1932

Abstract

More than three decades of research have demonstrated a role for hippocampal place cells in representation of the spatial environment in the brain. New studies have shown that place cells are part of a broader circuit for dynamic representation of self-location. A key component of this network is the entorhinal grid cells, which, by virtue of their tessellating firing fields, may provide the elements of a path integration–based neural map. Here we review how place cells and grid cells may form the basis for quantitative spatiotemporal representation of places, routes, and associated experiences during behavior and in memory. Because these cell types have some of the most conspicuous behavioral correlates among neurons in nonsensory cortical systems, and because their spatial firing structure reflects computations internally in the system, studies of entorhinal-hippocampal representations may offer considerable insight into general principles of cortical network dynamics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.neuro.31.061307.090723
2008-07-21
2025-03-23
Loading full text...

Full text loading...

/deliver/fulltext/ne/31/1/annurev.neuro.31.061307.090723.html?itemId=/content/journals/10.1146/annurev.neuro.31.061307.090723&mimeType=html&fmt=ahah

Literature Cited

  1. Alonso A, Llinas RR. 1989. Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II. Nature 342:175–77 [Google Scholar]
  2. Amit DJ. 1989. Modelling Brain Function: The World of Attractor Networks New York: Cambridge Univ. Press [Google Scholar]
  3. Barlow JS. 1964. Inertial navigation as a basis for animal navigation. J. Theor. Biol. 6:76–117 [Google Scholar]
  4. Barnes CA, McNaughton BL, Mizumori SJ, Leonard BW, Lin LH. 1990. Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. Prog. Brain Res. 83:287–300 [Google Scholar]
  5. Barry C, Hayman R, Burgess N, Jeffery KJ. 2007. Experience-dependent rescaling of entorhinal grids. Nat. Neurosci. 10:682–84 [Google Scholar]
  6. Battaglia FP, Treves A. 1998. Attractor neural networks storing multiple space representations: a model for hippocampal place fields. Phys. Rev. E 58:7738–53 [Google Scholar]
  7. Blair HT, Welday AC, Zhang K. 2007. Scale-invariant memory representations emerge from moire interference between grid fields that produce theta oscillations: a computational model. J. Neurosci. 27:3211–29 [Google Scholar]
  8. Blum KI, Abbott LF. 1996. A model of spatial map formation in the hippocampus of the rat. Neural Comp. 8:85–93 [Google Scholar]
  9. Blumenfeld B, Preminger S, Sagi D, Tsodyks M. 2006. Dynamics of memory representations in networks with novelty-facilitated synaptic plasticity. Neuron 52:383–94 [Google Scholar]
  10. Bostock E, Muller RU, Kubie JL. 1991. Experience-dependent modifications of hippocampal place cell firing. Hippocampus 1:193–205 [Google Scholar]
  11. Brun VH, Otnass MK, Molden S, Steffenach HA, Witter MP et al. 2002. Place cells and place recognition maintained by direct entorhinal-hippocampal circuitry. Science 296:2243–46 [Google Scholar]
  12. Burak Y, Fiete I. 2006. Do we understand the emergent dynamics of grid cell activity?. J. Neurosci. 26:9352–54 [Google Scholar]
  13. Burgess N, Barry C, O'Keefe J. 2007. An oscillatory interference model of grid cell firing. Hippocampus 17:801–12 [Google Scholar]
  14. Buzsáki G. 1989. Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience 31:551–70 [Google Scholar]
  15. Buzsáki G, Leung LW, Vanderwolf CH. 1983. Cellular bases of hippocampal EEG in the behaving rat. Brain Res. 287:139–71 [Google Scholar]
  16. Callaway EM. 2005. A molecular and genetic arsenal for systems neuroscience. Trends Neurosci. 28:196–201 [Google Scholar]
  17. Chawla MK, Guzowski JF, Ramirez-Amaya V, Lipa P, Hoffman KL et al. 2005. Sparse, environmentally selective expression of Arc RNA in the upper blade of the rodent fascia dentata by brief spatial experience. Hippocampus 15:579–86 [Google Scholar]
  18. Chen LL, Lin LH, Green EJ, Barnes CA, McNaughton BL. 1994. Head-direction cells in the rat posterior cortex. I. Anatomical distribution and behavioral modulation. Exp. Brain Res. 101:8–23 [Google Scholar]
  19. Claiborne BJ, Amaral DG, Cowan WM. 1986. A light and electron microscopic analysis of the mossy fibers of the rat dentate gyrus. J. Comp. Neurol. 246:435–58 [Google Scholar]
  20. Cooper BG, Mizumori SJ. 1999. Retrosplenial cortex inactivation selectively impairs navigation in darkness. Neuroreport 10:625–30 [Google Scholar]
  21. Cressant A, Muller RU, Poucet B. 1997. Failure of centrally placed objects to control the firing fields of hippocampal place cells. J. Neurosci. 17:2531–42 [Google Scholar]
  22. Dan Y, Poo MM. 2004. Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30 [Google Scholar]
  23. DiMattia BV, Kesner RP. 1988. Role of the posterior parietal association cortex in the processing of spatial event information. Behav. Neurosci. 102:397–403 [Google Scholar]
  24. Dolorfo CL, Amaral DG. 1998. Entorhinal cortex of the rat: topographic organization of the cells of origin of the perforant path projection to the dentate gyrus. J. Comp. Neurol. 398:25–48 [Google Scholar]
  25. Dragoi G, Buzsáki G. 2006. Temporal encoding of place sequences by hippocampal cell assemblies. Neuron 50:145–57 [Google Scholar]
  26. Eichenbaum H, Dudchenko P, Wood E, Shapiro M, Tanila H. 1999. The hippocampus, memory, and place cells: Is it spatial memory or a memory space?. Neuron 23:209–26 [Google Scholar]
  27. Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA et al. 2003. Cellular networks underlying human spatial navigation. Nature 425:184–88 [Google Scholar]
  28. Ekstrom AD, Meltzer J, McNaughton BL, Barnes CA. 2001. NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”. Neuron 31:631–38 [Google Scholar]
  29. Etienne AS, Jeffery KJ. 2004. Path integration in mammals. Hippocampus 14:180–92 [Google Scholar]
  30. Fenton AA, Muller RU. 1998. Place cell discharge is extremely variable during individual passes of the rat through the firing field. Proc. Natl. Acad. Sci. USA 95:3182–87 [Google Scholar]
  31. Ferbinteanu J, Shapiro ML. 2003. Prospective and retrospective memory coding in the hippocampus. Neuron 40:1227–39 [Google Scholar]
  32. Foster DJ, Wilson MA. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440:680–83 [Google Scholar]
  33. Frank LM, Brown EN, Wilson M. 2000. Trajectory encoding in the hippocampus and entorhinal cortex. Neuron 27:169–78 [Google Scholar]
  34. Frank LM, Stanley GB, Brown EN. 2004. Hippocampal plasticity across multiple days of exposure to novel environments. J. Neurosci. 24:7681–89 [Google Scholar]
  35. Fuhs MC, Touretzky DS. 2006. A spin glass model of path integration in rat medial entorhinal cortex. J. Neurosci. 26:4266–76 [Google Scholar]
  36. Fyhn M, Hafting T, Treves A, Moser M-B, Moser EI. 2007. Hippocampal remapping and grid realignment in entorhinal cortex. Nature 446:190–94 [Google Scholar]
  37. Fyhn M, Molden S, Hollup SA, Moser M-B, Moser EI. 2002. Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35:555–66 [Google Scholar]
  38. Fyhn M, Molden S, Witter MP, Moser EI, Moser M-B. 2004. Spatial representation in the entorhinal cortex. Science 305:1258–64 [Google Scholar]
  39. Giocomo LM, Zilli EA, Fransen E, Hasselmo ME. 2007. Temporal frequency of subthreshold oscillations scales with entorhinal grid cell field spacing. Science 315:1719–22 [Google Scholar]
  40. Gothard KM, Skaggs WE, McNaughton BL. 1996a. Dynamics of mismatch correction in the hippocampal ensemble code for space: interaction between path integration and environmental cues. J. Neurosci. 16:8027–40 [Google Scholar]
  41. Gothard KM, Skaggs WE, Moore KM, McNaughton BL. 1996b. Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci. 16:823–35 [Google Scholar]
  42. Hafting T, Fyhn M, Molden S, Moser M-B, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature 436:801–6 [Google Scholar]
  43. Hafting T, Fyhn M, Moser M-B, Moser EI. 2006. Phase precession and phase locking in entorhinal grid cells. Soc. Neurosci. Abstr. 32:68.8 [Google Scholar]
  44. Hahn TT, Sakmann B, Mehta MR. 2007. Differential responses of hippocampal subfields to cortical up-down states. Proc. Natl. Acad. Sci. USA 104:5169–74 [Google Scholar]
  45. Hampson RE, Heyser CJ, Deadwyler SA. 1993. Hippocampal cell firing correlates of delayed-match-to-sample performance in the rat. Behav. Neurosci. 107:715–39 [Google Scholar]
  46. Hargreaves EL, Rao G, Lee I, Knierim JJ. 2005. Major dissociation between medial and lateral entorhinal input to the dorsal hippocampus. Science 308:1792–94 [Google Scholar]
  47. Harris KD, Csicsvari J, Hirase H, Dragoi G, Buzsáki G. 2003. Organization of cell assemblies in the hippocampus. Nature 424:552–56 [Google Scholar]
  48. Harris KD, Henze DA, Hirase H, Leinekugel X, Dragoi G et al. 2002. Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells. Nature 417:738–41 [Google Scholar]
  49. Hartley T, Maguire EA, Spiers HJ, Burgess N. 2003. The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37:877–88 [Google Scholar]
  50. Hassabis D, Kumaran D, Vann SD, Maguire EA. 2007. Patients with hippocampal amnesia cannot imagine new experiences. Proc. Natl. Acad. Sci. USA 104:1726–31 [Google Scholar]
  51. Hasselmo ME, Schnell E, Barkai E. 1995. Dynamics of learning and recall at excitatory recurrent synapses and cholinergic modulation in rat hippocampal region CA3. J. Neurosci. 15:5249–62 [Google Scholar]
  52. Hebb DO. 1949. The Organization of Behavior New York: Wiley [Google Scholar]
  53. Henze DA, Borhegyi Z, Csicsvari J, Mamiya A, Harris KD, Buzsáki G. 2000. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84:390–400 [Google Scholar]
  54. Hill AJ. 1978. First occurrence of hippocampal spatial firing in a new environment. Exp. Neurol. 62:282–97 [Google Scholar]
  55. Hopfield JJ. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 79:2554–58 [Google Scholar]
  56. Hubel DH, Wiesel TN, LeVay S. 1977. Plasticity of ocular dominance columns in monkey striate cortex. Philos. Trans. R. Soc. London B Biol. Sci. 278:377–409 [Google Scholar]
  57. Huxter J, Burgess N, O'Keefe J. 2003. Independent rate and temporal coding in hippocampal pyramidal cells. Nature 425:828–32 [Google Scholar]
  58. Huxter J, Senior T, Allen K, Csicsvari J. Trajectory and heading in theta-organized spike timing. Soc. Neurosci. Abstr. 33:640.13 [Google Scholar]
  59. Isomura Y, Sirota A, Ozen S, Montgomery S, Mizuseki K et al. 2006. Integration and segregation of activity in entorhinal-hippocampal subregions by neocortical slow oscillations. Neuron 52:871–82 [Google Scholar]
  60. Jensen O, Lisman JE. 1996. Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learn. Mem. 3:279–87 [Google Scholar]
  61. Jensen O, Lisman JE. 2000. Position reconstruction from an ensemble of hippocampal place cells: contribution of theta phase coding. J. Neurophysiol. 83:2602–9 [Google Scholar]
  62. Ji D, Wilson MA. 2007. Coordinated memory replay in the visual cortex and hippocampus during sleep. Nat. Neurosci. 10:100–7 [Google Scholar]
  63. Jog MS, Kubota Y, Connolly CI, Hillegaart V, Graybiel AM. 1999. Building neural representations of habits. Science 286:1745–49 [Google Scholar]
  64. Johnson A, Redish AD. 2007. Neural ensembles in CA3 transiently encode paths forward of the animal at a decision point. J. Neurosci. 27:12176–89 [Google Scholar]
  65. Jung MW, McNaughton BL. 1993. Spatial selectivity of unit activity in the hippocampal granular layer. Hippocampus 3:165–82 [Google Scholar]
  66. Jung MW, Wiener SI, McNaughton BL. 1994. Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat. J. Neurosci. 14:7347–56 [Google Scholar]
  67. Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, Muller RU. 1998. Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade. Science 280:2121–26 [Google Scholar]
  68. Kjelstrup KB, Solstad T, Brun VH, Fyhn M, Hafting T et al. 2007. Very large place fields at the ventral pole of the hippocampal CA3 area. Soc. Neurosci. Abstr. 33:93.1 [Google Scholar]
  69. Klink R, Alonso A. 1993. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons. J. Neurophysiol. 70:144–57 [Google Scholar]
  70. Kolb B, Sutherland RJ, Whishaw IQ. 1983. A comparison of the contributions of the frontal and parietal association cortex to spatial localization in rats. Behav. Neurosci. 97:13–27 [Google Scholar]
  71. Lee AK, Wilson MA. 2002. Memory of sequential experience in the hippocampus during slow wave sleep. Neuron 36:1183–94 [Google Scholar]
  72. Lee I, Yoganarasimha D, Rao G, Knierim JJ. 2004. Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430:456–59 [Google Scholar]
  73. Lengyel M, Szatmary Z, Erdi P. 2003. Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus 13:700–14 [Google Scholar]
  74. Leutgeb JK, Leutgeb S, Moser M-B, Moser EI. 2007a. Pattern separation in dentate gyrus and CA3 of the hippocampus. Science 315:961–66 [Google Scholar]
  75. Leutgeb JK, Leutgeb S, Tashiro A, Moser EI, Moser M-B. 2007b. The encoding of novelty in the dentate gyrus and CA3 network. Soc. Neurosci. Abstr. 33:93.9 [Google Scholar]
  76. Leutgeb JK, Leutgeb S, Treves A, Meyer R, Barnes CA et al. 2005. Progressive transformation of hippocampal neuronal representations in “morphed” environments. Neuron 48:345–58 [Google Scholar]
  77. Leutgeb JK, Moser EI. 2007. Pattern separation and the function of the dentate gyrus. Neuron 55:176–78 [Google Scholar]
  78. Leutgeb S, Colgin LL, Jezek K, Leutgeb JK, Fyhn M et al. 2007. Path integration-based attractor dynamics in the entorhinal cortex. Soc. Neurosci. Abstr. 33:93.8 [Google Scholar]
  79. Leutgeb S, Leutgeb JK, Barnes CA, Moser EI, McNaughton BL, Moser M-B. 2005a. Independent codes for spatial and episodic memory in hippocampal neuronal ensembles. Science 309:619–23 [Google Scholar]
  80. Leutgeb S, Leutgeb JK, Moser M-B, Moser EI. 2005b. Place cells, spatial maps and the population code for memory. Curr. Opin. Neurobiol. 15:738–46 [Google Scholar]
  81. Leutgeb S, Leutgeb JK, Moser EI, Moser M-B. 2006. Fast rate coding in hippocampal CA3 cell ensembles. Hippocampus 16:765–74 [Google Scholar]
  82. Leutgeb S, Leutgeb JK, Treves A, Moser M-B, Moser EI. 2004. Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305:1295–98 [Google Scholar]
  83. Lever C, Wills T, Cacucci F, Burgess N, O'Keefe J. 2002. Long-term plasticity in hippocampal place-cell representation of environmental geometry. Nature 416:90–94 [Google Scholar]
  84. Markus EJ, Qin YL, Leonard B, Skaggs WE, McNaughton BL, Barnes CA. 1995. Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J. Neurosci. 15:7079–94 [Google Scholar]
  85. Martin PD, Berthoz A. 2002. Development of spatial firing in the hippocampus of young rats. Hippocampus 12:465–80 [Google Scholar]
  86. Matthews DA, Nadler JV, Lynch GS, Cotman CW. 1974. Development of cholinergic innervation in the hippocampal formation of the rat. I. Histochemical demonstration of acetylcholinesterase activity. Dev. Biol. 36:130–41 [Google Scholar]
  87. Maurer AP, VanRhoads SR, Sutherland GR, Lipa P, McNaughton BL. 2005. Self-motion and the origin of differential spatial scaling along the septo-temporal axis of the hippocampus. Hippocampus 15:841–52 [Google Scholar]
  88. McClelland JL, Goddard NH. 1996. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex. Hippocampus 6:654–65 [Google Scholar]
  89. McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA. 1996. Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice. Cell 87:1339–49 [Google Scholar]
  90. McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R et al. 2007. Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network. Science 317:94–99 [Google Scholar]
  91. McNaughton BL, Barnes CA, Meltzer J, Sutherland RJ. 1989. Hippocampal granule cells are necessary for normal spatial learning but not for spatially-selective pyramidal cell discharge. Exp. Brain Res. 76:485–96 [Google Scholar]
  92. McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser M-B. 2006. Path integration and the neural basis of the “cognitive map.”. Nat. Rev. Neurosci. 7:663–78 [Google Scholar]
  93. McNaughton BL, Morris RGM. 1987. Hippocampal synaptic enhancement and information storage within a distributed memory system. Trends Neurosci. 10:408–15 [Google Scholar]
  94. Mehta MR, Barnes CA, McNaughton BL. 1997. Experience-dependent, asymmetric expansion of hippocampal place fields. Proc. Natl. Acad. Sci. USA 94:8918–21 [Google Scholar]
  95. Mehta MR, Lee AK, Wilson MA. 2002. Role of experience and oscillations in transforming a rate code into a temporal code. Nature 417:741–46 [Google Scholar]
  96. Mehta MR, Quirk MC, Wilson MA. 2000. Experience-dependent asymmetric shape of hippocampal receptive fields. Neuron 25:707–15 [Google Scholar]
  97. Mittelstaedt ML, Mittelstaedt H. 1980. Homing by path integration in a mammal. Naturwissenschaften 67:566–67 [Google Scholar]
  98. Muller RU, Kubie JL. 1987. The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells. J. Neurosci. 7:1951–68 [Google Scholar]
  99. Nadel L. 1991. The hippocampus and space revisited. Hippocampus 1:221–29 [Google Scholar]
  100. Nakazawa K, Quirk MC, Chitwood RA, Watanabe M, Yeckel MF et al. 2002. Requirement for hippocampal CA3 NMDA receptors in associative memory recall. Science 297:211–18 [Google Scholar]
  101. Nitz DA. 2006. Tracking route progression in the posterior parietal cortex. Neuron 49:747–56 [Google Scholar]
  102. O'Keefe J. 1976. Place units in the hippocampus of the freely moving rat. Exp. Neurol. 51:78–109 [Google Scholar]
  103. O'Keefe J, Burgess N. 1996. Geometric determinants of the place fields of hippocampal neurons. Nature 381:425–28 [Google Scholar]
  104. O'Keefe J, Burgess N. 2005. Dual phase and rate coding in hippocampal place cells: theoretical significance and relationship to entorhinal grid cells. Hippocampus 15:853–66 [Google Scholar]
  105. O'Keefe J, Conway DH. 1978. Hippocampal place units in the freely moving rat: why they fire where they fire. Exp. Brain Res. 31:573–90 [Google Scholar]
  106. O'Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34:171–75 [Google Scholar]
  107. O'Keefe J, Nadel L. 1978. The Hippocampus as a Cognitive Map Oxford: Clarendon [Google Scholar]
  108. O'Keefe J, Recce ML. 1993. Phase relationship between hippocampal place units and the EEG theta rhythm. Hippocampus 3:317–30 [Google Scholar]
  109. O'Keefe J, Speakman A. 1987. Single unit activity in the rat hippocampus during a spatial memory task. Exp. Brain Res. 68:1–27 [Google Scholar]
  110. Olypher AV, Lansky P, Fenton AA. 2002. Properties of the extrapositional signal in hippocampal place cell discharge derived from the overdispersion in location-specific firing. Neuroscience 111:553–66 [Google Scholar]
  111. O'Neill J, Senior T, Csicsvari J. 2006. Place-selective firing of CA1 pyramidal cells during sharp wave/ripple network patterns in exploratory behavior. Neuron 49:143–55 [Google Scholar]
  112. Packard MG, McGaugh JL. 1996. Inactivation of hippocampus or caudate nucleus with lidocaine differentially affects expression of place and response learning. Neurobiol. Learn. Mem. 65:65–72 [Google Scholar]
  113. Parron C, Save E. 2004. Evidence for entorhinal and parietal cortices involvement in path integration in the rat. Exp. Brain Res. 159:349–59 [Google Scholar]
  114. Quirk GJ, Muller RU, Kubie JL. 1990. The firing of hippocampal place cells in the dark depends on the rat's recent experience. J. Neurosci. 10:2008–17 [Google Scholar]
  115. Quirk GJ, Muller RU, Kubie JL, Ranck JB Jr. 1992. The positional firing properties of medial entorhinal neurons: description and comparison with hippocampal place cells. J. Neurosci. 12:1945–63 [Google Scholar]
  116. Ranck JB. 1985. Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. Electrical Activity of the Archicortex G Buzs áki, CH Vanderwolf pp. 217–20 Budapest: Akademiai Kiado [Google Scholar]
  117. Redish AD, Rosenzweig ES, Bohanick JD, McNaughton BL, Barnes CA. 2000. Dynamics of hippocampal ensemble activity realignment: time versus space. J. Neurosci. 20:9298–309 [Google Scholar]
  118. Ritter J, Meyer U, Wenk H. 1972. Chemodifferentiation of the hippocampus formation in the postnatal development of albino rats. II. Transmitter enzymes. J. Hirnforsch. 13:254–78 [Google Scholar]
  119. Rolls ET. 1999. Spatial view cells and the representation of place in the primate hippocampus. Hippocampus 9:467–80 [Google Scholar]
  120. Rolls ET, Stringer SM, Elliot T. 2006. Entorhinal cortex grid cells can map to hippocampal place cells by competitive learning. Network 17:447–65 [Google Scholar]
  121. Rolls ET, Treves A. 1998. Neural Networks and Brain Function Oxford, UK: Oxford Univ. Press [Google Scholar]
  122. Samsonovich A, McNaughton BL. 1997. Path integration and cognitive mapping in a continuous attractor neural network model. J. Neurosci. 17:272–75 [Google Scholar]
  123. Sargolini F, Boccara C, Witter MP, Moser M-B, Moser EI. 2006a. Grid cells outside the medial entorhinal cortex. Soc. Neurosci. Abstr. 32:68.11 [Google Scholar]
  124. Sargolini F, Fyhn M, Hafting T, McNaughton BL, Witter MP et al. 2006b. Conjunctive representation of position, direction and velocity in entorhinal cortex. Science 312:754–58 [Google Scholar]
  125. Save E, Guazzelli A, Poucet B. 2001. Dissociation of the effects of bilateral lesions of the dorsal hippocampus and parietal cortex on path integration in the rat. Behav. Neurosci. 115:1212–23 [Google Scholar]
  126. Scoville WB, Milner B. 1957. Loss of recent memory after bilateral hippocampal lesions. J. Neurol. Neurosurg. Psychiatry 20:11–21 [Google Scholar]
  127. Shapiro ML, Kennedy PJ, Ferbinteanu J. 2006. Representing episodes in the mammalian brain. Curr. Opin. Neurobiol. 16:701–9 [Google Scholar]
  128. Shapiro ML, Tanila H, Eichenbaum H. 1997. Cues that hippocampal place cells encode: dynamic and hierarchical representation of local and distal stimuli. Hippocampus 7:624–42 [Google Scholar]
  129. Skaggs WE, McNaughton BL. 1996. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271:1870–73 [Google Scholar]
  130. Skaggs WE, McNaughton BL, Wilson MA, Barnes CA. 1996. Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus 6:149–72 [Google Scholar]
  131. Solstad T, Brun VH, Kjelstrup KB, Fyhn M, Witter MP et al. 2007. Grid expansion along the dorso-ventral axis of the medial entorhinal cortex. Soc. Neurosci. Abstr. 33:93.2 [Google Scholar]
  132. Solstad T, Moser EI, Einevoll GT. 2006. From grid cells to place cells: a mathematical model. Hippocampus 16:1026–31 [Google Scholar]
  133. Squire LR, Stark CE, Clark RE. 2004. The medial temporal lobe. Annu. Rev. Neurosci. 27:279–306 [Google Scholar]
  134. Sutherland RJ, Whishaw IQ, Kolb B. 1988. Contributions of cingulate cortex to two forms of spatial learning and memory. J. Neurosci. 8:1863–72 [Google Scholar]
  135. Takahashi N, Kawamura M, Shiota J, Kasahata N, Hirayama K. 1997. Pure topographic disorientation due to right retrosplenial lesion. Neurology 49:464–69 [Google Scholar]
  136. Taube JS. 1995. Place cells recorded in the parasubiculum of freely moving rats. Hippocampus 5:569–83 [Google Scholar]
  137. Taube JS. 1998. Head direction cells and the neurophysiological basis for a sense of direction. Prog. Neurobiol. 55:225–56 [Google Scholar]
  138. Taube JS, Muller RU, Ranck JB Jr. 1990. Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J. Neurosci. 10:420–35 [Google Scholar]
  139. Tervo DGR, Karpova AY. 2007. Rapidly inducible, genetically targeted inactivation of neural and synaptic activity in vivo. Curr. Opin. Neurobiol. 17: In press [Google Scholar]
  140. Tolman EC. 1948. Cognitive maps in rats and men. Psychol. Rev. 55:189–208 [Google Scholar]
  141. Treves A, Rolls ET. 1992. Computational constraints suggest the need for two distinct input systems to the hippocampal CA3 network. Hippocampus 2:189–99 [Google Scholar]
  142. Tsodyks M, Sejnowski T. 1995. Associative memory and hippocampal place cells. Int. J. Neural Syst. 6:Suppl.81–86 [Google Scholar]
  143. Tsodyks MV, Skaggs WE, Sejnowski TJ, McNaughton BL. 1996. Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron model. Hippocampus 6:271–80 [Google Scholar]
  144. Tulving E, Markowitsch HJ. 1998. Episodic and declarative memory: role of the hippocampus. Hippocampus 8:198–204 [Google Scholar]
  145. Ulanovsky N, Moss CF. 2007. Hippocampal cellular and network activity in freely moving echolocating bats. Nat. Neurosci. 10:224–33 [Google Scholar]
  146. Vazdarjanova A, Guzowski JF. 2004. Differences in hippocampal neuronal population responses to modifications of an environmental context: evidence for distinct, yet complementary, functions of CA3 and CA1 ensembles. J. Neurosci. 24:6489–96 [Google Scholar]
  147. Wallenstein GV, Hasselmo ME. 1998. GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. J. Neurophysiol. 78:393–408 [Google Scholar]
  148. Wills TJ, Lever C, Cacucci F, Burgess N, O'Keefe J. 2005. Attractor dynamics in the hippocampal representation of the local environment. Science 308:873–76 [Google Scholar]
  149. Wilson MA, McNaughton BL. 1993. Dynamics of the hippocampal ensemble code for space. Science 261:1055–58 [Google Scholar]
  150. Wilson MA, McNaughton BL. 1994. Reactivation of hippocampal ensemble memories during sleep. Science 265:676–79 [Google Scholar]
  151. Witter MP, Amaral DG. 2004. Hippocampal formation. The Rat Nervous System G. Paxinos pp. 637–703 San Diego: Academic, 3rd. ed. [Google Scholar]
  152. Witter MP, Moser EI. 2006. Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci. 29:671–78 [Google Scholar]
  153. Wood ER, Dudchenko PA, Eichenbaum H. 1999. The global record of memory in hippocampal neuronal activity. Nature 397:613–16 [Google Scholar]
  154. Wood ER, Dudchenko PA, Robitsek RJ, Eichenbaum H. 2000. Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27:623–33 [Google Scholar]
  155. Young BJ, Fox GD, Eichenbaum H. 1994. Correlates of hippocampal complex-spike cell activity in rats performing a nonspatial radial maze task. J. Neurosci. 14:6553–63 [Google Scholar]
  156. Zhang F, Wang LP, Brauner M, Liewald JF, Kay K et al. 2007. Multimodal fast optical interrogation of neural circuitry. Nature 446:633–39 [Google Scholar]
  157. Zinyuk L, Kubik S, Kaminsky Y, Fenton AA, Bures J. 2000. Understanding hippocampal activity by using purposeful behavior: place navigation induces place cell discharge in both task-relevant and task-irrelevant spatial reference frames. Proc. Natl. Acad. Sci. USA 97:3771–76 [Google Scholar]
  158. Zugaro MB, Monconduit L, Buzsáki G. 2005. Spike phase precession persists after transient intrahippocampal perturbation. Nat. Neurosci. 8:67–71 [Google Scholar]
/content/journals/10.1146/annurev.neuro.31.061307.090723
Loading
/content/journals/10.1146/annurev.neuro.31.061307.090723
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error