Endospores formed by and related genera are encased in a protein shell called the coat. In many species, including , the coat is the outermost spore structure, and in other species, such as the pathogenic organisms and , the spore is encased in an additional layer called the exosporium. Both the coat and the exosporium have roles in protection of the spore and in its environmental interactions. Assembly of both structures is a function of the mother cell, one of two cellular compartments of the developing sporangium. Studies in have revealed that the timing of coat protein production, the guiding role of a small group of morphogenetic proteins, and several types of posttranslational modifications are essential for the fidelity of the assembly process. Assembly of the exosporium requires a set of novel proteins as well as homologues of proteins found in the outermost layers of the coat and of some of the coat morphogenetic factors, suggesting that the exosporium is a more specialized structure of a multifunctional coat. These and other insights into the molecular details of spore surface morphogenesis provide avenues for exploitation of the spore surface layers in applications for biotechnology and medicine.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aronson AI, Ekanayake L, Fitz-James PC. 1992. Protein filaments may initiate the assembly of the Bacillus subtilis spore coat. Biochimie 74:661–67 [Google Scholar]
  2. Aronson AI, Fitz-James P. 1976. Structure and morphogenesis of the bacterial spore coat. Bacteriol. Rev. 40:360–402 [Google Scholar]
  3. Aronson AI, Fitz-James PC. 1971. Reconstitution of bacterial spore coat layers in vitro. J. Bacteriol. 108:571–78 [Google Scholar]
  4. Bagyan I, Setlow P. 2002. Localization of the cortex lytic enzyme CwlJ in spores of Bacillus subtilis. J. Bacteriol. 184:1219–24 [Google Scholar]
  5. Bailey-Smith K, Todd SJ, Southworth TW, Proctor J, Moir A. 2005. The ExsA protein of Bacillus cereus is required for assembly of coat and exosporium onto the spore surface. J. Bacteriol. 187:3800–6 [Google Scholar]
  6. Barbosa TM, Serra C, Henriques AO. 2004. Gut sporeformers. See Ref. 129a pp. 78–101
  7. Barbosa TM, Serra C, La Ragione RM, Woodward MJ, Henriques AO. 2005. Screening for Bacillus isolates in the broiler gastrointestinal tract. Appl. Environ. Microbiol. 171:968–78 [Google Scholar]
  8. Bauer T, Little S, Stover AG, Driks A. 1999. Functional regions of the Bacillus subtilis spore coat morphogenetic protein CotE. J. Bacteriol. 181:7043–51 [Google Scholar]
  9. Beall B, Driks A, Losick R, Moran CP Jr. 1993. Cloning and characterization of a gene required for assembly of the Bacillus subtilis spore coat. J. Bacteriol. 175:1705–16 [Google Scholar]
  10. Beaman TC, Pankratz HS, Gerhardt P. 1972. Ultrastructure of the exosporium and underlying inclusions in spores of Bacillus megaterium strains. J. Bacteriol. 109:1198–209 [Google Scholar]
  11. Behravan J, Chirakkal H, Masson A, Moir A. 2000. Mutations in the gerP locus of Bacillus subtilis and Bacillus anthracis affect access of germinants to their targets in spores. J. Bacteriol. 182:1987–94 [Google Scholar]
  12. Bourne N, Fitz-James PC, Aronson AI. 1991. Structural and germination defects of Bacillus subtilis spores with altered contents of a spore coat protein. J. Bacteriol. 173:6618–25 [Google Scholar]
  13. Bowen WR, Fenton AS, Lovitt RW, Wright CJ. 2002. The measurement of Bacillus mycoides spore adhesion using atomic force microscopy, simple counting methods, and a spinning disk technique. Biotechnol. Bioeng. 79:170–79 [Google Scholar]
  14. Boydston JA, Chen P, Steichen CT, Turnbough CL Jr. 2005. Orientation within the exosporium and structural stability of the collagen-like glycoprotein BclA of Bacillus anthracis. J. Bacteriol. 187:5310–17 [Google Scholar]
  15. Boydston JA, Yue L, Kearney JF, Turnbough CL Jr. 2006. The ExsY protein is required for complete formation of the exosporium of Bacillus anthracis. J. Bacteriol. 188:7440–48 [Google Scholar]
  16. Bozue J, Cote CK, Moody KL, Welkos SL. 2007. Fully virulent Bacillus anthracis does not require the immunodominant protein BclA for pathogenesis. Infect. Immun. 75:508–11 [Google Scholar]
  17. Bozue JA, Parthasarathy N, Phillips LR, Cote CK, Fellows PF. et al. 2005. Construction of a rhamnose mutation in Bacillus anthracis affects adherence to macrophages but not virulence in guinea pigs. Microb. Pathog. 38:1–12 [Google Scholar]
  18. Castanha ER, Swiger RR, Senior B, Fox A, Waller LN, Fox KF. 2005. Strain discrimination among B. anthracis and related organisms by characterization of bclA polymorphisms using PCR coupled with agarose gel or microchannel fluidics electrophoresis. Microbiol. Methods 64:27–45 [Google Scholar]
  19. Casula G, Cutting SM. 2002. Bacillus probiotics: spore germination in the gastrointestinal tract. Appl. Environ.. Microbiol. 68:2344–52 [Google Scholar]
  20. Catalano FA, Meador-Parton J, Popham DL, Driks A. 2001. Amino acids in the Bacillus subtilis morphogenetic protein SpoIVA with roles in spore coat and cortex formation. J. Bacteriol. 183:1645–54 [Google Scholar]
  21. Chada VGR, Sanstad EA, Wang R, Driks A. 2003. Morphogenesis of Bacillus spore surfaces. J. Bacteriol. 185:6255–61 [Google Scholar]
  22. Charlon S, Moir AJG, Baillie L, Moir A. 1999. Characterization of the exosporium of Bacillus cereus. J. Appl. Microbiol. 87:241–45 [Google Scholar]
  23. Costa TV, Isidro AL, Moran CP Jr, Henriques AO. 2006. The interaction between coat morphogenetic proteins SafA and SpoVID. J. Bacteriol. 188:7731–41 [Google Scholar]
  24. Costa TV, Martins LO, Voelker U, Henriques AO. 2004. Assembly of an oxalate decarboxylase produced under sK control into the Bacillus subtilis spore coat. J. Bacteriol. 186:1462–74 [Google Scholar]
  25. Costa TV, Serrano M, Moran CP Jr, Henriques AO. 2006. The timing of cotE expression affects Bacillus subtilis spore coat morphology but not resistance to lysozyme. J. Bacteriol. 189:2401–10 [Google Scholar]
  26. Cutting S, Oke V, Driks A, Losick R, Lu S, Kroos L. 1990. A forespore checkpoint for mother cell gene expression during development in. Bacillus subtilis. Cell 62:239–50 [Google Scholar]
  27. Daubenspeck JM, Zeng H, Chen P, Dong S, Steichen CT. et al. 2004. Novel oligosaccharide side chains of the collagen-like region of BclA, the major glycoprotein of the Bacillus anthracis exosporium. J. Biol. Chem. 279:30945–53 [Google Scholar]
  28. DesRosier JP, Lara JC. 1981. Isolation and properties of pili from spores of Bacillus cereus. J. Bacteriol. 145:613–19 [Google Scholar]
  29. Dickinson DN, La Duc MT, Haskins WE, Gornushkin I, Winefordner JD. et al. 2004. Species differentiation of a diverse suite of Bacillus spores by mass spectrometry-based protein profiling. Appl. Environ. Microbiol. 70:475–82 [Google Scholar]
  30. Dixon TC, Fadl AA, Koehler TM, Swanson JA, Hanna PC. 2000. Early Bacillus anthracis-macrophage interactions: intracellular survival and escape. Cell. Microbiol. 2:453–63 [Google Scholar]
  31. Donovan W, Zheng LB, Sandman K, Losick R. 1987. Genes encoding spore coat polypeptides from Bacillus subtilis. J. Mol. Biol. 196:1–10 [Google Scholar]
  32. Driks A. 1999. Bacillus subtilis spore coat. Microbiol. Mol. Biol. Rev. 63:1–20 [Google Scholar]
  33. Driks A. 2003. The dynamic spore. Proc. Natl. Acad. Sci. USA 100:3007–9 [Google Scholar]
  34. Driks A. 2004. From rings to layers: surprising patterns of protein deposition during bacterial spore assembly. J. Bacteriol. 186:4423–26 [Google Scholar]
  35. Driks A. 2007. Surface appendages of bacterial spores. Mol. Microbiol. 63:623–25 [Google Scholar]
  36. Driks A, Roels S, Beall B, Moran CP Jr, Losick R. 1994. Subcellular localization of proteins involved in the assembly of the spore coat of Bacillus subtilis. Genes Dev. 8:234–44First study on the localization of key coat morphogenetic proteins and their dependency; also the basis for a widely accepted model for coat assembly. [Google Scholar]
  37. Du C, Nickerson KW. 1996. Bacillus thuringiensis HD-73 spores have surface-localised Cry1Ac toxin: physiological and pathogenic consequences. Appl. Environ. Microbiol. 62:3722–26 [Google Scholar]
  38. Duc le H, Hong HA, Uyen NQ, Cutting SM. 2004. Intracellular fate and immunogenicity of B. subtilis spores. Vaccine 22:1873–85 [Google Scholar]
  39. Duc le H, Hong HA, Fairweather N, Ricca E, Cutting SM. 2003. Bacterial spores as vaccine vehicles. Infect. Immun. 71:2810–18 [Google Scholar]
  40. Duc le H, Hong HA, Cutting SM. 2003. Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen delivery. Vaccine 21:4215–24 [Google Scholar]
  41. Duc le H, Hong HA, Atkins HS, Flick-Smith HC, Durrani Z. et al. 2007. Immunization against anthrax using Bacillus subtilis spores expressing the anthrax protective antigen. Vaccine 25:346–55 [Google Scholar]
  42. Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ. et al. 2004. The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol. 2:e328 [Google Scholar]
  43. Eichenberger P, Jensen ST, Conlon EM, van Ooij C, Silvaggi J. et al. 2003. The sigma E regulon and the identification of additional sporulation genes in Bacillus subtilis. J. Mol. Biol. 327:945–72 [Google Scholar]
  44. Enguita FJ, Martins LO, Henriques AO, Carrondo MA. 2003. Crystal structure of a bacterial endospore coat component: a laccase with enhanced thermostability properties. J. Biol. Chem. 278:19416–25 [Google Scholar]
  45. Errington J. 2003. Regulation of endospore formation in Bacillus subtilis. Nat. Rev. Microbiol. 1:117–26 [Google Scholar]
  46. Feucht A, Evans L, Errington J. 2003. Identification of sporulation genes by genome-wide analysis of the sE regulon of Bacillus subtilis. Microbiology 149:3023–34 [Google Scholar]
  47. Francis CA, Casciotti KL, Tebo BM. 2002. Localization of Mn(II)-oxidizing activity and the putative multicopper oxidase, MnxG, to the exosporium of the marine Bacillus sp. Strain SG-1. Arch. Microbiol. 178:450–56 [Google Scholar]
  48. Fritze D. 2004. Taxonomy and systematics of the aerobic endospore forming bacteria: Bacillus and related genera. See Ref. 129 pp. 17–34
  49. Garcia-Patrone M, Tandecarz JS. 1995. A glycoprotein multimer from Bacillus thuringiensis sporangia: dissociation into subunits and sugar composition. Mol. Cell. Biochem. 145:29–37 [Google Scholar]
  50. Gerhardt P, Pankratz HS, Scherrer R. 1976. Fine structure of the Bacillus thuringiensis spore. Appl. Environ. Microbiol. 32:438–40 [Google Scholar]
  51. Gerhardt P, Ribi E. 1964. Ultrastructure of the exosporium enveloping spores of Bacillus cereus. J. Bacteriol. 88:1774–89 [Google Scholar]
  52. Giorno R, Bozue J, Cote C, Wenzel T, Moody K-S. et al. 2007. Morphogenesis of the Bacillus anthracis spore. J. Bacteriol. 189:691–705 [Google Scholar]
  53. Goldman RC, Tipper DJ. 1978. Bacillus subtilis spore coats: complexity and purification of a unique polypeptide component. J. Bacteriol. 135:1091–1106 [Google Scholar]
  54. Guidi-Rontani C, Levy M, Ohayon H, Mock M. 2001. Fate of germinated Bacillus anthracis spores in primary murine macrophages. Mol. Microbiol. 42:931–38 [Google Scholar]
  55. Guidi-Rontani C, Pereira Y, Ruffie S, Sirard J-C, Weber-Levy M, Mock M. 1999. Identification and characterization of a germination operon on the virulence plasmid pXO1 of Bacillus anthracis. Mol. Microbiol. 33:407–14 [Google Scholar]
  56. Guidi-Rontani C, Weber-Levy M, Labruyère E, Mock M. 1999. Germination of Bacillus anthracis spores within alveolar macrophages. Mol. Microbiol. 31:9–17 [Google Scholar]
  57. Hachisuka Y, Kozuka S, Tsujikawa M. 1984. Exosporia and appendages of spores of Bacillus species. Microbiol. Immunol. 28:619–24 [Google Scholar]
  58. Henriques AO, Beall BW, Roland K, Moran CP Jr. 1995. Characterization of cotJ, a sE-controlled operon affecting the polypeptide composition of the coat of Bacillus subtilis spores. J. Bacteriol. 177:3394–406 [Google Scholar]
  59. Henriques AO, Costa T, Martins LO, Zilhão R. 2004. Functional architecture and assembly of the spore coat. See Ref. 129 pp. 34–52
  60. Henriques AO, Melsen LR, Moran CP Jr. 1998. Involvement of superoxide dismutase in spore coat assembly in Bacillus subtilis. J. Bacteriol. 180:2285–91 [Google Scholar]
  61. Henriques AO, Moran CP Jr. 2000. Structure and assembly of the bacterial endospore coat. Methods 20:95–110 [Google Scholar]
  62. Hoeniger JFM, Stuart PF, Holt SC. 1968. Cytology of spore formation in Clostridium perfringens. J. Bacteriol. 96:1818–34 [Google Scholar]
  63. Holt SC, Gauthier JJ, Tipper DJ. 1975. Ultrastructural studies of sporulation in Bacillus spahericus. J. Bacteriol. 122:1322–38 [Google Scholar]
  64. Holt SC, Leadbetter ER. 1969. Comparative ultrastructure of selected aerobic spore-forming bacteria: a freeze-etching study. Bacteriol. Rev. 33:346–78 [Google Scholar]
  65. Hong HA, Duc le H, Cutting SM. 2005. The use of bacterial spore formers as probiotics. FEMS Microbiol. Rev. 29:813–35 [Google Scholar]
  66. Hullo MF, Moszer I, Danchin A, Martin-Verstraete I. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183:5426–30 [Google Scholar]
  67. Ishida A, Futamura N, Matsusaka T. 1987. Detection of peroxidase activity and its localization in the forespore envelopes of Bacillus cereus. J. Gen. Appl. Microbiol. 33:27–32 [Google Scholar]
  68. Isticato R, Cangiano G, Tran T-H, Ciabattini A, Medaglini D. et al. 2001. Surface display of recombinant proteins of Bacillus subtilis spores. J. Bacteriol. 183:6294–301A key paper demonstrating the use of a coat surface-exposed component for the display of a heterologous protein. [Google Scholar]
  69. Isticato R, Esposito G, Zilhão R, Nolasco S, Cangiano G. et al. 2004. Assembly of multiple CotC forms into the Bacillus subtilis spore coat. J. Bacteriol. 186:1129–35 [Google Scholar]
  70. Jenkinson HF, Sawyer WD, Mandelstam J. 1981. Synthesis and order of assembly of spore coat proteins in Bacillus subtilis. J. Gen. Microbiol. 123:1–16 [Google Scholar]
  71. Johnson MJ, Todd SJ, Ball DA, Shepherd AM, Sylvestre P, Moir A. 2006. ExsY and CotY are required for the correct assembly of the exosporium and spore coat of Bacillus cereus. J. Bacteriol. 188:7905–13 [Google Scholar]
  72. Jurgens K, Matz C. 2002. Predation as a shaping force for the phenotypic and genotypic composition of planktonic bacteria. Antonie van Leeuwenhoek 81:413–34 [Google Scholar]
  73. Kanda-Nambu K, Yasuda Y, Tochikubo L. 2000. Isozymic nature of spore coat-associated alanine racemase of Bacillus subtilis. Amino Acids 18:375–87 [Google Scholar]
  74. Kang TJ, Fenton MJ, Weiner MA, Hibbs S, Basu S. et al. 2005. Murine macrophages kill the vegetative form of Bacillus anthracis. Infect. Immun. 73:7495–501 [Google Scholar]
  75. Kim H, Hahn M, Grabowski P, McPherson DC, Otte MM. et al. 2006. The Bacillus subtilis spore coat protein interaction network. Mol. Microbiol. 59:487–502 [Google Scholar]
  76. Kim J-H, Lee C-S, Kim B-G. 2005. Spore displayed streptavidin: a live diagnostic tool in biotechnology. Biochem. Biophys. Res. Commun. 331:210–14 [Google Scholar]
  77. Klobutcher LA, Ragkousi K, Setlow P. 2006. The Bacillus subtilis spore coat provides “eat resistance” during phagocytic predation by the protozoan Tetrahymena thermophila.. Proc. Natl. Acad. Sci. USA 103:165–70Shows that the outer coat is essential for the resistance of spores to predatory protozoa. [Google Scholar]
  78. Knurr J, Benedek O, Heslop J, Vinson RB, Boydston JA. et al. 2003. Peptide ligands that bind selectively to spores of Bacillus subtilis and closely related species. J. Bacteriol. 69:6841–47 [Google Scholar]
  79. Kobayashi K, Hashiguchi K, Yokozeki K, Yamanaka S. 1998. Molecular cloning of the transglutaminase gene from Bacillus subtilis and its expression in Escherichia coli. Biosci. Biotechnol. Biochem. 62:1109–14 [Google Scholar]
  80. Kobayashi K, Kumazawa Y, Miwa K, Yamanaka S. 1996. e-(g-glutamyl)lysine cross-links of spore coat proteins and transglutaminase activity in Bacillus subtilis. FEMS Microbiol. Lett. 144:157–60First demonstration of the occurrence of covalent ε-(γ-glutamyl)lysine cross-links in spores and purified coat material. [Google Scholar]
  81. Kodama T, Takamatsu H, Asai K, Kobayashi K, Ogasawara N, Watabe K. 1999. The Bacillus subtilis yaaH gene is transcribed by SigE RNA polymerase during sporulation, and its product is involved in germination of spores. J. Bacteriol. 181:4584–91 [Google Scholar]
  82. Kodama T, Takamatsu H, Asai K, Ogasawara N, Sadaie Y, Watabe K. 2000. Synthesis and characterization of the spore proteins of Bacillus subtilis YdhD, YkuD, and YkvP, which carry a motif conserved among cell wall binding proteins. J. Biochem. 128:655–63 [Google Scholar]
  83. Kozuka S, Tochikubo K. 1985. Properties and origin of filamentous appendages on spores of Bacillus cereus. Microbiol. Immunol. 29:21–37 [Google Scholar]
  84. Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G. et al. 1997. The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390:249–56 [Google Scholar]
  85. Kuwana R, Ikejiri H, Yamamura S, Takamatsu H, Watabe K. 2004. Functional relationship between SpoVIF and GerE in gene regulation during sporulation of Bacillus subtilis. Microbiology 150:163–70 [Google Scholar]
  86. Kuwana R, Kasahara Y, Fujibayashi M, Takamtsu H, Ogasawara N, Watabe K. 2002. Proteomics characterization of novel spore proteins of Bacillus subtilis. Microbiology 148:3971–82 [Google Scholar]
  87. Kuwana R, Okuda N, Takamatsu H, Watabe K. 2006. Modification of GerQ reveals a functional relationship between Tgl and YabG in the coat of Bacillus subtilis spores. J. Biochem. 139:887–901 [Google Scholar]
  88. Kuwana R, Yamamura S, Ikejiri H, Kobayashi K, Ogasawara N. et al. 2003. Bacillus subtilis spoVIF (yjcC) gene, involved in coat assembly and spore resistance. Microbiology 149:3011–21 [Google Scholar]
  89. Lai E-M, Phadke ND, Kachman MT, Giorno R, Vasquez S. et al. 2003. Proteomic analysis of the spore coats of Bacillus subtilis and Bacillus anthracis. J. Bacteriol. 185:1443–54 [Google Scholar]
  90. Levin PA, Fan N, Ricca E, Driks A, Losick R, Cutting SM. 1993. An unusually small gene required for sporulation by Bacillus subtilis. Mol. Microbiol. 9:761–71 [Google Scholar]
  91. Little S, Driks A. 2001. Functional analysis of the Bacillus subtilis morphogenetic spore coat protein CotE. Mol. Microbiol. 42:1107–20 [Google Scholar]
  92. Liu H, Bergman NH, Thomason B, Shallom S, Hazen A. et al. 2003. Formation and composition of the Bacillus anthracis endospore. J. Bacteriol. 186:164–78 [Google Scholar]
  93. Lorand L, Graham RM. 2003. Transglutaminases: cross-linking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4:140–56 [Google Scholar]
  94. Martins LO, Soares CM, Pereira MM, Teixeira M, Costa T. et al. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277:18849–59First detailed biochemical characterization of a purified spore coat component, and the first of a bacterial laccase. [Google Scholar]
  95. Masayama A, Kuwana R, Takamatsu H, Hemmi H, Yoshimura T. et al. 2007. A novel lipolytic enzyme, Ycsk (LipC), located in the spore coat of Bacillus subtilis, is involved in spore germination. J. Bacteriol. 189:2369–75 [Google Scholar]
  96. Matz LL, Beaman TC, Gerhardt P. 1970. Chemical composition of exosporium from spores of Bacillus cereus. J. Bacteriol. 101:196–201 [Google Scholar]
  97. Mauriello EMF, Duc le H, Isticato R, Cangiano G, Hong HA. et al. 2004. Display of heterologous antigens on the Bacillus subtilis spore coat using CotC as a fusion partner. Vaccine 22:1177–87 [Google Scholar]
  98. Mazanec K, Kocusr M, Martinec T. 1965. Electron microscopy of ultrathin sections of Sporosarcina urea. J. Bacteriol. 90:808–16 [Google Scholar]
  99. McPherson DC, Kim H, Hahn M, Wang R, Grabowski P. et al. 2005. Characterization of the Bacillus subtilis spore morphogenetic coat protein CotO. J. Bacteriol. 187:8278–90 [Google Scholar]
  100. Mekjian KR, Bryan EM, Beall BW, Moran CP Jr. 1999. Regulation of hexuronate utilization in Bacillus subtilis. J. Bacteriol. 181:426–33 [Google Scholar]
  101. Melly E, Genest PC, Gilmore ME, Little S, Popham DL. et al. 2002. Analysis of the properties of spores of Bacillus subtilis prepared at different temperatures. J. Appl. Microbiol. 92:1105–15 [Google Scholar]
  102. Moir A. 2003. Bacterial spore germination and protein mobility. Trends Microbiol. 11:452–54 [Google Scholar]
  103. Monroe A, Setlow P. 2006. Localization of the cross-linking sites in the Bacillus subtilis spore coat protein GerQ. J. Bacteriol. 188:7609–16 [Google Scholar]
  104. Mordue DG, Scott-Weathers CF, Tobin CM, Knoll LJ. 2006. A patatin-like protein protects Toxoplasma gondii from degradation in activated macrophages. Mol. Microbiol. 63:482–96 [Google Scholar]
  105. Naclerio G, Baccigalupi L, Zilhão R, De Felice M, Ricca E. 1996. Bacillus subtilis spore coat assembly requires cotH gene expression. J. Bacteriol. 178:4375–80 [Google Scholar]
  106. Nicholson WL. 2004. Ubiquity, longevity, and ecological roles of Bacillus spores. See Ref. 129 pp. 2–15
  107. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. 2000. Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol. Mol. Biol. Rev. 64:548–72 [Google Scholar]
  108. Ohye DF, Murrell WG. 1973. Exosporium and spore coat formation in Bacillus cereus T. J. Bacteriol. 115:1179–90 [Google Scholar]
  109. Ooij C, van Eichenberger P, Losick R. 2004. Dynamic patterns of subcellular protein localization during spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 186:4441–48 [Google Scholar]
  110. Ooij C, van Losick R. 2003. Subcellular localization of a small sporulation protein in Bacillus subtilis. J. Bacteriol. 185:1391–98 [Google Scholar]
  111. Ozin AJ, Henriques AO, Yi H, Moran CP Jr. 2000. Morphogenetic proteins SpoVID and SafA form a complex during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 182:1828–33Shows the LysM-containing SafA protein forms complexes with SpoVID and attaches the coat to the underlying cortex peptidoglycan. [Google Scholar]
  112. Ozin AJ, Samford CS, Henriques AO, Moran CP Jr. 2001. SpoVID guides SafA to the spore coat in Bacillus subtilis. J. Bacteriol. 183:3041–49 [Google Scholar]
  113. Pandey NK, Aronson AI. 1979. Properties of the Bacillus subtilis spore coat. J Bacteriol. 137:1208–18 [Google Scholar]
  114. Panessa-Warren BJ, Tortora GT, Warren JB. 1997. Exosporial membrane plasticity of Clostridium sporogenes and Clostridium difficile. Tissue Cell 29:449–61 [Google Scholar]
  115. Paredes CJ, Alsaker KV, Papoutsakis ET. 2005. A comparative genomic view of Clostridial sporulation and physiology. Nat. Rev. Microbiol. 3:969–78 [Google Scholar]
  116. Piggot PJ, Coote JG. 1976. Genetic aspects of bacterial endospore formation. Bacteriol. Rev. 40:908–62 [Google Scholar]
  117. Piggot PJ, Hilbert DW. 2004. Sporulation of Bacillus subtilis. Curr. Opin. Microbiol. 7:579–86 [Google Scholar]
  118. Plomp M, Leighton TJ, Wheeler KE, Malkin AJ. 2005. The high-resolution architecture and structural dynamics of Bacillus spores. Biophys. J. 88:603–8 [Google Scholar]
  119. Plomp M, Leighton TJ, Wheeler KE, Malkin AJ. 2005. Architecture and high-resolution structure of Bacillus thuringiensis and Bacillus cereus spore coat surfaces. Langmuir 21:7892–998 [Google Scholar]
  120. Plomp M, Leighton TJ, Wheeler KE, Pitesky ME, Malkin AJ. 2005. Bacillus atrophaeus outer spore coat assembly and ultrastructure. Langmuir 21:10710–16 [Google Scholar]
  121. Pogliano K, Harry E, Losick R. 1995. Visualization of the subcellular location of sporulation proteins in Bacillus subtilis using immunofluorescence microscopy. Mol. Microbiol. 18:459–70 [Google Scholar]
  122. Prajapati RS, Ogura T, Cutting SM. 2000. Structural and functional studies on an FtsH inhibitor from Bacillus subtilis. Biochim. Biophys. Acta1475353–59 [Google Scholar]
  123. Price KD, Losick R. 1999. A four-dimensional view of the assembly of a morphogenetic protein during sporulation in Bacillus subtilis. J. Bacteriol. 181:781–90 [Google Scholar]
  124. Ragkousi K, Eichenberger P, van Ooij C, Setlow P. 2003. Identification of a new gene essential for spore germination of Bacillus subtilis spores with Ca2+-dipicolinate. J. Bacteriol. 185:2315–29 [Google Scholar]
  125. Ragkousi K, Setlow P. 2004. Transglutaminase-mediated cross-linking of GerQ in the coats of Bacillus subtilis spores. J. Bacteriol. 186:5567–75 [Google Scholar]
  126. Ramamurthi KS, Clapham KR, Losick R. 2006. Peptide anchoring spore coat assembly to the outer forespore membrane in Bacillus subtilis. Mol. Microbiol. 62:1547–57Shows that coat morphogenetic protein SpoIVA is tethered to the spore outer membrane by means of a direct interaction with the SpoVM peptide. [Google Scholar]
  127. Redmond C, Baillie LW, Hibbs S, Moir AJ, Moir A. 2004. Identification of proteins in the exosporium of Bacillus anthracis. Microbiology 150:355–63 [Google Scholar]
  128. Réty S, Salamitou S, Garcia-Verdugo I, Hulmes DJ, Le Hegarat F. et al. 2005. The crystal structure of the Bacillus anthracis spore surface protein BclA shows remarkable similarity to mammalian proteins. J. Biol. Chem. 280:43073–78 [Google Scholar]
  129. Ricca E, Henriques AO, Cutting SM. eds. 2004. Bacterial Spore Formers: Probiotics and Emerging Applications. London, UK: Horizon Sci. Press
  130. Riesenman PJ, Nicholson WL. 2000. Role of the spore coat layers in Bacillus subtilis resistance to hydrogen peroxide, artificial UV-C, UV-B, and solar UV radiation. Appl. Environ. Microbiol. 66:620–26 [Google Scholar]
  131. Rode LJ. 1971. Bacterial spore appendages. CRC Crit. Rev. Microbiol. 1:1–27 [Google Scholar]
  132. Roels S, Driks A, Losick R. 1992. Characterization of spoIVA, a sporulation gene involved in coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174:575–85 [Google Scholar]
  133. Rønn R, Craig AE, Griffiths BS, Prosser JI. 2002. Impact of protozoan grazing on bacterial community structure in soil microorganisms. Appl. Environ. Microbiol. 68:6094–6105 [Google Scholar]
  134. Sacco M, Ricca E, Losick R, Cutting SM. 1995. An additional GerE-controlled gene encoding an abundant spore coat protein from Bacillus subtilis. J. Bacteriol. 177:372–77 [Google Scholar]
  135. Santo LY, Doi RH. 1974. Ultrastructural analysis during germination and outgrowth of Bacillus subtilis spores.. J. Bacteriol. 120:475–81 [Google Scholar]
  136. Serrano M, Zilhão R, Ricca E, Ozin AJ, Moran CP Jr, Henriques AO. 1999. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J. Bacteriol. 181:3632–43 [Google Scholar]
  137. Setlow P. 2003. Spore germination. Curr. Opin. Microbiol. 6:550–56 [Google Scholar]
  138. Setlow P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. J. Appl. Microbiol. 101:514–25 [Google Scholar]
  139. Seyler R, Henriques AO, Ozin A, Moran CP Jr. 1997. Interactions and assembly of cotJ-encoded products, constituents of the inner layers of the Bacillus subtilis spore coat. Mol. Microbiol. 25:955–66 [Google Scholar]
  140. Sousa JC, Silva MT, Balassa G. 1976. An exosporium-like outer layer in Bacillus subtilis spores. Nature 263:53–54 [Google Scholar]
  141. Sousa JC, Silva MT, Balassa G. 1978. Ultrastructure and development of an exosporium-like outer spore envelope in Bacillus subtilis. Ann. Microbiol. 129:339–62 [Google Scholar]
  142. Steichen CT, Chen P, Kearney JF, Turnbough CL Jr. 2003. Identification of the immunodominant protein and other proteins of the Bacillus anthracis exosporium. J. Bacteriol. 185:1903–10 [Google Scholar]
  143. Steichen CT, Kearney JF, Turnbough CL Jr. 2005. Characterization of the exosporium basal layer protein BxpB of Bacillus anthracis. J. Bacteriol. 187:5868–76 [Google Scholar]
  144. Steichen CT, Kearney JF, Turnbough CL Jr. 2007. Non-uniform assembly of the Bacillus anthracis exosporium and a bottle cap model for spore germination and outgrowth. Mol. Microbiol. 64:359–67Shows that assembly of the exosporium in B. anthracis is a discontinuous, non-uniform process that results in formation of a cap for spore germination. [Google Scholar]
  145. Steil L, Serrano M, Henriques AO, Völker U. 2005. Genome-wide analysis of temporally-regulated and compartment-specific gene expression during spore development in Bacillus subtilis. Microbiology 151:399–420 [Google Scholar]
  146. Stevens CM, Daniel R, Illing N, Errington J. 1992. Characterization of a sporulation gene, spoIVA, involved in spore coat morphogenesis in Bacillus subtilis. J. Bacteriol. 174:586–94 [Google Scholar]
  147. Strickland JA, Orr GL, Walsh TA. 1995. Inhibition of diabrotica larval growth by patatin, the lipid acyl hydrolase from potato tubers. Plant Physiol. 109:667–74 [Google Scholar]
  148. Suzuki S, Izawa Y, Kobayashi K, Eto Y, Yamanaka S. et al. 2000. Purification and characterization of novel transglutaminase from Bacillus subtilis spores. Biosci. Biotechnol. Biochem. 64:2344–51 [Google Scholar]
  149. Sylvestre P, Couture-Tosi E, Mock M. 2002. A collagen-like surface glycoprotein is a structural component of the Bacillus anthracis exosporium. Mol. Microbiol. 45:169–78 [Google Scholar]
  150. Sylvestre P, Couture-Tosi E, Mock M. 2003. Polymorphism in the collagen-like region of the Bacillus anthracis BclA protein leads to variation in exosporium filament length. J. Bacteriol. 185:1555–63 [Google Scholar]
  151. Sylvestre P, Couture-Tosi E, Mock M. 2005. Contribution of ExsFA and ExsFB proteins to the localization of BclA on the spore surface and to the stability of the Bacillus anthracis exosporium. J. Bacteriol. 187:5122–28 [Google Scholar]
  152. Takamatsu H, Chikahiro Y, Kodama T, Koide H, Kozuka S. et al. 1998. A spore coat protein, CotS, of Bacillus subtilis is synthesized under the regulation of sK and GerE during development and is located in the inner coat layers of spores. J. Bacteriol. 180:2968–74 [Google Scholar]
  153. Takamatsu H, Imamura A, Kodama T, Asai K, Ogasawara N, Watabe K. 2000. The yabG gene of Bacillus subtilis encodes a sporulation specific protease which is involved in the processing of several coat proteins. FEMS Microbiol. Lett. 192:33–38 [Google Scholar]
  154. Takamatsu H, Kodama T, Imamura A, Asai K, Kobayashi K. et al. 2000. The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase, and yabG mutant spores have altered coat protein composition.. J. Bacteriol. 182:1883–88 [Google Scholar]
  155. Takamatsu H, Kodama T, Nakayama T, Watabe T. 1999. Characterization of the yrbA gene of Bacillus subtilis involved in the resistance and germination of spores. J. Bacteriol. 181:4986–94 [Google Scholar]
  156. Takamatsu H, Kodama T, Watabe K. 1999. Assembly of the CotSA coat protein into spores requires CotS in Bacillus subtilis. FEMS Microbiol. Lett. 174:201–6 [Google Scholar]
  157. Takumi K, Kinouchi T, Kawata T. 1979. Isolation and partial characterization of exosporium from spores of a highly sporogenic mutant of Clostridium botulinum type A. Microbiol. Immunol. 23:443–54 [Google Scholar]
  158. Todd SJ, Moir AJG, Johnson MJ, Moir A. 2003. Genes of Bacillus cereus and Bacillus anthracis encoding proteins of the exosporium. J. Bacteriol. 185:3373–78 [Google Scholar]
  159. van Waasbergen LG, Hildebrand M, Tebo BM. 1996. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. Strain SG-1. J. Bacteriol. 178:3517–30 [Google Scholar]
  160. Walker JR, Gnanam AJ, Blinkova AL, Hermandson MJ, Karymov MA. et al. 2007. Clostridium taeniosporum spore ribbon-like appendage structure, composition and genes. Mol. Microbiol. 63:629–43 [Google Scholar]
  161. Waller LN, Fox N, Fox KF, Fox A, Price RL. 2004. Ruthenium red staining for ultrastructural visualization of a glycoprotein layer surrounding the spore of Bacillus anthracis and Bacillus subtilis. J. Microbiol. Methods 58:23–30 [Google Scholar]
  162. Webb CD, Decatur A, Teleman A, Losick R. 1995. Use of green fluorescent protein for visualization of cell-specific gene expression and subcellular protein localization during sporulation in Bacillus subtilis. J. Bacteriol. 177:5906–11 [Google Scholar]
  163. Wehrli E, Scherrer P, Kubler O. 1980. The crystalline layer in spores of Bacillus cereus and Bacillus thuringiensis studied by freeze-etching and high resolution electron microscopy. Eur. J. Cell Biol. 20:283–89 [Google Scholar]
  164. Welkos S, Friedlander A, Weeks S, Little S, Mendelson I. 2002. In-vitro characterization of the phagocytosis and fate of anthrax spores in macrophages and the effects of anti-PA antibody. J. Med. Microbiol. 51:821–31 [Google Scholar]
  165. Westphal AJ, Price PB, Leighton TJ, Wheeler KE. 2003. Kinetics of size changes of individual Bacillus thuringiensis spores in response to changes to relative humidity. Proc. Natl. Acad. Sci. USA 100:3461–66Shows that spore size changes in response to humidity, suggesting a mechanism by which spores monitor changes in the environment. [Google Scholar]
  166. Yan X, Gai Y, Liang L, Liu G, Tan H. 2006. A gene encoding alanine racemase is involved in spore germination in Bacillus thuringiensis. Arch. Microbiol. 187:371–78 [Google Scholar]
  167. Yasuda Y, Kanda K, Nishioka S, Tanimoto Y, Kato C. et al. 1993. Regulation of L-alanine-initiated germination of Bacillus subtilis spores by alanine racemase. Amino Acids 4:89–99 [Google Scholar]
  168. Yolton DP, Huettel RN, Simpson DK, Rode LJ. 1972. Isolation and partial chemical characterization of the spore appendages of Clostridium taeniosporum. J. Bacteriol. 109:881–85 [Google Scholar]
  169. Zaman MS, Goyal A, Dubey GP, Gupta PK, Chandra H. et al. 2005. Imaging and analysis of Bacillus anthracis spore germination. Microsc. Res. Tech. 66:307–11 [Google Scholar]
  170. Zhang J, Fitz-James PC, Aronson AI. 1993. Cloning and characterization of a cluster of genes encoding polypeptides present in the insoluble fraction of the spore coat of Bacillus subtilis. J. Bacteriol. 175:3757–66 [Google Scholar]
  171. Zheng L, Donovan WP, Fitz-James PC, Losick R. 1988. Gene encoding a morphogenetic protein required in the assembly of the outer coat of the Bacillus subtilis endospore. Genes Dev. 2:1047–54Reports the cotE product as required for assembly of the outer coat, leading to the concept of coat morphogentic proteins. [Google Scholar]
  172. Zheng L, Losick R. 1990. Cascade regulation of spore coat gene expression in Bacillus subtilis. J. Mol. Biol. 212:645–60 [Google Scholar]
  173. Zilhão R, Isticato R, Martins LO, Steil L, Völker U. et al. 2005. Assembly and function of a spore coat-associated transglutaminase of Bacillus subtilis. J. Bacteriol. 187:7753–64 [Google Scholar]
  174. Zilhão R, Naclerio G, Henriques AO, Baccigalupi L, Moran CP Jr, Ricca E. 1999. Assembly requirements and role of CotH in spore coat formation in Bacillus subtilis. J. Bacteriol. 181:2631–33 [Google Scholar]
  175. Zilhão R, Serrano M, Isticato R, Ricca E, Moran CP, Henriques AO. 2004. Interactions among CotB, CotG, and CotH during assembly of the Bacillus subtilis spore coat. J. Bacteriol. 186:1110–19 [Google Scholar]
  176. Zolock RA, Li G, Bleckmann C, Burggraf L, Fuller DC. 2006. Atomic force microscopy of Bacillus spore surface morphology. Micron 37:363–69 [Google Scholar]
  177. Zverlov VV, Velikodvorskaya GA, Schwartz WH. 2003. Two new cellulosome components downstream of celI in the genome of Clostridium thermocellum: the nonprocessive endoglucanase CelN and the possibly structural protein CseP. Microbiology 149:515–24 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error