
Full text loading...
We review the rich phenomena associated with neutrino flavor transformation in the presence of neutrino self-coupling. Our exposition centers on three collective neutrino oscillation scenarios: (a) a simple bipolar neutrino system that initially consists of monoenergetic νe and , (b) a homogeneous and isotropic neutrino gas with multiple neutrino/antineutrino species and continuous energy spectra, and (c) a generic neutrino gas in an anisotropic environment. We use each of these scenarios to illustrate key facets of collective neutrino oscillations. We discuss the implications of collective neutrino flavor oscillations for core-collapse supernova physics and for the prospects of obtaining and/or constraining fundamental neutrino properties, such as the neutrino mass hierarchy and θ13 from a future observed supernova neutrino signal.
Article metrics loading...
Full text loading...
Data & Media loading...