1932

Abstract

Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.051508.135256
2010-07-21
2025-03-17
Loading full text...

Full text loading...

/deliver/fulltext/neuro/33/1/annurev.neuro.051508.135256.html?itemId=/content/journals/10.1146/annurev.neuro.051508.135256&mimeType=html&fmt=ahah

Literature Cited

  1. Aggleton J. 2000. The Amygdala—A Functional Analysis Oxford: Oxford Univ. Press [Google Scholar]
  2. Aggleton JP, Passingham RE. 1981. Syndrome produced by lesions of the amygdala in monkeys (Macaca mulatta). J. Comp. Physiol. Psychol. 95:961–77 [Google Scholar]
  3. Amaral D, Price J, Pitkanen A, Carmichael S. 1992. Anatomical organization of the primate amygdaloid complex. The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction J Aggleton 1–66 New York: Wiley-Liss [Google Scholar]
  4. Amaral DG, Behniea H, Kelly JL. 2003. Topographic organization of projections from the amygdala to the visual cortex in the macaque monkey. Neuroscience 118:1099–120 [Google Scholar]
  5. Amaral DG, Dent JA. 1981. Development of the mossy fibers of the dentate gyrus: I. A light and electron microscopic study of the mossy fibers and their expansions. J. Comp. Neurol. 195:51–86 [Google Scholar]
  6. Amit D. 1989. Modeling Brain Function—The World of Attractor Neural Networks New York: Cambridge Univ. Press [Google Scholar]
  7. Antoniadis EA, Winslow JT, Davis M, Amaral DG. 2009. The nonhuman primate amygdala is necessary for the acquisition but not the retention of fear-potentiated startle. Biol. Psychiatry 65:241–48 [Google Scholar]
  8. Averbeck BB, Lee D. 2007. Prefrontal neural correlates of memory for sequences. J. Neurosci. 27:2204–11 [Google Scholar]
  9. Averbeck BB, Sohn JW, Lee D. 2006. Activity in prefrontal cortex during dynamic selection of action sequences. Nat. Neurosci. 9:276–82 [Google Scholar]
  10. Barbas H, Blatt GJ. 1995. Topographically specific hippocampal projections target functionally distinct prefrontal areas in the rhesus monkey. Hippocampus 5:511–33 [Google Scholar]
  11. Barbas H, Ghashghaei H, Rempel-Clower N, Xiao D. 2002. Anatomic basis of functional specialization in prefrontal cortices in primates. Handbook of Neuropsychology J Grafman 1–27 Amersterdam: Elsevier Science B.V. [Google Scholar]
  12. Barbas H, Pandya DN. 1989. Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 286:353–75 [Google Scholar]
  13. Barbas H, Zikopoulos B. 2007. The prefrontal cortex and flexible behavior. Neuroscientist 13:532–45 [Google Scholar]
  14. Bard P. 1928. A diencephalic mechanism for the expression of rage with special reference to the sympathetic nervous system. Am. J. Physiol. 84:490–515 [Google Scholar]
  15. Bates JF, Goldman-Rakic PS. 1993. Prefrontal connections of medial motor areas in the rhesus monkey. J. Comp. Neurol. 336:211–28 [Google Scholar]
  16. Baxter M, Murray E. 2000. Reinterpreting the behavioural effects of amygdala lesions in nonhuman primates. See Aggleton 2000 545–68
  17. Baxter M, Murray EA. 2002. The amygdala and reward. Nat. Rev. Neurosci. 3:563–73 [Google Scholar]
  18. Baxter M, Parker A, Lindner CC, Izquierdo AD, Murray EA. 2000. Control of response selection by reinforcer value requires interaction of amygdala and orbital prefrontal cortex. J. Neurosci. 20:4311–19 [Google Scholar]
  19. Belova MA, Paton JJ, Morrison SE, Salzman CD. 2007. Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55:970–84 [Google Scholar]
  20. Belova MA, Paton JJ, Salzman CD. 2008. Moment-to-moment tracking of state value in the amygdala. J. Neurosci. 28:10023–30 [Google Scholar]
  21. Bouton ME. 2002. Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol. Psychiatry 52:976–86 [Google Scholar]
  22. Breiter H, Aharon I, Kahneman D, Dale A, Shizgal P. 2001. Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30:619–39 [Google Scholar]
  23. Buckley MJ, Mansouri FA, Hoda H, Mahboubi M, Browning PG. et al. 2009. Dissociable components of rule-guided behavior depend on distinct medial and prefrontal regions. Science 325:52–58 [Google Scholar]
  24. Buonomano DV, Maass W. 2009. State-dependent computations: spatiotemporal processing in cortical networks. Nat. Rev. Neurosci. 10:113–25 [Google Scholar]
  25. Cannon W. 1927. The James-Lange theory of emotions: a critical examination and an alternative theory. Am. J. Psychol. 39:106–24 [Google Scholar]
  26. Carmichael ST, Price JL. 1995a. Limbic connections of the orbital and medial prefrontal cortex in macaque monkeys. J. Comp. Neurol. 363:615–41 [Google Scholar]
  27. Carmichael ST, Price JL. 1995b. Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363:642–64 [Google Scholar]
  28. Carmichael ST, Price JL. 1996. Connectional networks within the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 371:179–207 [Google Scholar]
  29. Cavada C, Company T, Tejedor J, Cruz-Rizzolo RJ, Reinoso-Suarez F. 2000. The anatomical connections of the macaque monkey orbitofrontal cortex. A review. Cerebral. Cortex 10:220–42 [Google Scholar]
  30. Damasio A. 1994. Descarte's Error: Emotion, Reason, and the Human Brain New York: Harcourt Brace [Google Scholar]
  31. Davis M. 2000. The role of the amygdala in conditioned and unconditioned fear and anxiety. See Aggleton 2000 213–87
  32. Daw ND, Niv Y, Dayan P. 2005. Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8:1704–11 [Google Scholar]
  33. Daw ND, O'Doherty JP, Dayan P, Seymour B, Dolan RJ. 2006. Cortical substrates for exploratory decisions in humans. Nature 441:876–79 [Google Scholar]
  34. Dayan P, Abbott LF. 2001. Theoretical Neuroscience Cambridge, MA: MIT Press [Google Scholar]
  35. Dorris MC, Glimcher PW. 2004. Activity in posterior parietal cortex is correlated with the relative subjective desirability of action. Neuron 44:365–78 [Google Scholar]
  36. Freese JL, Amaral DG. 2005. The organization of projections from the amygdala to visual cortical areas TE and V1 in the macque monkey. J. Comp. Neurol. 486:295–317 [Google Scholar]
  37. Fusi S, Asaad WF, Miller EK, Wang XJ. 2007. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54:319–33 [Google Scholar]
  38. Fuster J. 2008. The Prefrontal Cortex London: Elsevier [Google Scholar]
  39. Fuster JM, Bodner M, Kroger JK. 2000. Cross-modal and cross-temporal association in neurons of frontal cortex. Nature 405:347–51 [Google Scholar]
  40. Fuster JM, Uyeda AA. 1971. Reactivity of limbic neurons of the monkey to appetitive and aversive signals. Electroencephalogr. Clin. Neurophysiol. 30:281–93 [Google Scholar]
  41. Ghashghaei H, Barbas H. 2002. Pathways for emotion: interactions of prefrontal and anterior temporal pathways in the amygdala of the rhesus monkey. Neuroscience 115:1261–79 [Google Scholar]
  42. Ghashghaei HT, Hilgetag CC, Barbas H. 2007. Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34:905–23 [Google Scholar]
  43. Gothard KM, Battaglia FP, Erickson CA, Spitler KM, Amaral DG. 2007. Neural responses to facial expression and face identity in the monkey amygdala. J. Neurophysiol. 97:1671–83 [Google Scholar]
  44. Gottfried J, O'Doherty J, Dolan RJ. 2003. Encoding predictive reward value in human amygdala and orbitofrontal cortex. Science 301:1104–7 [Google Scholar]
  45. Gottfried JA, Dolan RJ. 2004. Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nat. Neurosci. 7:1144–52 [Google Scholar]
  46. Graybiel AM. 2008. Habits, rituals, and the evaluative brain. Annu. Rev. Neurosci. 31:359–87 [Google Scholar]
  47. Hampton AN, Adolphs R, Tyszka MJ, O'Doherty JP. 2007. Contributions of the amygdala to reward expectancy and choice signals in human prefrontal cortex. Neuron 55:545–55 [Google Scholar]
  48. Holland PC, Gallagher M. 2004. Amygdala-frontal interactions and reward expectancy. Curr. Opin. Neurobiol. 14:148–55 [Google Scholar]
  49. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79:2554–58 [Google Scholar]
  50. Izquierdo A, Murray EA. 2005. Opposing effects of amygdala and orbital prefrontal cortex lesions on the extinction of instrumental responding in macaque monkeys. Eur. J. Neurosci. 22:2341–46 [Google Scholar]
  51. Izquierdo A, Murray EA. 2007. Selective bilateral amygdala lesions in rhesus monkeys fail to disrupt object reversal learning. J. Neurosci. 27:1054–62 [Google Scholar]
  52. Izquierdo A, Suda RK, Murray EA. 2004. Bilateral orbital prefrontal cortex lesions in rhesus monkeys disrupt choices guided by both reward value and reward contingency. J. Neurosci. 24:7540–48 [Google Scholar]
  53. Izquierdo A, Suda RK, Murray EA. 2005. Comparison of the effects of bilateral orbital prefrontal cortex lesions and amygdala lesions on emotional responses in rhesus monkeys. J. Neurosci. 25:8534–42 [Google Scholar]
  54. Jaeger H, Haas H. 2004. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304:78–80 [Google Scholar]
  55. James W. 1884. What is an emotion?. Mind 9:188–205 [Google Scholar]
  56. James W. 1894. The physical basis of emotion. Psychol. Rev. 1:516–29 [Google Scholar]
  57. Jones B, Mishkin M. 1972. Limbic lesions and the problem of stimulus-reinforcement associations. Exp. Neurol. 36:362–77 [Google Scholar]
  58. Kable JW, Glimcher PW. 2007. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10:1625–33 [Google Scholar]
  59. Kalin NH, Shelton SE, Davidson RJ. 2004. The role of the central nucleus of the amygdala in mediating fear and anxiety in the primate. J. Neurosci. 24:5506–15 [Google Scholar]
  60. Kalin NH, Shelton SE, Davidson RJ. 2007. Role of the primate orbitofrontal cortex in mediating anxious temperament. Biol. Psychiatry 62:1134–39 [Google Scholar]
  61. Kazama A, Bachevalier J. 2009. Selective aspiration or neurotoxic lesions of orbital frontal areas 11 and 13 spared monkeys' performance on the object discrimination reversal task. J. Neurosci. 29:2794–804 [Google Scholar]
  62. Kennerley SW, Dahmubed AF, Lara AH, Wallis JD. 2008. Neurons in the frontal lobe encode the value of multiple decision variables. J. Cogn. Neurosci. 21:1162–78 [Google Scholar]
  63. Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF. 2006. Optimal decision making and the anterior cingulate cortex. Nat. Neurosci. 9:940–47 [Google Scholar]
  64. Kim S, Hwang J, Lee D. 2008. Prefrontal coding of temporally discounted values during intertemporal choice. Neuron 59:161–72 Erratum Neuron 59:3522 [Google Scholar]
  65. Kluver H, Bucy P. 1939. Preliminary analysis of functions of the temporal lobes in monkeys. Arch. Neurol. Psychiatry 42:979–1000 [Google Scholar]
  66. Knutson B, Adams CM, Fong GW, Hommer D. 2001. Anticipation of increasing monetary reward selectively recruits nucleus accumbens. J. Neurosci. 21:RC159 [Google Scholar]
  67. Knutson B, Cooper JC. 2005. Functional magnetic resonance imaging of reward prediction. Curr. Opin. Neurol. 18:411–17 [Google Scholar]
  68. Kondo H, Saleem KS, Price JL. 2005. Differential connections of the perirhinal and parahippocampal cortex with the orbital and medial prefrontal networks in macaque monkeys. J. Comp. Neurol. 493:479–509 [Google Scholar]
  69. Kuraoka K, Nakamura K. 2007. Responses of single neurons in monkey amygdala to facial and vocal emotions. J. Neurophysiol. 97:1379–87 [Google Scholar]
  70. Laine CM, Spitler KM, Mosher CP, Gothard KM. 2009. Behavioral triggers of skin conductance responses and their neural correlates in the primate amygdala. J. Neurophysiol. 101:1749–54 [Google Scholar]
  71. Lang PJ. 1994. The varieties of emotional experience: a meditation on James-Lange theory. Psychol. Rev. 101:211–21 [Google Scholar]
  72. Lang PJ, Bradley MM, Cuthbert BN. 1990. Emotion, attention, and the startle reflex. Psychol. Rev. 97:377–95 [Google Scholar]
  73. Lang PJ, Davis M. 2006. Emotion, motivation, and the brain: reflex foundations in animal and human research. Prog. Brain Res. 156:3–29 [Google Scholar]
  74. Lange C. 1922. The Emotions Baltimore, MD: Williams & Wilkins [Google Scholar]
  75. Lau B, Glimcher PW. 2008. Value representations in the primate striatum during matching behavior. Neuron 58:451–63 [Google Scholar]
  76. LeDoux JE. 2000. Emotion circuits in the brain. Annu. Rev. Neurosci. 23:155–84 [Google Scholar]
  77. Leonard CM, Rolls ET, Wilson FA, Baylis GC. 1985. Neurons in the amygdala of the monkey with responses selective for faces. Behav. Brain Res. 15:159–76 [Google Scholar]
  78. Li N, DiCarlo JJ. 2008. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science 321:1502–7 [Google Scholar]
  79. Likhtik E, Pelletier JG, Paz R, Pare D. 2005. Prefrontal control of the amygdala. J. Neurosci. 25:7429–37 [Google Scholar]
  80. Lu MT, Preston JB, Strick PL. 1994. Interconnections between the prefrontal cortex and the premotor areas in the frontal lobe. J. Comp. Neurol. 341:375–92 [Google Scholar]
  81. Machado CJ, Bachevalier J. 2007. The effects of selective amygdala, orbital frontal cortex or hippocampal formation lesions on reward assessment in nonhuman primates. Eur. J. Neurosci. 25:2885–904 [Google Scholar]
  82. Machado CJ, Kazama AM, Bachevalier J. 2009. Impact of amygdala, orbital frontal, or hippocampal lesions on threat avoidance and emotional reactivity in nonhuman primates. Emotion 9:147–63 [Google Scholar]
  83. Malkova L, Gaffan D, Murray EA. 1997. Excitotoxic lesions of the amygdala fail to produce impairment in visual learning for auditory secondary reinforcement but interfere with reinforcer devaluation effects in rhesus monkeys. J. Neurosci. 17:6011–20 [Google Scholar]
  84. Mansouri FA, Matsumoto K, Tanaka K. 2006. Prefrontal cell activities related to monkeys' success and failure in adapting to rule changes in a Wisconsin Card Sorting Test analog. J. Neurosci. 26:2745–56 [Google Scholar]
  85. Maren S. 2005. Synaptic mechanisms of associative memory in the amygdala. Neuron 47:783–86 [Google Scholar]
  86. Maunsell JH. 2004. Neuronal representations of cognitive state: reward or attention?. Trends Cogn. Sci. 8:261–65 [Google Scholar]
  87. McClure SM, Laibson DI, Loewenstein G, Cohen JD. 2004. Separate neural systems value immediate and delayed monetary rewards. Science 306:503–7 [Google Scholar]
  88. McCoy AN, Platt ML. 2005. Risk-sensitive neurons in macaque posterior cingulate cortex. Nat. Neurosci. 8:1220–27 [Google Scholar]
  89. McDonald AJ. 1998. Cortical pathways to the mammalian amygdala. Prog. Neurobiol. 55:257–332 [Google Scholar]
  90. Milad MR, Quirk GJ. 2002. Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74 [Google Scholar]
  91. Miller EK, Cohen JD. 2001. An integrative theory of prefrontal cortex function. Annu. Rev. Neurosci. 24:167–202 [Google Scholar]
  92. Miyashita Y, Chang H. 1988. Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331:68–70 [Google Scholar]
  93. Mongillo G, Barak O, Tsodyks M. 2008. Synaptic theory of working memory. Science 319:1543–46 [Google Scholar]
  94. Montague PR, King-Casas B, Cohen JD. 2006. Imaging valuation models in human choice. Annu. Rev. Neurosci. 29:417–48 [Google Scholar]
  95. Morecraft RJ, Geula C, Mesulam MM. 1992. Cytoarchitecture and neural afferents of orbitofrontal cortex in the brain of the monkey. J. Comp. Neurol. 323:341–58 [Google Scholar]
  96. Morrison S, Salzman C. 2009. The convergence of information about rewarding and aversive stimuli in single neurons. J. Neurosci. 29:11471–83 [Google Scholar]
  97. Murray EA. 2008. Neuropsychology of primate reward processes. New Encyclopedia of Neuroscience 6 LR Squire 993–99 Oxford: Academic Press [Google Scholar]
  98. Murray EA, Izquierdo A. 2007. Orbitofrontal cortex and amygdala contributions to affect and action in primates. Ann. N.Y. Acad. Sci. 1121:273–96 [Google Scholar]
  99. Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J. 2006. Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50:631–41 [Google Scholar]
  100. Myers KM, Davis M. 2007. Mechanisms of fear extinction. Mol. Psychiatry 12:120–50 [Google Scholar]
  101. Nishijo H, Ono T, Nishino H. 1988a. Single neuron responses in amygdala of alert monkey during complex sensory stimulation with affective significance. J. Neurosci. 8:3570–83 [Google Scholar]
  102. Nishijo H, Ono T, Nishino H. 1988b. Topographic distribution of modality-specific amygdalar neurons in alert monkey. J. Neurosci. 8:3556–69 [Google Scholar]
  103. Ochsner KN, Gross JJ. 2005. The cognitive control of emotion. Trends Cogn. Sci. 9:242–49 [Google Scholar]
  104. O'Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C. 2001. Abstract reward and punishment representations in the human orbitofrontal cortex. Nat. Neurosci. 4:95–102 [Google Scholar]
  105. Olsson A, Phelps EA. 2004. Learned fear of “unseen” faces after Pavlovian, observational, and instructed fear. Psychol. Sci. 15:822–28 [Google Scholar]
  106. Ongur D, An X, Price JL. 1998. Prefrontal cortical projections to the hypothalamus in macaque monkeys. J. Comp. Neurol. 401:480–505 [Google Scholar]
  107. O'Reilly R, Munakata Y. 2000. Computational Explorations in Cognitive Neuroscience Cambridge, MA: MIT Press [Google Scholar]
  108. Padoa-Schioppa C, Assad JA. 2006. Neurons in the orbitofrontal cortex encode economic value. Nature 441:223–26 [Google Scholar]
  109. Padoa-Schioppa C, Assad JA. 2008. The representation of economic value in the orbitofrontal cortex is invariant for changes of menu. Nat. Neurosci. 11:95–102 [Google Scholar]
  110. Pare D, Quirk GJ, Ledoux JE. 2004. New vistas on amygdala networks in conditioned fear. J. Neurophysiol. 92:1–9 [Google Scholar]
  111. Pare D, Royer S, Smith Y, Lang EJ. 2003. Contextual inhibitory gating of impulse traffic in the intra-amygdaloid network. Ann. N. Y. Acad. Sci. 985:78–91 [Google Scholar]
  112. Parkinson J, Crofts HS, McGuigan M, Tomic DL, Everitt BJ, Roberts AC. 2001. The role of the primate amygdala in conditioned reinforcement. J. Neurosci. 21:7770–80 [Google Scholar]
  113. Paton J, Belova M, Morrison S, Salzman C. 2006. The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439:865–70 [Google Scholar]
  114. Pearce J, Hall G. 1980. A model for Pavlovian conditioning: variations in the effectiveness of conditioned but not unconditioned stimuli. Psychol. Rev. 87:532–52 [Google Scholar]
  115. Pessoa L. 2008. On the relationship between emotion and cognition. Nat. Rev. Neurosci. 9:148–58 [Google Scholar]
  116. Petrides M, Pandya D. 1994. Comparative architectonic analysis of the human and macaque frontal cortex. Handbook of Neuropsychology F Boller, J Grafman 17–57 New York: Elsevier [Google Scholar]
  117. Phelps EA, LeDoux JE. 2005. Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron 48:175–87 [Google Scholar]
  118. Pitkanen A, Amaral DG. 1998. Organization of the intrinsic connections of the monkey amygdaloid complex: projections originating in the lateral nucleus. J. Comp. Neurol. 398:431–58 [Google Scholar]
  119. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38 [Google Scholar]
  120. Preuss TM. 1995. Do rats have prefrontal cortex? The Rose-Woolsey-Akert program reconsidered. J. Cogn. Neurosci. 7:1–24 [Google Scholar]
  121. Price JL. 2007. Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann. N. Y. Acad. Sci. 1121:54–71 [Google Scholar]
  122. Pritchard TC, Schwartz GJ, Scott TR. 2007. Taste in the medial orbitofrontal cortex of the macaque. Ann. N. Y. Acad. Sci. 1121:121–35 [Google Scholar]
  123. Quirk GJ, Mueller D. 2008. Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33:56–72 [Google Scholar]
  124. Quirk GJ, Russo GK, Barron JL, Lebron K. 2000. The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J. Neurosci. 20:6225–31 [Google Scholar]
  125. Rangel A, Camerer C, Montague PR. 2008. A framework for studying the neurobiology of value-based decision making. Nat. Rev. Neurosci. 9:545–56 [Google Scholar]
  126. Rigotti M, Ben Dayan Rubin D, Morrison SE, Salzman CD, Fusi S. 2010a. Attractor concretion as a mechanism for the formation of context representations. NeuroImage doi: 10.1016/j.neuroimage.2010.01.047. In press [Google Scholar]
  127. Rigotti M, Ben-Dayan Rubin D, Wang X-J, Fusi S. 2010b. The importance of the diversity in neural responses in context-dependent tasks. Submitted
  128. Robbins T, Arnsten A. 2009. The neuropsychopharmacology of fronto-executive function: monoaminergic modulation. Annu. Rev. Neurosci. 32:267–87 [Google Scholar]
  129. Roesch MR, Olson CR. 2004. Neuronal activity related to reward value and motivation in primate frontal cortex. Science 304:307–10 [Google Scholar]
  130. Rolls E, Deco G. 2002. Computational Neuroscience of Vision Oxford: Oxford Univ. Press [Google Scholar]
  131. Romanski LM, Bates JF, Goldman-Rakic PS. 1999. Auditory belt and parabelt projections to the prefrontal cortex in the rhesus monkey. J. Comp. Neurol. 403:141–57 [Google Scholar]
  132. Rudebeck PH, Bannerman DM, Rushworth MF. 2008. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn. Affect. Behav. Neurosci. 8:485–97 [Google Scholar]
  133. Rushworth MF, Behrens TE. 2008. Choice, uncertainty and value in prefrontal and cingulate cortex. Nat. Neurosci. 11:389–97 [Google Scholar]
  134. Russell JA. 1980. A circumplex model of affect. J. Pers. Soc. Psychol. 39:1161–78 [Google Scholar]
  135. Saddoris MP, Gallagher M, Schoenbaum G. 2005. Rapid associative encoding in basolateral amygdala depends on connections with orbitofrontal cortex. Neuron 46:321–31 [Google Scholar]
  136. Salzman CD, Belova MA, Paton JJ. 2005. Beetles, boxes and brain cells: neural mechanisms underlying valuation and learning. Curr. Opin. Neurobiol. 15:721–29 [Google Scholar]
  137. Salzman CD, Paton JJ, Belova MA, Morrison SE. 2007. Flexible neural representations of value in the primate brain. Ann. N. Y. Acad. Sci. 1121:336–54 [Google Scholar]
  138. Samejima K, Ueda Y, Doya K, Kimura M. 2005. Representation of action-specific reward values in the striatum. Science 310:1337–40 [Google Scholar]
  139. Sanghera MK, Rolls ET, Roper-Hall A. 1979. Visual responses of neurons in the dorsolateral amygdala of the alert monkey. Exp. Neurol. 63:610–26 [Google Scholar]
  140. Schoenbaum G, Setlow B, Saddoris MP, Gallagher M. 2003. Encoding predicted outcome and acquired value in orbitofrontal cortex during cue sampling depends upon input from basolateral amygdala. Neuron 39:855–67 [Google Scholar]
  141. Seymour B, O'Doherty JP, Dayan P, Koltzenburg M, Jones AK. et al. 2004. Temporal difference models describe higher-order learning in humans. Nature 429:664–67 [Google Scholar]
  142. Spiegler BJ, Mishkin M. 1981. Evidence for the sequential participation of inferior temporal cortex and amygdala in the acquisition of stimulus-reward associations. Behav. Brain Res. 3:303–17 [Google Scholar]
  143. Stefanacci L, Amaral DG. 2000. Topographic organization of cortical inputs to the lateral nucleus of the macaque monkey amygdala: a retrograde tracing study. J. Comp. Neurol. 421:52–79 [Google Scholar]
  144. Stefanacci L, Amaral DG. 2002. Some observations on cortical inputs to the macaque monkey amygdala: an anterograde tracing study. J. Comp. Neurol. 451:301–23 [Google Scholar]
  145. Stefanacci L, Suzuki WA, Amaral DG. 1996. Organization of connections between the amygdaloid complex and the perirhinal and parahippocampal cortices in macaque monkeys. J. Comp. Neurol. 375:552–82 [Google Scholar]
  146. Stuss DT, Levine B, Alexander MP, Hong J, Palumbo C. et al. 2000. Wisconsin Card Sorting Test performance in patients with focal frontal and posterior brain damage: effects of lesion location and test structure on separable cognitive processes. Neuropsychologia 38:388–402 [Google Scholar]
  147. Sugase-Miyamoto Y, Richmond BJ. 2005. Neuronal signals in the monkey basolateral amygdala during reward schedules. J. Neurosci. 25:11071–83 [Google Scholar]
  148. Sugrue LP, Corrado GS, Newsome WT. 2004. Matching behavior and the representation of value in the parietal cortex. Science 304:1782–87 [Google Scholar]
  149. Susillo D, Abbott L. 2009. Generating coherent patterns of activity from chaotic neural networks. Neuron 63:544–57 [Google Scholar]
  150. Sutton R, Barto A. 1998. Reinforcement Learning Cambridge, MA: MIT Press [Google Scholar]
  151. Suzuki WA, Amaral DG. 1994. Perirhinal and parahippocampal cortices of the macaque monkey: cortical afferents. J. Comp. Neurol. 350:497–533 [Google Scholar]
  152. Tremblay L, Schultz W. 1999. Relative reward preference in primate orbitofrontal cortex. Nature 398:704–8 [Google Scholar]
  153. von der Malsburg C. 1999. The what and why of binding: the modeler's perspective. Neuron 24:95–104 [Google Scholar]
  154. Wallis JD. 2007. Orbitofrontal cortex and its contribution to decision-making. Annu. Rev. Neurosci. 30:31–56 [Google Scholar]
  155. Wallis JD, Anderson KC, Miller EK. 2001. Single neurons in prefrontal cortex encode abstract rules. Nature 411:953–56 [Google Scholar]
  156. Wallis JD, Miller EK. 2003. Neuronal activity in primate dorsolateral and orbital prefrontal cortex during performance of a reward preference task. Eur. J. Neurosci. 18:2069–81 [Google Scholar]
  157. Wang XJ. 2002. Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36:955–68 [Google Scholar]
  158. Weiskrantz L. 1956. Behavioral changes associated with ablation of the amygdaloid complex in monkeys. J. Comp. Neurol. 49:381–91 [Google Scholar]
  159. Wellman LL, Gale K, Malkova L. 2005. GABAA-mediated inhibition of basolateral amygdala blocks reward devaluation in macaques. J. Neurosci. 25:4577–86 [Google Scholar]
  160. Wilson FA, Rolls ET. 2005. The primate amygdala and reinforcement: a dissociation between rule-based and associatively-mediated memory revealed in neuronal activity. Neuroscience 133:1061–72 [Google Scholar]
  161. Wise SP. 2008. Forward frontal fields: phylogeny and fundamental function. Trends Neurosci. 31:599–608 [Google Scholar]
  162. Wittgenstein W. 1958. Philosophical Investigations Oxford: Blackwell [Google Scholar]
  163. Yakovlev V, Fusi S, Berman E, Zohary E. 1998. Inter-trial neuronal activity in inferior temporal cortex: a putative vehicle to generate long-term visual associations. Nat. Neurosci. 1:310–17 [Google Scholar]
/content/journals/10.1146/annurev.neuro.051508.135256
Loading
/content/journals/10.1146/annurev.neuro.051508.135256
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error