1932

Abstract

Smart surfaces, surfaces that respond to an external stimulus in a defined manner, hold considerable potential as components in molecular-based devices, not least as discrete switching elements. Many stimuli can be used to switch surfaces between different states, including redox, light, pH, and ion triggers. The present review focuses on molecular switching through the electronic excitation of molecules on surfaces with light. In developing light-responsive surfaces, investigators face several challenges, not only in achieving high photostationary states and fully reversible switching, but also in dealing with fatigue resistance and the effect of immobilization itself on molecular properties. The immobilization of light-responsive molecules requires the design and synthesis of functional molecular components both to achieve light switching and to anchor the molecular entity onto a surface. This review discusses several demonstrative examples of photoswitchable molecular systems in which the photochemistry has been explored in the immobilized state under ambient conditions and especially on electroactive surfaces, including self-assembled monolayers, bilayers, and polymer films.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.040808.090423
2009-05-05
2025-02-08
Loading full text...

Full text loading...

/deliver/fulltext/physchem/60/1/annurev.physchem.040808.090423.html?itemId=/content/journals/10.1146/annurev.physchem.040808.090423&mimeType=html&fmt=ahah

Literature Cited

  1. Sun TL, Feng L, Gao XF, Jiang L. 1.  2005. Bioinspired surfaces with special wettability. Acc. Chem. Res. 38:644–52 [Google Scholar]
  2. Palyvoda O, Bordenyuk AN, Yatawara AK, McCullen E, Chen CC. 2.  et al. 2008. Molecular organization in SAMs used for neuronal cell growth. Langmuir 24:4097–106 [Google Scholar]
  3. Abbott NL, Gorman CB, Whitesides GM. 3.  1995. Active control of wetting using applied electrical potentials and self-assembled monolayers. Langmuir 11:16–18 [Google Scholar]
  4. Mu L, Liu Y, Cai SY, Kong JL. 4.  2007. A smart surface in a microfluidic chip for controlled protein separation. Chem. Eur. J. 13:5113–20 [Google Scholar]
  5. Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B. 5.  et al. 2001. Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. USA 98:4835–40 [Google Scholar]
  6. Katz E, Shipway AN, Willner I. 6.  2002. Electronic and optical transduction of photoisomerization processes at molecular- and bimolecular-functionalized surfaces. Photoreactive Organic Films Z Sekkat, W Knoll 220–68 San Diego: Academic [Google Scholar]
  7. Russell TP. 7.  2002. Surface-responsive materials. Science 297:964–67 [Google Scholar]
  8. Browne WR. 8.  2008. Photochemistry of immobilized photoactive compounds. Coord. Chem. Rev. In press; doi:10.1016/j.ccr.2008.05.009 [Google Scholar]
  9. Shinkai S, Yoshida T, Manabe O, Fuchita Y. 9.  1988. Photoresponsive crown ethers. Part 20. Reversible photocontrol of association-dissociation equilibria between azo-bis(benzo-18-crown-6) and diammonium cations. J. Chem. Soc. Perkin Trans. 1 6:1431–37 [Google Scholar]
  10. Kay ER, Leigh DA, Zerbetto F. 10.  2007. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. Engl. 46:72–191 [Google Scholar]
  11. Schreiber F. 11.  2004. Self-assembled monolayers: from ‘simple’ model systems to biofunctionalized interfaces. J. Phys. Condens. Matter 16:R881–900 [Google Scholar]
  12. Sun QY, de Smet LCPM, van Lagen B, Giesbers M, Thune PC. 12.  et al. 2005. Covalently attached monolayers on crystalline hydrogen-terminated silicon: extremely mild attachment by visible light. J. Am. Chem. Soc. 127:2514–23 [Google Scholar]
  13. Robertson N. 13.  2008. Catching the rainbow: light harvesting in dye-sensitized solar cells. Angew. Chem. Int. Ed. Engl. 47:1012–14 [Google Scholar]
  14. Berkovic G, Krongauz V, Weiss V. 14.  2000. Spiropyrans and spirooxazines for memories and switches. Chem. Rev. 100:1741–53 [Google Scholar]
  15. Bard AJ, Faulkner LR. 15.  2001. Electroactive layers and modified electrodes. Electrochemical Methods: Fundamentals and Applications580–631 New York: Wiley [Google Scholar]
  16. Kang D, Wrighton MS. 16.  1991. Patterned functionalization of gold and single crystal silicon via photochemical reaction of surface-confined derivatives of [(η5-C5H5)Mn(CO)3]. Langmuir 7:2169–74 [Google Scholar]
  17. Wollman EW, Kang D, Frisbie CD, Lorkovic IM, Wrighton MS. 17.  1994. Photosensitive self-assembled monolayers on gold: photochemistry of surface-confined aryl azide and cyclopentadienylmanganese tricarbonyl. J. Am. Chem. Soc. 116:4395–404 [Google Scholar]
  18. Forster RJ, Figgemeier E, Lees AC, Hjelm J, Vos JG. 18.  2000. Photostability, electrochemistry, and monolayers of [M(bpy)2(trans-1,2-bis(4-pyridyl)ethylene)L]+ (M=Ru, Os; L=Cl, H2O). Langmuir 16:7867–70 [Google Scholar]
  19. Katz E, Willner B, Willner I. 19.  1997. Light-controlled electron transfer reactions at photoisomerizable monolayer electrodes by means of electrostatic interactions: active interfaces for the amperometric transduction of recorded optical signals. Biosens. Bioelectron. 12:703–19 [Google Scholar]
  20. Riskin M, Gutkin V, Felner I, Willner I. 20.  2008. Photochemical and electrochemical encoding of erasable magnetic patterns. Angew. Chem. Int. Ed. Engl. 47:4416–20 [Google Scholar]
  21. Irie M. 21.  2000. Diarylethenes for memories and switches. Chem. Rev. 100:1685–716 [Google Scholar]
  22. Fraysse S, Coudret C, Launay JP. 22.  2000. Synthesis and properties of dinuclear complexes with a photochromic bridge: an intervalence electron transfer switching “on” and “off”. Eur. J. Inorg. Chem. 2000:1581–90 [Google Scholar]
  23. Belser P, De Cola L, Hartl F, Adamo V, Bozic B. 23.  et al. 2006. Photochromic switches incorporated in bridging ligands: a new tool to modulate energy-transfer processes. Adv. Funct. Mater. 16:195–208 [Google Scholar]
  24. Takayama K, Matsuda K, Irie M. 24.  2003. Photoswitching of the magnetic interaction between a copper(II) ion and a nitroxide radical by using a photochromic spin coupler. Chem. Eur. J. 9:5605–9 [Google Scholar]
  25. Browne WR, de Jong JJD, Kudernac T, Walko M, Lucas LN. 25.  et al. 2005. Oxidative electrochemical switching in dithienylcyclopentenes. Part 1: effect of electronic perturbation on the efficiency and direction of molecular switching. Chem. Eur. J. 11:6414–29 [Google Scholar]
  26. Browne WR, de Jong JJD, Kudernac T, Walko M, Lucas LN. 26.  et al. 2005. Oxidative electrochemical switching in dithienylcyclopentenes. Part 2: effect of substitution and asymmetry on the efficiency and direction of molecular switching and redox stability. Chem. Eur. J. 11:6430–41 [Google Scholar]
  27. Gilat SL, Kawai SL, Kawai SH, Lehn JM. 27.  1995. Light-triggered molecular devices: photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem. Eur. J. 1:275–84 [Google Scholar]
  28. Areephong J, Browne WR, Katsonis N, Feringa BL. 28.  2006. Photo- and electro-chromism of diarylethene modified ITO electrodes: towards molecular based read-write-erase information storage. Chem. Commun. 2006:3930–32 [Google Scholar]
  29. Baron R, Onopriyenko A, Katz E, Lioubashevski O, Willner I. 29.  et al. 2006. An electrochemical/photochemical information processing system using a monolayer-functionalized electrode. Chem. Commun. 2006:2147–49 [Google Scholar]
  30. Browne WR, Kudernac T, Katsonis N, Areephong J, Hjelm J, Feringa BL. 30.  2008. Electro- and photochemical switching of dithienylethene self-assembled monolayers on gold electrodes. J. Phys. Chem. C 112:1183–90 [Google Scholar]
  31. Katz E, Willner I. 31.  2005. A quinone-functionalized electrode in conjunction with hydrophobic magnetic nanoparticles acts as a “Write-Read-Erase” information storage system. Chem. Commun. 2005:5641–43 [Google Scholar]
  32. Tran E, Rampi MA, Whitesides GM. 32.  2004. Electron transfer in a Hg-SAM//SAM-Hg junction mediated by redox centers. Angew. Chem. Int. Ed. Engl. 43:3835–39 [Google Scholar]
  33. Jiang P, Morales GM, You W, Yu L. 33.  2004. Synthesis of diode molecules and their sequential assembly to control electron transport. Angew. Chem. Int. Ed. Engl. 43:4471–75 [Google Scholar]
  34. He J, Fu Q, Lindsay SM, Ciszek JW, Tour JM. 34.  2006. Electrochemical origin of voltage-controlled molecular conductance switching. J. Am. Chem. Soc. 128:14828–35 [Google Scholar]
  35. Bumm LA, Arnold JJ, Dunbar TD, Allara DL, Weiss PS. 35.  1999. Electron transfer through organic molecules. J. Phys. Chem. B 103:8122–27 [Google Scholar]
  36. Xu B, Tao NJ. 36.  2003. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science 301:1221–23 [Google Scholar]
  37. Mayor M, Weber HB, Reichert J, Elbing M, von Hänisch C. 37.  et al. 2003. Electric current through a molecular rod: relevance of the position of the anchor groups. Angew. Chem. Int. Ed. Engl. 42:5834–38 [Google Scholar]
  38. Kergueris C, Bourgoin JP, Palacin S, Esteve D, Urbina C. 38.  et al. 1999. Electron transport through a metal-molecule-metal junction. Phys. Rev. B 59:12505–13 [Google Scholar]
  39. Reichert J, Ochs R, Beckmann D, Weber HB, Mayor M, von Lohneysen H. 39.  2002. Driving current through single organic molecules. Phys. Rev. Lett. 88:176804 [Google Scholar]
  40. Cleuziou JP, Wernsdorfer W, Bouchiat V, Ondarçuhu T, Monthioux M. 40.  2006. Carbon nanotube superconducting quantum interference device. Nat. Nanotechnol. 1:53–59 [Google Scholar]
  41. Yasuda S, Nakamura T, Matsumoto M, Shigekawa H. 41.  2003. Phase switching of a single isomeric molecule and associated characteristic rectification. J. Am. Chem. Soc. 125:16430–33 [Google Scholar]
  42. Comstock MJ, Levy N, Kirakosian A, Cho J, Lauterwasser F. 42.  et al. 2007. Reversible photomechanical switching of individual engineered molecules at a metallic surface. Phys. Rev. Lett. 99:038301 [Google Scholar]
  43. Dulic D, van der Molen SJ, Kudernac T, Jonkman HT, de Jong JJD. 43.  et al. 2003. One-way optoelectronic switching of photochromic molecules on gold. Phys. Rev. Lett. 91:207402 [Google Scholar]
  44. van der Molen SJ, van der Vegte H, Kudernac T, Amin I, Feringa BL, van Wees BJ. 44.  2006. Stochastic and photochromic switching of diarylethenes studied by scanning tunnelling microscopy. Nanotechnology 17:310–14 [Google Scholar]
  45. Li J, Speyer G, Sankey OF. 45.  2004. Conduction switching of photochromic molecules. Phys. Rev. Lett. 93:248302 [Google Scholar]
  46. Zhuang M, Ernzerhof M. 46.  2005. Mechanism of a molecular electronic photoswitch. Phys. Rev. B 72:073104 [Google Scholar]
  47. Katsonis N, Kudernac T, Walko M, van der Molen SJ, van Wees BJ, Feringa BL. 47.  2006. Reversible conductance switching of single diarylethenes on a gold surface. Adv. Mater. 18:1397–400 [Google Scholar]
  48. He J, Chen F, Liddell PA, Andreasson J, Straight SD. 48.  et al. 2005. Switching of a photochromic molecule on gold electrodes: single-molecule measurements. Nanotechnology 16:695–702 [Google Scholar]
  49. Whalley AC, Steigerwald ML, Guo X, Nuckolls C. 49.  2007. Reversible switching in molecular electronic devices. J. Am. Chem. Soc. 129:12590–91 [Google Scholar]
  50. Noh J, Ito E, Araki T, Hara M. 50.  2003. Adsorption of thiophene and 2,5-dimethylthiophene on Au(111) from ethanol solutions. Surf. Sci. 532:1116–20 [Google Scholar]
  51. Ishida T, Choi N, Mizutani W, Tokumoto H, Kojima I. 51.  et al. 1999. High-resolution X-ray photoelectron spectra of organosulfur monolayers on Au(111): S(2p) spectral dependence on molecular species. Langmuir 15:6799–806 [Google Scholar]
  52. Sako EO, Kondoh H, Nakai I, Nambu A, Nakamura T, Ohta T. 52.  2005. Reactive adsorption of thiophene on Au(111) from solution. Chem. Phys. Lett. 413:267–71 [Google Scholar]
  53. Campion A. 53.  1998. Surface-enhanced Raman scattering. Chem. Soc. Rev. 27:241–50 [Google Scholar]
  54. Ahonen P, Schiffrin DJ, Paprotny J, Kontturi K. 54.  2007. Optical switching of coupled plasmons of Ag nanoparticles by photoisomerisation of an azobenzene ligand. Phys. Chem. Chem. Phys. 9:651–58 [Google Scholar]
  55. Daniel MC, Astruc D. 55.  2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346 [Google Scholar]
  56. Thomas KG, Kamat PV. 56.  2003. Chromophore-functionalized gold nanoparticles. Acc. Chem. Res. 36:888–98 [Google Scholar]
  57. Brust M, Kiely CJ. 57.  2002. Some recent advances in nanostructure preparation from gold and silver particles: a short topical review. Colloids Surf. A 202:175–86 [Google Scholar]
  58. Hu J, Zhang J, Liu F, Kittredge K, Whitesell JK, Fox MA. 58.  2001. Competitive photochemical reactivity in a self-assembled monolayer on a colloidal gold cluster. J. Am. Chem. Soc. 123:1464–70 [Google Scholar]
  59. Zhang J, Whitesell JK, Fox MA. 59.  2001. Photoreactivity of self-assembled monolayers of azobenzene or stilbene derivatives capped on colloidal gold clusters. Chem. Mater. 13:2323–31 [Google Scholar]
  60. Wolf MO, Fox MA. 60.  1996. Photoisomerization and photodimerization in self-assembled monolayers of cis- and trans-4-cyano-4′-(10-mercaptodecoxy)stilbene on gold. Langmuir 12:955–62 [Google Scholar]
  61. Manna A, Chen PL, Akiyama H, Wei TX, Tamada K, Knoll W. 61.  2003. Optimized photoisomerization on gold nanoparticles capped by unsymmetrical azobenzene disulfides. Chem. Mater. 15:20–28 [Google Scholar]
  62. Tamada K, Akiyama H, Wei TX. 62.  2002. Photoisomerization reaction of unsymmetrical azobenzene disulfide self-assembled monolayers studied by surface plasmon spectroscopy: influences of side chain length and contacting medium. Langmuir 18:5239–46 [Google Scholar]
  63. Browne WR, Feringa BL. 63.  2006. Making molecular machines work. Nat. Nanotechnol. 1:25–35 [Google Scholar]
  64. Feringa BL. 64.  2007. The art of building small. J. Org. Chem. 72:6635–52 [Google Scholar]
  65. van Delden RA, ter Wiel MKJ, Pollard MM, Vicario J, Koumura N, Feringa BL. 65.  2005. Unidirectional molecular motor on a gold surface. Nature 437:1337–40 [Google Scholar]
  66. Kobatake S, Takami S, Muto H, Ishikawa T, Irie M. 66.  2007. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature 446:778–81 [Google Scholar]
  67. Irie M, Kobatake S, Horichi M. 67.  2001. Reversible surface morphology changes of a photochromic diarylethene single crystal by photoirradiation. Science 291:1769–72 [Google Scholar]
  68. Uchida K, Sukata SI, Matsuzawa Y, Akazawa M, de Jong JJD. 68.  et al. 2008. Photoresponsive rolling and bending of thin crystals of chiral diarylethenes. Chem. Commun. 2008:326–28 [Google Scholar]
  69. Matsuda K, Ikeda M, Irie M. 69.  2004. Photochromism of diarylethene-capped gold nanoparticles. Chem. Lett. 33:456–57 [Google Scholar]
  70. Kudernac T, van der Molen SJ, van Wees BJ, Feringa BL. 70.  2006. Uni- and bi-directional light-induced switching of diarylethenes on gold nanoparticles. Chem. Commun. 2006:3597–99 [Google Scholar]
  71. Kocer A, Walko M, Meijberg W, Feringa BL. 71.  2005. A light-actuated nanovalve derived from a channel protein. Science 309:755–58 [Google Scholar]
  72. Folgering JHA, Kuiper JM, de Vries AH, Engberts JBFN, Poolman B. 72.  2004. Lipid-mediated light activation of a mechanosensitive channel of large conductance. Langmuir 20:6985–87 [Google Scholar]
  73. Volgraf M, Gorostiza P, Numano R, Kramer RH, Isacoff EY, Trauner D. 73.  2006. Allosteric control of an ionotropic glutamate receptor with an optical switch. Nat. Chem. Biol. 2:47–52 [Google Scholar]
  74. Wesenhagen P, Areephong J, Fernandez Landaluce T, Heureux N, Katsonis N. 74.  et al. 2008. Photochromism and electrochemistry of a dithienylcyclopentene electroactive polymer. Langmuir 24:6334–42 [Google Scholar]
  75. Hugel T, Holland NB, Cattani A, Moroder L, Seitz M, Gaub HE. 75.  2002. Single-molecule optomechanical cycle. Science 296:1103–6 [Google Scholar]
  76. Willner I. 76.  1997. Photoswitchable biomaterials: en route to optobioelectronic systems. Acc. Chem. Res. 30:347–56 [Google Scholar]
  77. Sun SS, Lees AJ. 77.  2002. Transition metal based supramolecular systems: synthesis, photophysics, photochemistry and their potential applications as luminescent anion chemosensors. Coord. Chem. Rev. 230:171–92 [Google Scholar]
  78. Kalyanasundaram K. 78.  1982. Photophysics, photochemistry and solar-energy conversion with tris(bipyridyl)ruthenium(II) and its analogs. Coord. Chem. Rev. 46:159–244 [Google Scholar]
  79. Coppens P, Novozhilova I, Kovalevsky A. 79.  2002. Photoinduced linkage isomers of transition-metal nitrosyl compounds and related complexes. Chem. Rev. 102:861–83 [Google Scholar]
  80. Rack JJ, Rachford AA, Shelker AM. 80.  2003. Turning off phototriggered linkage isomerizations in ruthenium dimethyl sulfoxide complexes. Inorg. Chem. 42:7357–59 [Google Scholar]
  81. Feringa BL. 81.  2001. Molecular Switches Weinheim: Wiley-VCH [Google Scholar]
  82. Crano JC, Guglielmeti R. 82.  1999. Organic Photochromic and Thermochromic Compounds 1 New York: Plenum [Google Scholar]
  83. Carroll RL, Gorman CB. 83.  2002. The genesis of molecular electronics. Angew. Chem. Int. Ed. Engl. 41:4378–400 [Google Scholar]
  84. Joachim C, Gimzewski JK, Aviram A. 84.  2000. Electronics using hybrid-molecular and mono-molecular devices. Nature 408:541–48 [Google Scholar]
  85. Green JE, Choi JW, Boukai A, Bunimovich Y, Johnston-Halperin E. 85.  et al. 2007. A 160-kilobit molecular electronic memory patterned at 10(11) bits per square centimeter. Nature 445:414–17 [Google Scholar]
  86. Kronemeijer AJ, Akkerman HB, Kudernac T, van Wees BJ, Feringa BL. 86.  et al. 2008. Reversible conductance switching in molecular devices. Adv. Mater. 20:1467–73 [Google Scholar]
  87. Kawai T, Nakashima Y, Kunitake T, Irie M. 87.  2005. Photon-mode modulation of fluorescence and electrical current with a photochromic conducting polymer. Curr. Appl. Phys. 5:139–42 [Google Scholar]
  88. Kim E, Kim M, Kim K. 88.  2006. Diarylethenes with intramolecular donor-acceptor structures for photo-induced electrochemical change. Tetrahedron 62:6814–21 [Google Scholar]
  89. Ikeda M, Tanifuji N, Yamaguchi H, Irie M, Matsuda K. 89.  2007. Photoswitching of conductance of diarylethene-Au nanoparticle network. Chem. Commun. 2007:1355–57 [Google Scholar]
  90. Guo X, Huang L, O'Brien S, Kim P, Nuckolls C. 90.  2005. Directing and sensing changes in molecular conformation on individual carbon nanotube field effect transistors. J. Am. Chem. Soc. 127:15045–47 [Google Scholar]
  91. Bettega HCY, Hissler M, Moutet JC, Ziessel R. 91.  1997. Supramolecular electrode materials derived from pyrrole-substituted ruthenium(II) bipyridyl calix[4]arenes. Chem. Mater. 9:3–5 [Google Scholar]
  92. de Ruiter G, Gupta T, van der Boom ME. 92.  2008. Selective optical recognition and quantification of parts per million levels of Cr6+ in aqueous and organic media by immobilized polypyridyl complexes on glass. J. Am. Chem. Soc. 130:2744–45 [Google Scholar]
/content/journals/10.1146/annurev.physchem.040808.090423
Loading
/content/journals/10.1146/annurev.physchem.040808.090423
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error