1932

Abstract

Peptide release, the reaction that hydrolyzes a completed protein from the peptidyl-tRNA upon completion of translation, is catalyzed in the active site of the large subunit of the ribosome and requires a class I release factor protein. The ribosome and release factor protein cooperate to accomplish two tasks: recognition of the stop codon and catalysis of peptidyl-tRNA hydrolysis. Although many fundamental questions remain, substantial progress has been made in the past several years. This review summarizes those advances and presents current models for the mechanisms of stop codon specificity and catalysis of peptide release. Finally, we discuss how these views fit into a larger emerging theme in the translation field: the importance of induced fit and conformational changes for progression through the translation cycle.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.micro.61.080706.093323
2008-10-13
2024-06-23
Loading full text...

Full text loading...

/content/journals/10.1146/annurev.micro.61.080706.093323
Loading
/content/journals/10.1146/annurev.micro.61.080706.093323
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error