1932

Abstract

Electron energy loss fine structure near the threshold of inner-shell edges can potentially give valuable information on bonding on an atomic scale. To use near-edge structure it is essential to understand what factors influence both the occupied and unoccupied local density of states in the material of interest. Different techniques of electronic structure theory are suitable for metals, semiconductors, and ionic materials, although some methods can be applied to a wide range of systems. To extract quantitative information on bonding it is important to avoid those edges that are strongly affected by the presence of the core hole such as cations in ionic materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.matsci.37.052506.084209
2008-08-04
2025-04-29
Loading full text...

Full text loading...

/deliver/fulltext/mr/38/1/annurev.matsci.37.052506.084209.html?itemId=/content/journals/10.1146/annurev.matsci.37.052506.084209&mimeType=html&fmt=ahah

Literature Cited

  1. Batson PE. 1. . 1993.. Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. . Nature 366::72728 [Google Scholar]
  2. Browning ND. , Chisholm MF. , Pennycook SJ. 2. . 1993.. Atomic-resolution chemical analysis using a scanning transmission electron microscope. . Nature 366::14346 [Google Scholar]
  3. Browning ND. , Chisholm MF. , Pennycook SJ. 3. . 2006.. Corrigendum: Atomic resolution chemical analysis using a scanning transmission electron microscope. . Nature 44::235 [Google Scholar]
  4. Muller DA. , Tzou Y. , Raj R. , Silcox J. 4. . 1993.. Mapping of sp2 and sp3 states of carbon at subnanometre spatial resolution. . Nature 366::72527 [Google Scholar]
  5. Krivanek OL. , Delby N. , Lupini AR. 5. . 1999.. Towards sub-Å electron beams. . Ultramicroscopy 78::111 [Google Scholar]
  6. Egerton RF. 6. . 1986.. Electron Energy Loss Spectroscopy in the Electron Microscope. New York:: PlenumThe definitive reference for EELS in electron microscopy. [Google Scholar]
  7. Keast VJ. 7. . 2005.. Ab initio calculations of plasmons and interband transitions in the low-loss electron energy-loss spectrum. . J. Electron Spectrosc. 143::99106 [Google Scholar]
  8. Benedict LX. , Shirley EL. , Bohn RB. 8. . 1998.. Optical absorption of insulators and the electron hole interaction: ab initio calculation. . Phys. Rev. Lett. 80::451417 [Google Scholar]
  9. Chen CH. , Silcox J. , Vincent R. 9. . 1975.. Electron energy losses in silicon, bulk and surface plasmons and Cerenkov radiation. . Phys. Rev. B 12::6471 [Google Scholar]
  10. Stoger-Pollach M. , Franco H. , Schattschneider P. , Lazar S. , Schaffer B. , et al.10.  2006.. Cerenkov losses: a limit for bandgap determination and Kramers Kronig analysis. . Micron 37::396402 [Google Scholar]
  11. Muller DA. , Silcox J. 11. . 1995.. Delocalization in inelastic scattering. . Ultramicroscopy 59::195213 [Google Scholar]
  12. Teo BK. , Joy DC. 12. . 1981.. EXAFS Spectroscopy, Techniques and Applications. New York:: Plenum [Google Scholar]
  13. Rehr JJ. , Albers RC. 13. . 2000.. Theoretical approaches to x-ray absorption fine structure. . Rev. Mod. Phys. 72::62154Comprehensive review of X-ray absorption fine structure and the use of the FEFF code. [Google Scholar]
  14. Weijs PJW. , Czyzyk MT. , van Acker JF. , Speier W. , Goedkoop JB. , et al.14.  1990.. Core-hole effects in the X ray-absorption spectra of transition-metal silicides. . Phys. Rev. B 41::11899910 [Google Scholar]
  15. Rez P. , Bruley J. , Brohan P. , Payne M. , Garvie LAJ. 15. . 1995.. Review of methods for calculating near edge structure. . Ultramicroscopy 59::15967 [Google Scholar]
  16. Rez P. , Alvarez JR. , Pickard CJ. 16. . 1999.. Calculation of near edge structure. . Ultramicroscopy 78::17583 [Google Scholar]
  17. Keast VJ. , Scott AJ. , Brydson R. , Williams DB. , Bruley J. 17. . 2001.. Electron energy loss near edge structure—a tool for the investigation of electronic structure on the nanometer scale. . J. Microsc. 203::13575 [Google Scholar]
  18. Gao S-P. , Pickard CJ. , Payne MC. , Zhu J. , Yuan J. 18. . 2008.. Theory of core-hole effects in 1s core-level spectroscopy of the first-row elements. . Phys. Rev. B 77::115122 [Google Scholar]
  19. Muller DA. , Subramanian S. , Batson PE. , Sass SL. , Silcox J. 19. . 1995.. Near atomic scale studies of electronic structure at grain boundaries in Ni3Al. . Phys. Rev. Lett. 75::474447 [Google Scholar]
  20. de Groot FMF. , Grioni M. , Fuggle JC. , Ghijsen J. , Sawatzky GA. , Petersen H. 20. . 1989.. Oxygen 1s x-ray-absorption edges of transition-metal oxides. . Phys. Rev. B 40::571523 [Google Scholar]
  21. Muller DA. , Sorsch T. , Moccio S. , Baumann FH. , Evans-Lutterodt K. , Timp G. 21. . 1999.. The electronic structure at the atomic scale of ultrathin gate oxides. . Nature 399::75861Probably the most significant application of EELS fine stucture. Showed the limits of MOS devices, “the end of the road.” [Google Scholar]
  22. Muller JE. , Willkins JW. 22. . 1984.. Band structure approach to the X-ray spectra of metals. . Phys. Rev. B 29::433148 [Google Scholar]
  23. Saldin DK. 23. . 1987.. The theory of electron energy loss near-edge structure. . Philos. Mag. B 56::51525Mathematical description of near-edge structure in terms of Greens functions. [Google Scholar]
  24. Nelheibel M. , Louf P-H. , Schattschneider P. , Blaha P. , Schwarz K. , Jouffrey B. 24. . 1999.. Theory of orientation sensitive near edge fine structure core level spectroscopy. . Phys. Rev. B 59::1280714Excellent comprehensive theory of fine structure. [Google Scholar]
  25. Muller DA. , Singh DJ. , Silcox J. 25. . 1998.. Connections between the electron energy loss spectra, the local electronic structure, and the physical properties of a material: a study of nickel aluminium alloys. . Phys. Rev. B 57::8181202 [Google Scholar]
  26. Leapman RD. , Fejes PL. , Silcox J. 26. . 1983.. Orientation dependence of core edges from anisotropic materials determined by inelastic scattering of fast electrons. . Phys. Rev. B 28::236173 [Google Scholar]
  27. Kohn W. , Sham LJ. 27. . 1965.. Self consistent equations including exchange and correlation effects. . Phys. Rev. 140::1133A38AThe original paper introducing DFT. [Google Scholar]
  28. Hamann DR. , Muller DA. 28. . 2002.. Absolute and approximate calculations of electron energy loss spectroscopy edge thresholds. . Phys. Rev. Lett. 89::126404 [Google Scholar]
  29. Janak JF. 29. . 1978.. Proof that ∂E/∂ni = ϵi in density-functional theory. . Phys. Rev. B 18::716568 [Google Scholar]
  30. Slater JC. 30. . 1963.. The Quantum Theory of Molecules and Solids: The Self Consistent Field for Molecules and Solids. New York:: McGraw Hill [Google Scholar]
  31. Paxton AT. , Craven AJ. , Gregg JM. , McComb DW. 31. . 2003.. Bandstructure approach to near edge structure. . J. Microsc. 210::3544 [Google Scholar]
  32. Blaha P. , Schwarz K. , Sorantin P. , Trickey SB. 32. . 1990.. Full-potential, linearized augmented plane wave programs for crystalline systems. . Comput. Phys. Commun. 59::399415Original paper on the Wien code. [Google Scholar]
  33. Anderson OK.33.  1975.. Linear methods in band theory. . Phys. Rev. B 12::306083 [Google Scholar]
  34. Scott AJ. , Brydson R. , MacKenzie M. , Craven AJ. 34. . 2001.. Theoretical investigations of the ELNES of transition metal carbides for the extraction of structural and bonding information. . Phys. Rev. B 63::245105Some of the best calculations of carbon and nitrogen edges using FLAPW and FEFF in transition-metal carbides and nitrides. [Google Scholar]
  35. Hebert C. 35. . 2007.. Practical aspects of running the Wien2k code for electron spectroscopy. . Micron 38::1228Practical hints for using Wien for EELS fine-structure calculations. [Google Scholar]
  36. Rehr JJ. , Albers RC. , Zabinsky SI. 36. . 1992.. High-order multiple scattering calculations of X-ray absorption fine structure. . Phy. Rev. Lett. 69::3397400 [Google Scholar]
  37. Durham PJ. , Pendry JB. , Hodges CH. 37. . 1982.. Calculation of X-ray absorption near-edge structure, XANES. . Comput. Phys. Commun. 25::193205 [Google Scholar]
  38. Mustre de Leon J. , Rehr JJ. , Zabinsky SI. , Albers RC. 38. . 1991.. Ab initio curved wave X-ray absorption fine structure. . Phys. Rev. B 44::414656 [Google Scholar]
  39. Zabinsky SI. , Rehr JJ. , Ankudinov A. , Albers RC. , Eller MJ. 39. . 1995.. Multiple scattering calculations of X-ray absorption spectra. . Phys. Rev. B 52::29953009 [Google Scholar]
  40. Ankudinov AL. , Ravel B. , Rehr JJ. , Conradson SD. 40. . 1998.. Real space multiple scattering calculation and interpretation of x-ray absorption near edge structure. . Phys. Rev. B 58::756576FEFF8 is introduced, with some applications. [Google Scholar]
  41. Moreno MS. , Jorissen K. , Rehr JJ. 41. . 2007.. Practical aspects of electron energy loss spectroscopy (EELS) calculations using FEFF8. . Micron 38::111Provides practical hints for using FEFF8 for EELS fine structure. [Google Scholar]
  42. Payne MC. , Teter MP. , Allan DC. , Arias TM. , Joanopoulos JD. 42. . 1992.. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. . Rev. Mod. Phys. 64::104597The definitive review of more modern plane wave pseudopotential methods. [Google Scholar]
  43. Kresse G. , Furthmuller J. 43. . 1996.. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. . Phys. Rev. B 54::1116986The paper that first describes the VASP code. [Google Scholar]
  44. Sankey OF. , Niklewski DJ. 44. . 1989.. Ab initio multicenter tight-binding model for molecular-dynamics simulations and other applications in covalent systems. . Phys. Rev. B 40::397995 [Google Scholar]
  45. Shirley EL. 45. . 1998.. Ab initio inclusion of electron-hole attraction: application to X-ray absorption and resonant inelastic X-ray scattering. . Phys. Rev. Lett. 80::79497 [Google Scholar]
  46. Zangwill A. , Soven P. 46. . 1980.. Density-functional approach to local-field effects in finite systems: photoabsorption in the rare gases. . Phys. Rev. A 21::156172 [Google Scholar]
  47. Cyrot-Lackmann F. 47. . 1968.. Sur le calcul de la cohésion et de la tension superficialle des métaux de transition par une méthode de liasons forts. . J. Phys. Chem. Solids 29::123543 [Google Scholar]
  48. Muller DA. 48. . 1998.. Simple model for relating EELS and XAS spectra of metals to changes in cohesive energy. . Phys. Rev. B 58::598995 [Google Scholar]
  49. Leapman RD. , Silcox J. 49. . 1979.. Orientation dependence of core edges in electron-energy-loss spectra from anisotropic materials. . Phys. Rev. Lett. 42::136164 [Google Scholar]
  50. Weng X. , Rez P. , Batson PE. 50. . 1990.. Single electron calculations for the Si L2,3 near edge structure. . Solid State Commun. 74::101315 [Google Scholar]
  51. Weng X. , Rez P. , Sankey OF. 51. . 1989.. Pseudo-atomic-orbital band theory applied to electron-energy-loss near-edge structures. . Phys. Rev. B 40::5694704 [Google Scholar]
  52. Morar JF. , Himpsel FJ. , Hollinger G. , Hughes G. , Jordan JL. 52. . 1985.. Observation of a C-1s core exciton in diamond. . Phys. Rev. Lett. 54::196063 [Google Scholar]
  53. Rez P. , Weng X. , Ma H. 53. . 1991.. The interpretation of near edge structures. . Microsc. Microanal. Microstruct. 2::14351 [Google Scholar]
  54. Weng X. , Rez P. 54. . 1989.. Multiple scattering approach to near edge structures in electron energy loss spectroscopy of alkaline earths. . Phys. Rev. B 39::740512 [Google Scholar]
  55. Lindner T. , Sauer H. , Engel W. , Kambe K. 55. . 1986.. Near-edge structure in electron-energy-loss spectra of MgO. . Phys. Rev. B 33::2224 [Google Scholar]
  56. Kostlmeier S. , Elsasser C. , Meyer B. 56. . 1999.. Ab initio analysis of electron energy loss spectra for complex oxides. . Ultramicroscopy 80::14551 [Google Scholar]
  57. Neaton JR. , Muller DA. , Ashcroft NW. 57. . 2000.. Electronic properties of the Si/SiO2 interface from first principles. . Phys. Rev. Lett. 85::1298301Justifies the neglect of core-hole effects in the Muller et al. (21) paper on gate oxides. [Google Scholar]
  58. Kostlmeier S. 58. . 2001.. Success and limits of common final state approximations. . Ultramicroscopy 86::31924 [Google Scholar]
  59. de Groot FMF. , Faber J. , Michiels JJM. , Czyzyk MT. , Abbate M. , Fuggle JC. 59. . 1993.. Oxygen 1s X-ray absorption of tetravalent oxide: a comparison with single particle calculations. . Phys. Rev. B 48::207480 [Google Scholar]
  60. Rez P. , Maclaren JM. , Saldin DK. 60. . 1997.. Application of the layer Korringa-Kohn-Rostoker method to the calculation of near edge structure in X-ray absorption and electron energy loss spectroscopy. . Phys. Rev. B 57::262127 [Google Scholar]
  61. Kurata H. , Lefevre E. , Colliex C. , Brydson R. 61. . 1993.. Electron-energy-loss near-edge structures in the oxygen K-edge spectra of transition metal oxides. . Phys. Rev. B 47::1376368 [Google Scholar]
  62. Thole BT. , van der Laan G. , Fuggle JC. , Sawatzky GA. , Karnatak RC. , Esteva J-M. 62. . 1985.. 3d x-ray-absorption lines and the 3d94fn+1 multiplets of the lanthanides. . Phys. Rev. B 32::510718Multiplet theory introduced for rare-earth M45 edges. [Google Scholar]
  63. Leapman RD. , Grunes LA. 63. . 1980.. Anomalous L3/L2 white-line ratios in the 3d transition metals. . Phys. Rev. Lett. 45::397401First paper showing anomalous effects at transition-metal L edges. [Google Scholar]
  64. Kurata H. , Colliex C. 64. . 1993.. Electron energy-loss core edge structures in manganese oxides. . Phys. Rev. B 47::21028 [Google Scholar]
  65. Paterson JH. , Krivanek OL. 65. . 1990.. ELNES of 3d transition-metal oxides II. Variations with oxidation state and crystal structure. . Ultramicroscopy 32::31925 [Google Scholar]
  66. Ogasawara K. , Iwata T. , Koyama Y. , Ishii T. , Tanaka I. , Adachi H. 66. . 2001.. Relativistic cluster calculation of ligand-field multiplet effects on cation L2,3 x-ray-absorption edges of SrTiO3, NiO, and CaF2. . Phys. Rev. B 64::115413 [Google Scholar]
  67. Radtke G. , Lazar S. , Botton GA. 67. . 2006.. High resolution EELS investigation of the electronic structure of ilmenites. . Phys. Rev. B 74::155117 [Google Scholar]
  68. de Groot FMF. 68. . 2005.. Multiplet effects in X-ray spectroscopy. . Coord. Chem. Rev. 249::3163Excellent review on multiplet theory applied to transition-element L23 edges and rare-earth M45 edges. [Google Scholar]
  69. van der Laan G. , Kirkman IW. 69. . 1992.. The 2p absorption spectra of 3d transition metal compound in tetrahedral and octahedral symmetry. . J. Phys. Condens. Matter 4::4189204Comprehensive compendium of first-row transition-element L23 white lines calculated for different charge states in both octahderal and tetrahedral symmetry. Always look here before you do a calculation to avoid repeating it! [Google Scholar]
  70. Jouffrey B. , Schattschneider P. , Hebert C. 70. . 2004.. The magic angle: a solved mystery. . Ultramicroscopy 102::6166 [Google Scholar]
  71. Fano U. 71. . 1956.. Differential inelastic scattering of relativistic charged particles. . Phys. Rev. 102::38587 [Google Scholar]
  72. Schattschneider P. , Hebert C. , Franco H. , Jouffrey B. 72. . 2005.. Anisotropic relativistic cross sections for inelastic electron scattering, and the magic angle. . Phys. Rev. B 72::045142 [Google Scholar]
  73. Alvarez JR. , Rez P. 73. . 2001.. Calculation of electronic properties of boundaries in Ni3Al. . Acta Mater. 49::795802 [Google Scholar]
/content/journals/10.1146/annurev.matsci.37.052506.084209
Loading
/content/journals/10.1146/annurev.matsci.37.052506.084209
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error