improvement. . Environ. Int. 26::44147 [Google Scholar]
  133. Silliman BR. , Bertness MD. . 2002.. A trophic cascade regulates salt marsh primary production. . Proc. Natl. Acad. Sci. 99::105005 [Google Scholar]
  134. Silliman BR. , Bertness MD. . 2004.. Shoreline development drives invasion of Phragmites australis and the loss of plant diversity on New England salt marshes. . Conserv. Biol. 18::142434 [Google Scholar]
  135. Silliman BR. , Grosholz E. , Bertness MD. . 2008.. A synthesis of anthropogenic impacts on North American salt marshes. . In Anthropogenic Modification of North American Salt Marshes, ed. BR Silliman, MD Bertness, D Strong . In press [Google Scholar]
  136. Silliman BR. , Newell SY. . 2003.. Fungal-farming in a snail. . Proc. Natl. Acad. Sci. 100::1564348 [Google Scholar]
  137. Silliman BR. , van de Koppel J. , Bertness MD. , Stanton LE. , Mendelssohn IA. . 2005.. Drought, snails, and large-scale die-off of southern U.S. salt marshes. . Science 310::18036 [Google Scholar]
  138. Silliman BR. , Zieman JC. . 2001.. Top-down control of Spartina alterniflora production by periwinkle grazing in a Virginia salt marsh. . Ecology 82::283045 [Google Scholar]
  139. Smalley AE. . 1960.. Energy flow of a salt marsh grasshopper population. . Ecology 41::67277 [Google Scholar]
  140. Smith JB. . 1904.. Report NJ Agric. Exp. Stn. Mosquitoes Occurring Within the State, Their Habits, Life History, etc. Trenton, NJ:: MacCrellish & Quigley [Google Scholar]
  141. Soukup MA. , Portnoy JW. . 1986.. Impacts from mosquito control-induced sulphur mobilization in a Cape Cod estuary. . Environ. Conserv. 13::4750 [Google Scholar]
  142. Stearns LA. , MacCreary D. . 1936.. Mosquito work in Delaware during 1933. . Proc. N. J. Mosq. Exterm. Comm. 22::12836 [Google Scholar]
  143. Sun S. , Cai Y. , Tian X. . 2003.. Salt marsh vegetation change after a short-term tidal restriction in the Changjiang Estuary. . Wetlands 23::25766 [Google Scholar]
  144. Suntornvongsagul K. , Burke DJ. , Hamerlynck EP. , Hahn D. . 2007.. Fate and effects of heavy metals in salt marsh sediments. . Environ. Poll. 149::7991 [Google Scholar]
  145. Talley TS. , Crooks JA. , Levin LA. . 2001.. Habitat utilization and alteration by the invasive burrowing isopod Sphaeroma quoyanum, in California salt marshes. . Mar. Biol. 138::56173 [Google Scholar]
  146. Teal JM. . 1962.. Energy flow in the salt marsh ecosystem of Georgia. . Ecology 43::61424 [Google Scholar]
  147. Tiner RW. , Swords JQ. , McClain BJ. . 2002.. Wetland Status and Trends for the Hackensack Meadowlands. An Assessment Report from the U.S. Fish and Wildlife Service's National Wetlands Inventory Program. Hadley, MA:: U.S. Fish Wildl. Serv., Northeast Reg. [Google Scholar]
  148. Turner MG. . 1987.. Effects of grazing by feral horses, clipping, trampling and burning on a Georgia salt marsh. . Estuaries 10::5460 [Google Scholar]
  149. Turner RE. . 1976.. Geographic variations in salt marsh macrophyte production: A review. . Contrib. Mar. Sci. 20::4768 [Google Scholar]
  150. Turner RE. . 1997.. Wetland loss in the northern Gulf of Mexico: multiple working hypotheses. . Estuaries 20::113 [Google Scholar]
  151. Turner RE. , Baustian JJ. , Swenson EM. , Spicer JS. . 2006.. Wetland sedimentation from Hurricanes Katrina and Rita. . Science 314::44952 [Google Scholar]
  152. Tyler AC. , Lambrinos JG. , Grosholz ED. . 2007.. Nitrogen inputs promote the spread of an invasive marsh grass. . Ecol. Appl. 17::188698 [Google Scholar]
  153. UN Environ. Prog. (EP) 2006.. Marine and Coastal Ecosystems and Human Well-being: A Synthesis Report Based on the Findings of the Millennium Ecosystem Assessment: Nairobi, Kenya: UNEP . 76 pp. [Google Scholar]
  154. Valiela I. , Peckol P. , D'Avanzo C. , Kremer J. , Hersh D. , et al. 1998.. Ecological effects of major storms on coastal watersheds and coastal waters: Hurricane Bob on Cape Cod. . J. Coast. Res. 14::21838 [Google Scholar]
  155. Valiela I. , Teal JM. . 1979.. The nitrogen budget of a salt marsh ecosystem. . Nature 280::65256 [Google Scholar]
  156. Valiela I. , Teal JM. , Persson NY. . 1976.. Production and dynamics of experimentally enriched salt marsh vegetation: Belowground biomass. . Limnol. Oceanogr. 21::24552 [Google Scholar]
  157. Valiela I. , Wright JE. , Volkmann SB. , Teal JM. . 1977.. Growth, production and energy transformations in the salt marsh killifish Fundulus heteroclitus (L.). . Mar. Biol. 40::13544 [Google Scholar]
  158. Van Dyke E. , Wasson K. . 2005.. Historical ecology of a central California estuary: 150 years of habitat change. . Estuaries 28::17389 [Google Scholar]
  159. Vitousek PM. , Mooney HA. , Lubchenco J. , Melillo JM. . 1997.. Human domination of Earth's ecosystems. . Science 277::49499 [Google Scholar]
  160. Ward LG. , Kearney MS. , Stevenson JC. . 1998.. Variations in sedimentary environments and accretionary patterns in estuarine marshes undergoing rapid submergence, Chesapeake Bay. . Mar. Geol.151 [Google Scholar]
  161. Warren RS. , Niering WA. . 1993.. Vegetation change on a northeast tidal marsh: interaction of sea-level rise and marsh accretion. . Ecology 74::96103 [Google Scholar]
  162. Weis JS. , Weis P. . 2003.. Is the invasion of the common reed, Phragmites australis, into tidal marshes of the eastern US an ecological disaster?. Mar. Poll. Bull. 46::81620 [Google Scholar]
  163. Weis JS. , Weis P. . 2004.. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. . Environ. Int. 30::685700 [Google Scholar]
  164. Whitcraft CR. , Talley DM. , Crooks JA. , Boland J. , Gaskin J. . 2007.. Invasion of tamarisk (Tamarix spp.) in a southern California salt marsh. . Biol. Invasions 9::87579 [Google Scholar]
  165. Williams M. . 2006.. Deforesting the Earth. Chicago:: Univ. Chicago Press. 520 pp. [Google Scholar]
  166. Williams TP. , Bubb JM. , Lester JN. . 1994.. Metal accumulation within salt marsh environments: A review. . Mar. Poll. Bull. 28::27790 [Google Scholar]
  167. Windham L. , Weis JS. , Weis P. . 2001.. Patterns and processes of mercury release from leaves of two dominant salt marsh macrophytes, Phragmites australis and Spartina alterniflora. . Estuaries 24::78795 [Google Scholar]
  168. Yoshinobu S. . 1998.. Environment versus water control: The case of the southern Hangzhou Bay area from the mid-Tang through the Qing. . In Sediments of Time: Environment and Society in Chinese History, ed. M Elvin, L Ts'ui-jung , pp. 13564. New York:: Cambridge Univ. Press [Google Scholar]
  169. Zedler JB. . 1996.. Coastal mitigation in southern California: The need for a regional restoration strategy. . Ecol. Appl. 6::8493 [Google Scholar]
  170. Zedler JB. , Kercher S. . 2004.. Causes and consequences of invasive plants in wetlands: opportunities, opportunists, and outcomes. . Crit. Rev. Plant Sci. 23::43152 [Google Scholar]
/content/journals/10.1146/annurev.marine.010908.163930
Loading
/content/journals/10.1146/annurev.marine.010908.163930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error