1932

Abstract

Ultraviolet light is strongly absorbed by DNA, producing excited electronic states that sometimes initiate damaging photochemical reactions. Fully mapping the reactive and nonreactive decay pathways available to excited electronic states in DNA is a decades-old quest. Progress toward this goal has accelerated rapidly in recent years, in large measure because of ultrafast laser experiments. Here we review recent discoveries and controversies concerning the nature and dynamics of excited states in DNA model systems in solution. Nonradiative decay by single, solvated nucleotides occurs primarily on the subpicosecond timescale. Surprisingly, excess electronic energy relaxes one or two orders of magnitude more slowly in DNA oligo- and polynucleotides. Highly efficient nonradiative decay pathways guarantee that most excited states do not lead to deleterious reactions but instead relax back to the electronic ground state. Understanding how the spatial organization of the bases controls the relaxation of excess electronic energy in the double helix and in alternative structures is currently one of the most exciting challenges in the field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physchem.59.032607.093719
2009-05-05
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/60/1/annurev.physchem.59.032607.093719.html?itemId=/content/journals/10.1146/annurev.physchem.59.032607.093719&mimeType=html&fmt=ahah

Literature Cited

  1. Pfeifer GP, You Y-H, Besaratinia A. 1.  2005. Mutations induced by ultraviolet light. Mutat. Res. 571:19–31 [Google Scholar]
  2. de Gruijl FR. 2.  1999. Skin cancer and solar UV radiation. Eur. J. Cancer 35:2003–9 [Google Scholar]
  3. Crespo-Hernández CE, Cohen B, Hare PM, Kohler B. 3.  2004. Ultrafast excited-state dynamics in nucleic acids. Chem. Rev. 104:1977–2019Presents a comprehensive review of DNA photophysics through 2003. [Google Scholar]
  4. Shukla MK, Leszczynski J. 4.  2007. Electronic spectra, excited state structures and interactions of nucleic acid bases and base assemblies: a review. J. Biomol. Struct. Dyn. 25:93–118 [Google Scholar]
  5. Saigusa H. 5.  2006. Excited-state dynamics of isolated nucleic acid bases and their clusters. J. Photochem. Photobiol. C 7:197–210 [Google Scholar]
  6. de Vries MS, Hobza P. 6.  2007. Gas-phase spectroscopy of biomolecular building blocks. Annu. Rev. Phys. Chem. 58:585–612 [Google Scholar]
  7. Fischer I. 7.  2003. Time-resolved photoionisation of radicals, clusters and biomolecules: relevant model systems. Chem. Soc. Rev. 32:59–69 [Google Scholar]
  8. Markovitsi D, Gustavsson T, Talbot F. 8.  2007. Excited states and energy transfer among DNA bases in double helices. Photochem. Photobiol. Sci. 6:717–24 [Google Scholar]
  9. Voet D, Gratzer WB, Cox RA, Doty P. 9.  1963. Absorption spectra of nucleotides, polynucleotides, and nucleic acids in the far ultraviolet. Biopolymers 1:193–208 [Google Scholar]
  10. Callis PR. 10.  1983. Electronic states and luminescence of nucleic acid systems. Annu. Rev. Phys. Chem. 34:329–57 [Google Scholar]
  11. Daniels M, Hauswirth W. 11.  1971. Fluorescence of the purine and pyrimidine bases of the nucleic acids in neutral aqueous solution at 300°K. Science 171:675–77 [Google Scholar]
  12. Vigny P. 12.  1971. Fluorescence of nucleosides and nucleotides at ambient temperature. C. R. Acad. Sci. Ser. D 272:3206–9 [Google Scholar]
  13. Pecourt J-ML, Peon J, Kohler B. 13.  2001. DNA excited-state dynamics: ultrafast internal conversion and vibrational cooling in a series of nucleosides. J. Am. Chem. Soc. 123:10370–78 [Google Scholar]
  14. Pecourt J-ML, Peon J, Kohler B. 14.  2000. Ultrafast internal conversion of electronically excited RNA and DNA nucleosides in water. J. Am. Chem. Soc. 122:9348–49Reports the first accurate ultrafast measurements of 1ππ* lifetimes in DNA nucleosides. [Google Scholar]
  15. Ismail N, Blancafort L, Olivucci M, Kohler B, Robb MA. 15.  2002. Ultrafast decay of electronically excited singlet cytosine via a π,π* to nO,π* state switch. J. Am. Chem. Soc. 124:6818–19 [Google Scholar]
  16. Langer H, Doltsinis NL, Marx D. 16.  2005. Excited-state dynamics and coupled proton-electron transfer of guanine. ChemPhysChem 6:1734–37 [Google Scholar]
  17. Barbatti M, Lischka H. 17.  2007. Can the nonadiabatic photodynamics of aminopyrimidine be a model for the ultrafast deactivation of adenine?. J. Phys. Chem. A 111:2852–58 [Google Scholar]
  18. Hudock HR, Levine BG, Thompson AL, Satzger H, Townsend D. 18.  et al. 2007. Ab initio molecular dynamics and time-resolved photoelectron spectroscopy of electronically excited uracil and thymine. J. Phys. Chem. A 111:8500–8 [Google Scholar]
  19. Groenhof G, Schäfer LV, Boggio-Pasqua M, Goette M, Grubmüller H, Robb MA. 19.  2007. Ultrafast deactivation of an excited cytosine-guanine base pair in DNA. J. Am. Chem. Soc. 129:6812–19 [Google Scholar]
  20. Matsika S. 20.  2004. Radiationless decay of excited states of uracil through conical intersections. J. Phys. Chem. A 108:7584–90 [Google Scholar]
  21. Perun S, Sobolewski AL, Domcke W. 21.  2006. Conical intersections in thymine. J. Phys. Chem. A 110:13238–44 [Google Scholar]
  22. Merchán M, González-Luque R, Climent T, Serrano-Andrés L, Rodríuguez E. 22.  et al. 2006. Unified model for the ultrafast decay of pyrimidine nucleobases. J. Phys. Chem. B 110:26471–76 [Google Scholar]
  23. Gustavsson T, Bányász Á, Lazzarotto E, Markovitsi D, Scalmani G. 23.  et al. 2006. Singlet excited-state behavior of uracil and thymine in aqueous solution: a combined experimental and computational study of 11 uracil derivatives. J. Am. Chem. Soc. 128:607–19 [Google Scholar]
  24. Perun S, Sobolewski AL, Domcke W. 24.  2005. Ab initio studies on the radiationless decay mechanisms of the lowest excited singlet states of 9H-adenine. J. Am. Chem. Soc. 127:6257–65 [Google Scholar]
  25. Serrano-Andrés L, Merchán M, Borin AC. 25.  2006. Adenine and 2-aminopurine: paradigms of modern theoretical photochemistry. Proc. Natl. Acad. Sci. USA 103:8691–96 [Google Scholar]
  26. Billinghurst BE, Yeung R, Loppnow GR. 26.  2006. Excited-state structural dynamics of 5-fluorouracil. J. Phys. Chem. A 110:6185–91 [Google Scholar]
  27. Billinghurst BE, Loppnow GR. 27.  2006. Excited-state structural dynamics of cytosine from resonance Raman spectroscopy. J. Phys. Chem. A 110:2353–59 [Google Scholar]
  28. Yarasi S, Brost P, Loppnow GR. 28.  2007. Initial excited-state structural dynamics of thymine are coincident with the expected photochemical dynamics. J. Phys. Chem. A 111:5130–35 [Google Scholar]
  29. Malone RJ, Miller AM, Kohler B. 29.  2003. Singlet excited-state lifetimes of cytosine derivatives measured by femtosecond transient absorption. Photochem. Photobiol. 77:158–64 [Google Scholar]
  30. Zgierski MZ, Patchkovskii S, Fujiwara T, Lim EC. 30.  2007. The role of out-of-plane deformations in subpicosecond internal conversion of photoexcited purine bases: absence of the ultrafast decay channel in propanodeoxyguanosine. Chem. Phys. Lett. 440:145–49 [Google Scholar]
  31. Zgierski MZ, Fujiwara T, Kofron WG, Lim EC. 31.  2007. Highly effective quenching of the ultrafast radiationless decay of photoexcited pyrimidine bases by covalent modification: photophysics of 5,6-trimethylenecytosine and 5,6-trimethyleneuracil. Phys. Chem. Chem. Phys. 9:3206–9 [Google Scholar]
  32. Middleton CT, Cohen B, Kohler B. 32.  2007. Solvent and solvent isotope effects on the vibrational cooling dynamics of a DNA base derivative. J. Phys. Chem. A 111:10460–67 [Google Scholar]
  33. Middleton CT, Kohler B. 33.  2008. Unpublished results
  34. Hare PM, Crespo-Hernández CE, Kohler B. 34.  2006. Solvent-dependent photophysics of 1-cyclohexyluracil: Ultrafast branching in the initial bright state leads nonradiatively to the electronic ground state and a long-lived 1nπ* state. J. Phys. Chem. B 110:18641–50 [Google Scholar]
  35. Canuel C, Mons M, Piuzzi F, Tardivel B, Dimicoli I, Elhanine M. 35.  2005. Excited states dynamics of DNA and RNA bases: characterization of a stepwise deactivation pathway in the gas phase. J. Chem. Phys. 122:074316 [Google Scholar]
  36. Blancafort L. 36.  2007. Energetics of cytosine singlet excited-state decay paths—a difficult case for CASSCF and CASPT2. Photochem. Photobiol. 83:603–10 [Google Scholar]
  37. Marian CM. 37.  2005. A new pathway for the rapid decay of electronically excited adenine. J. Chem. Phys. 122:104314 [Google Scholar]
  38. Satzger H, Townsend D, Zgierski MZ, Patchkovskii S, Ullrich S, Stolow A. 38.  2006. Primary processes underlying the photostability of isolated DNA bases: adenine.. Proc. Natl. Acad. Sci. USA 103:10196–201 [Google Scholar]
  39. Hare PM, Crespo-Hernández CE, Kohler B. 39.  2007. Internal conversion to the electronic ground state occurs via two distinct pathways for pyrimidine bases in aqueous solution. Proc. Natl. Acad. Sci. USA 104:435–40Reports that high yields of dark 1nπ* states are populated for UV-excited pyrimidine bases in aqueous solution. [Google Scholar]
  40. Gustavsson T, Sarkar N, Lazzarotto E, Markovitsi D, Barone V, Improta R. 40.  2006. Solvent effect on the singlet excited-state dynamics of 5-fluorouracil in acetonitrile as compared with water. J. Phys. Chem. B 110:12843–47 [Google Scholar]
  41. Gustavsson T, Sarkar N, Lazzarotto E, Markovitsi D, Improta R. 41.  2006. Singlet excited state dynamics of uracil and thymine derivatives: a femtosecond fluorescence upconversion study in acetonitrile. Chem. Phys. Lett. 429:551–57 [Google Scholar]
  42. Cohen B, Hare PM, Kohler B. 42.  2003. Ultrafast excited-state dynamics of adenine and monomethylated adenines in solution: implications for the nonradiative decay mechanism. J. Am. Chem. Soc. 125:13594–601 [Google Scholar]
  43. Kuimova MK, Dyer J, George MW, Grills DC, Kelly JM. 43.  et al. 2005. Monitoring the effect of ultrafast deactivation of the electronic excited states of DNA bases and polynucleotides following 267 nm laser excitation using picosecond time-resolved infrared spectroscopy. Chem. Commun. 2005:1182–84 [Google Scholar]
  44. Quinn S, Doorley GW, Watson GW, Cowan AJ, George MW. 44.  et al. 2007. Ultrafast IR spectroscopy of the short-lived transients formed by UV excitation of cytosine derivatives. Chem. Commun. 2007:2130–32 [Google Scholar]
  45. Hare PM, Middleton CT, Mertel KI, Herbert JM, Kohler B. 45.  2008. Time-resolved infrared spectroscopy of the lowest triplet state of thymine and thymidine. Chem. Phys. 347:383–92 [Google Scholar]
  46. Nibbering ETJ, Fidder H, Pines E. 46.  2005. Ultrafast chemistry: using time-resolved vibrational spectroscopy for interrogation of structural dynamics. Annu. Rev. Phys. Chem. 56:337–67 [Google Scholar]
  47. Cadet J, Vigny P. 47.  1990. The photochemistry of nucleic acids. Bioorganic Photochemistry H Morrison 1–272 New York: Wiley [Google Scholar]
  48. Salet C, Bensasson R, Becker RS. 48.  1979. Triplet excited states of pyrimidine nucleosides and nucleotides. Photochem. Photobiol. 30:325–29 [Google Scholar]
  49. Merchán M, Serrano-Andrés L, Robb MA, Blancafort L. 49.  2005. Triplet-state formation along the ultrafast decay of excited singlet cytosine. J. Am. Chem. Soc. 127:1820–25 [Google Scholar]
  50. Climent T, González-Luque R, Merchán M, Serrano-Andrés L. 50.  2007. On the intrinsic population of the lowest triplet state of uracil. Chem. Phys. Lett. 441:327–31 [Google Scholar]
  51. Löwdin PO. 51.  1963. Proton tunneling in DNA and its biological implications. Rev. Mod. Phys. 35:724–32 [Google Scholar]
  52. Guallar V, Douhal A, Moreno M, Lluch JM. 52.  1999. DNA mutations induced by proton and charge transfer in the low-lying excited singlet electronic states of the DNA base pairs: a theoretical insight. J. Phys. Chem. A 103:6251–56 [Google Scholar]
  53. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W. 53.  2004. Efficient deactivation of a model base pair via excited-state hydrogen transfer. Science 306:1765–68 [Google Scholar]
  54. Sobolewski AL, Domcke W. 54.  2004. Ab initio studies on the photophysics of the guanine-cytosine base pair. Phys. Chem. Chem. Phys. 6:2763–71 [Google Scholar]
  55. Sobolewski AL, Domcke W, Hattig C. 55.  2005. Tautomeric selectivity of the excited-state lifetime of guanine/cytosine base pairs: the role of electron-driven proton-transfer processes. Proc. Natl. Acad. Sci. USA 102:17903–6 [Google Scholar]
  56. Abo-Riziq A, Grace L, Nir E, Kabelac M, Hobza P, de Vries MS. 56.  2005. Photochemical selectivity in guanine-cytosine base-pair structures. Proc. Natl. Acad. Sci. USA 102:20–23 [Google Scholar]
  57. Schwalb NK, Temps F. 57.  2007. Ultrafast electronic relaxation in guanosine is promoted by hydrogen bonding with cytidine. J. Am. Chem. Soc. 129:9272–73First femtosecond time-resolved measurements on a single base pair in solution. [Google Scholar]
  58. Saenger W. 58.  1984. Principles of Nucleic Acid Structure Berlin: Springer-Verlag [Google Scholar]
  59. Crespo-Hernández CE, Kohler B. 59.  2004. Influence of secondary structure on electronic energy relaxation in adenine homopolymers. J. Phys. Chem. B 108:11182–88 [Google Scholar]
  60. Crespo-Hernández CE, Cohen B, Kohler B. 60.  2005. Base stacking controls excited-state dynamics in A⋅T DNA. Nature 436:1141–44Demonstrates that base stacking, not base pairing, is of primary importance for excited-state dynamics in A⋅T DNA oligonucleotides. [Google Scholar]
  61. Kwok W-M, Ma C, Phillips DL. 61.  2006. Femtosecond time- and wavelength-resolved fluorescence and absorption spectroscopic study of the excited states of adenosine and an adenine oligomer. J. Am. Chem. Soc. 128:11894–905 [Google Scholar]
  62. Buchvarov I, Wang Q, Raytchev M, Trifonov A, Fiebig T. 62.  2007. Electronic energy delocalization and dissipation in single- and double-stranded DNA. Proc. Natl. Acad. Sci. USA 104:4794–97 [Google Scholar]
  63. Cohen B, Crespo-Hernández CE, Hare PM, Kohler B. 63.  2004. Ultrafast excited-state dynamics in DNA and RNA polymers. Femtochemistry and Femtobiology: Ultrafast Events in Molecular Science MM Martin, JT Hynes 463–70 Amsterdam: Elsevier Sci. [Google Scholar]
  64. Crespo-Hernández CE, de La Harpe K, Kohler B. 64.  2008. Ground-state recovery following UV excitation is much slower in G⋅C-DNA duplexes and hairpins than in mononucleotides. J. Am. Chem. Soc. 130:10844–45 [Google Scholar]
  65. Takaya T, Su C, de La Harpe K, Crespo-Hernández CE, Kohler B. 65.  2008. UV excitation of single DNA and RNA strands produces high yields of exciplex states between two stacked bases. Proc. Natl. Acad. Sci. USA 105:10285–90 [Google Scholar]
  66. de La Harpe K, Crespo-Hernández CE, Kohler B. 66.  2008. Exciplex lifetimes in a G⋅C DNA duplex are nearly independent of helix conformation and base pairing motif. ChemPhysChem Manuscript submitted [Google Scholar]
  67. Crespo-Hernández CE, Cohen B, Kohler B. 67.  2006. Molecular spectroscopy: complexity of excited-state dynamics in DNA (reply). Nature 441:E8 [Google Scholar]
  68. Middleton CT, Su C, Kohler B. 68.  2008. Photophysics of long-lived singlet states in DNA. Manuscript in preparation
  69. Plessow R, Brockhinke A, Eimer W, Kohse-Höinghaus K. 69.  2000. Intrinsic time- and wavelength-resolved fluorescence of oligonucleotides: a systematic investigation using a novel picosecond laser approach. J. Phys. Chem. B 104:3695–704 [Google Scholar]
  70. Birks JB. 70.  1967. Excimers and exciplexes. Nature 214:1187–90 [Google Scholar]
  71. Eisinger J, Guéron M, Shulman RG, Yamane T. 71.  1966. Excimer fluorescence of dinucleotides, polynucleotides, and DNA. Proc. Natl. Acad. Sci. USA 55:1015–20Assigned red-shifted fluorescence in DNA di- and polynucleotides to excimers. [Google Scholar]
  72. Cohen B, Larson MH, Kohler B. 72.  2008. Ultrafast excited-state dynamics of RNA and DNA C tracts. Chem. Phys. 350:165–74 [Google Scholar]
  73. Bittner ER. 73.  2006. Lattice theory of ultrafast excitonic and charge-transfer dynamics in DNA. J. Chem. Phys. 125:094909This theoretical study describes how Frenkel exciton states can rapidly decay to charge transfer states in double-stranded DNA. [Google Scholar]
  74. Gehring K, Leroy JL, Guéron M. 74.  1993. A tetrameric DNA structure with protonated cytosine-cytosine base pairs. Nature 363:561–65 [Google Scholar]
  75. Crespo-Hernández CE, de La Harpe K, Kohler B. 75.  2008. Unpublished data
  76. Miannay F-A, Bányász Á, Gustavsson T, Markovitsi D. 76.  2007. Ultrafast excited-state deactivation and energy transfer in guanine-cytosine DNA double helices. J. Am. Chem. Soc. 129:14574–75 [Google Scholar]
  77. Markovitsi D, Sharonov A, Onidas D, Gustavsson T. 77.  2003. The effect of molecular organization in DNA oligomers studied by femtosecond fluorescence spectroscopy. ChemPhysChem 4:303–5 [Google Scholar]
  78. Markovitsi D, Gustavsson T, Sharonov A. 78.  2004. Cooperative effects in the photophysical properties of self-associated triguanosine diphosphates. Photochem. Photobiol. 79:526–30 [Google Scholar]
  79. Onidas D, Gustavsson T, Lazzarotto E, Markovitsi D. 79.  2007. Fluorescence of the DNA double helix (dA)20⋅(dT)20 studied by femtosecond spectroscopy effect of the duplex size on the properties of the excited states. J. Phys. Chem. B 111:9644–50 [Google Scholar]
  80. Onidas D, Gustavsson T, Lazzarotto E, Markovitsi D. 80.  2007. Fluorescence of the DNA double helices (dAdT)n⋅(dAdT)n studied by femtosecond spectroscopy. Phys. Chem. Chem. Phys. 9:5143–48 [Google Scholar]
  81. Bouvier B, Gustavsson T, Markovitsi D, Millié P. 81.  2002. Dipolar coupling between electronic transitions of the DNA bases and its relevance to exciton states in double helices. Chem. Phys. 275:75–92 [Google Scholar]
  82. Bouvier B, Dognon J-P, Lavery R, Markovitsi D, Millié P. 82.  et al. 2003. Influence of conformational dynamics on the exciton states of DNA oligomers. J. Phys. Chem. B 107:13512–22 [Google Scholar]
  83. Emanuele E, Zakrzewska K, Markovitsi D, Lavery R, Millié P. 83.  2005. Exciton states of dynamic DNA double helices: alternating dCdG sequences. J. Phys. Chem. B 109:16109–18 [Google Scholar]
  84. Emanuele E, Markovitsi D, Millié P, Zakrzewska K. 84.  2005. UV spectra and excitation delocalization in DNA: influence of the spectral width. ChemPhysChem 6:1387–93 [Google Scholar]
  85. Markovitsi D, Onidas D, Gustavsson T, Talbot F, Lazzarotto E. 85.  2005. Collective behavior of Franck-Condon excited states and energy transfer in DNA double helices. J. Am. Chem. Soc. 127:17130–31Time-resolved fluorescence study of exciton dynamics in duplex DNA model systems. [Google Scholar]
  86. Kadhane U, Holm AIS, Hoffmann SV, Nielsen SB. 86.  2008. Strong coupling between adenine nucleobases in DNA single strands revealed by circular dichroism using synchrotron radiation. Phys. Rev. E 77:021901 [Google Scholar]
  87. Markovitsi D, Talbot F, Gustavsson T, Onidas D, Lazzarotto E, Marguet S. 87.  2006. Molecular spectroscopy: complexity of excited-state dynamics in DNA. Nature 441:E7 [Google Scholar]
  88. Hu L, Zhao Y, Wang F, Chen G, Ma C. 88.  et al. 2007. Are adenine strands helical H-aggregates?. J. Phys. Chem. B 111:11812–16 [Google Scholar]
  89. 89.  Deleted in proof
  90. Callis PR. 90.  1979. Polarized fluorescence and estimated lifetimes of the DNA bases at room temperature. Chem. Phys. Lett. 61:563–67 [Google Scholar]
  91. Cohen B, Crespo-Hernández CE, Kohler B. 91.  2004. Strickler-Berg analysis of excited singlet state dynamics in DNA and RNA nucleosides. Faraday Discuss. 127:137–47 [Google Scholar]
  92. Berlin YA, Burin AL, Siebbeles LDA, Ratner MA. 92.  2001. Conformationally gated rate processes in biological macromolecules. J. Phys. Chem. A 105:5666–78 [Google Scholar]
  93. O'Neill MA, Barton JK. 93.  2004. DNA charge transport: conformationally gated hopping through stacked domains. J. Am. Chem. Soc. 126:11471–83 [Google Scholar]
  94. Voityuk AA, Siriwong K, Rösch N. 94.  2004. Environmental fluctuations facilitate electron-hole transfer from guanine to adenine in DNA π stacks. Angew. Chem. Int. Ed. Engl. 43:624–27 [Google Scholar]
  95. Voityuk AA. 95.  2007. Fluctuation of the electronic coupling in DNA: multistate versus two-state model. Chem. Phys. Lett. 439:162–65 [Google Scholar]
  96. Lewis FD, Daublain P, Cohen B, Vura-Weis J, Shafirovich V, Wasielewski MR. 96.  2007. Dynamics and efficiency of DNA hole transport via alternating AT versus poly(A) sequences. J. Am. Chem. Soc. 129:15130–31 [Google Scholar]
  97. Santoro F, Barone V, Improta R. 97.  2007. Influence of base stacking on excited-state behavior of polyadenine in water, based on time-dependent density functional calculations. Proc. Natl. Acad. Sci. USA 104:9931–36Computational study showing that excitons in adenine base stacks can decay to CT states. [Google Scholar]
  98. Douki T, Reynaud-Angelin A, Cadet J, Sage E. 98.  2003. Bipyrimidine photoproducts rather than oxidative lesions are the main type of DNA damage involved in the genotoxic effect of solar UVA radiation. Biochemistry 42:9221–26 [Google Scholar]
  99. Schreier WJ, Schrader TE, Koller FO, Gilch P, Crespo-Hernández CE. 99.  et al. 2007. Thymine dimerization in DNA is an ultrafast photoreaction. Science 315:625–29Femtosecond broadband transient IR study showing that thymine dimers are formed in less than 1 ps. [Google Scholar]
  100. Patrick MH, Rahn RO. 100.  1976. Photochemistry of DNA and polynucleotides: photoproducts. Photochemistry and Photobiology of Nucleic Acids, Vol. II: Biology SY Wang 35–95 New York: Academic430 pp. [Google Scholar]
  101. Kwok WM, Ma C, Phillips DL. 101.  2008. A doorway state leads to photostability or triplet photodamage in thymine DNA. J. Am. Chem. Soc. 130:5131–39 [Google Scholar]
  102. Durbeej B, Eriksson LA. 102.  2002. Reaction mechanism of thymine dimer formation in DNA induced by UV light. J. Photochem. Photobiol. A 152:95–101 [Google Scholar]
  103. Boggio-Pasqua M, Groenhof G, Schäfer LV, Grubmüller H, Robb MA. 103.  2007. Ultrafast deactivation channel for thymine dimerization. J. Am. Chem. Soc. 129:10996–97 [Google Scholar]
  104. Blancafort L, Migani A. 104.  2007. Modeling thymine photodimerizations in DNA: mechanism and correlation diagrams. J. Am. Chem. Soc. 129:14540–41 [Google Scholar]
  105. Rahn RO. 105.  1966. Pyrimidine dimers: effect of temperature on photoinduction. Science 154:503–4 [Google Scholar]
  106. Gale JM, Nissen KA, Smerdon MJ. 106.  1987. UV-induced formation of pyrimidine dimers in nucleosome core DNA is strongly modulated with a period of 10. 3 bases Proc. Natl. Acad. Sci. USA 84:6644–48 [Google Scholar]
  107. Becker MM, Wang Z. 107.  1989. Origin of UV damage in DNA. J. Mol. Biol. 210:429–38 [Google Scholar]
  108. Wagner PJ. 108.  1983. Conformational flexibility and photochemistry. Acc. Chem. Res. 16:461–67 [Google Scholar]
  109. Law YK, Azadi J, Crespo-Hernández CE, Olmon E, Kohler B. 109.  2008. Predicting thymine dimerization yields from molecular dynamics simulations. Biophys. J. 94:3590–600 [Google Scholar]
  110. Johnson AT, Wiest O. 110.  2007. Structure and dynamics of poly(T) single-strand DNA: implications toward CPD formation. J. Phys. Chem. B 111:14398–404 [Google Scholar]
  111. McAteer K, Jing Y, Kao J, Taylor JS, Kennedy MA. 111.  1998. Solution-state structure of a DNA dodecamer duplex containing a cis-syn thymine cyclobutane dimer, the major UV photoproduct of DNA. J. Mol. Biol. 282:1013–32 [Google Scholar]
  112. Douki T. 112.  2006. Low ionic strength reduces cytosine photoreactivity in UVC-irradiated isolated DNA. Photochem. Photobiol. Sci. 5:1045–51 [Google Scholar]
  113. Douki T. 113.  2006. Effect of denaturation on the photochemistry of pyrimidine bases in isolated DNA. J. Photochem. Photobiol. B 82:45–52 [Google Scholar]
  114. Martinez JM, Elmroth SKC, Kloo L. 114.  2001. Influence of sodium ions on the dynamics and structure of single-stranded DNA oligomers: a molecular dynamics study. J. Am. Chem. Soc. 123:12279–89 [Google Scholar]
  115. Kohler B. 115.  2009. Acc. Chem. Res. Manuscript in preparation [Google Scholar]
  116. Humphrey W, Dalke A, Schulten K. 116.  1996. VMD: visual molecular dynamics. J. Mol. Graph. 14:33–38 [Google Scholar]
  117. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM. 117.  et al. 2004. UCSF Chimera: a visualization system for exploratory research and analysis. J. Comput. Chem. 25:1605–12 [Google Scholar]
/content/journals/10.1146/annurev.physchem.59.032607.093719
Loading
/content/journals/10.1146/annurev.physchem.59.032607.093719
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error