1932

Abstract

The mammalian olfactory system senses an almost unlimited number of chemical stimuli and initiates a process of neural recognition that influences nearly every aspect of life. This review examines the organizational principles underlying the recognition of olfactory stimuli. The olfactory system is composed of a number of distinct subsystems that can be distinguished by the location of their sensory neurons in the nasal cavity, the receptors they use to detect chemosensory stimuli, the signaling mechanisms they employ to transduce those stimuli, and their axonal projections to specific regions of the olfactory forebrain. An integrative approach that includes gene targeting methods, optical and electrophysiological recording, and behavioral analysis has helped to elucidate the functional significance of this subsystem organization for the sense of smell.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.physiol.70.113006.100608
2009-03-17
2025-01-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/71/1/annurev.physiol.70.113006.100608.html?itemId=/content/journals/10.1146/annurev.physiol.70.113006.100608&mimeType=html&fmt=ahah

Literature Cited

  1. Breer H, Fleischer J, Strotmann J. 1.  2006. The sense of smell: multiple olfactory subsystems. Cell. Mol. Life Sci. 63:1465–75 [Google Scholar]
  2. Ma M. 2.  2007. Encoding olfactory signals via multiple chemosensory systems. Crit. Rev. Biochem. Mol. Biol. 42:463–80 [Google Scholar]
  3. Tirindelli R, Mucignat-Caretta C, Ryba NJ. 3.  1998. Molecular aspects of pheromonal communication via the vomeronasal organ of mammals. Trends Neurosci. 21:482–86 [Google Scholar]
  4. Gold GH. 4.  1999. Controversial issues in vertebrate olfactory transduction. Annu. Rev. Physiol. 61:857–71 [Google Scholar]
  5. Buck LB. 5.  2000. The molecular architecture of odor and pheromone sensing in mammals. Cell 100:611–18 [Google Scholar]
  6. Firestein S. 6.  2001. How the olfactory system makes sense of scents. Nature 413:211–18 [Google Scholar]
  7. Zufall F, Munger SD. 7.  2001. From odor and pheromone transduction to the organization of the sense of smell. Trends Neurosci. 24:191–93 [Google Scholar]
  8. Mombaerts P. 8.  2004. Genes and ligands for odorant, vomeronasal and taste receptors. Nat. Rev. Neurosci. 5:263–78 [Google Scholar]
  9. Ache BW, Young JM. 9.  2005. Olfaction: diverse species, conserved principles. Neuron 48:417–30 [Google Scholar]
  10. Brennan PA, Zufall F. 10.  2006. Pheromonal communication in vertebrates. Nature 444:308–15 [Google Scholar]
  11. Dulac C, Wagner S. 11.  2006. Genetic analysis of brain circuits underlying pheromone signaling. Annu. Rev. Genet. 40:449–67 [Google Scholar]
  12. Zufall F, Leinders-Zufall T. 12.  2007. Mammalian pheromone sensing. Curr. Opin. Neurobiol. 17:483–89 [Google Scholar]
  13. Fulle HJ, Vassar R, Foster DC, Yang RB, Axel R, Garbers DL. 13.  1995. A receptor guanylyl cyclase expressed specifically in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 92:3571–75 [Google Scholar]
  14. Juilfs DM, Fulle HJ, Zhao AZ, Houslay MD, Garbers DL, Beavo JA. 14.  1997. A subset of olfactory neurons that selectively express cGMP-stimulated phosphodiesterase (PDE2) and guanylyl cyclase-D define a unique olfactory signal transduction pathway. Proc. Natl. Acad. Sci. USA 94:3388–95 [Google Scholar]
  15. Meyer MR, Angele A, Kremmer E, Kaupp UB, Muller F. 15.  2000. A cGMP-signaling pathway in a subset of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 97:10595–600 [Google Scholar]
  16. Leinders-Zufall T, Cockerham RE, Michalakis S, Biel M, Garbers DL. 16.  et al. 2007. Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium. Proc. Natl. Acad. Sci. USA 104:14507–12 [Google Scholar]
  17. Buck L, Axel R. 17.  1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:175–87 [Google Scholar]
  18. Glusman G, Yanai I, Rubin I, Lancet D. 18.  2001. The complete human olfactory subgenome. Genome Res. 11:685–702 [Google Scholar]
  19. Zozulya S, Echeverri F, Nguyen T. 19.  2001. The human olfactory receptor repertoire. Genome Biol. 2:RESEARCH0018 [Google Scholar]
  20. Young JM, Friedman C, Williams EM, Ross JA, Tonnes-Priddy L, Trask BJ. 20.  2002. Different evolutionary processes shaped the mouse and human olfactory receptor gene families. Hum. Mol. Genet. 11:535–46 [Google Scholar]
  21. Zhang X, Firestein S. 21.  2002. The olfactory receptor gene superfamily of the mouse. Nat. Neurosci. 5:124–33 [Google Scholar]
  22. Pace U, Hanski E, Salomon Y, Lancet D. 22.  1985. Odorant-sensitive adenylate cyclase may mediate olfactory reception. Nature 316:255–58 [Google Scholar]
  23. Pace U, Lancet D. 23.  1986. Olfactory GTP-binding protein: signal-transducing polypeptide of vertebrate chemosensory neurons. Proc. Natl. Acad. Sci. USA 83:4947–51 [Google Scholar]
  24. Sklar PB, Anholt RR, Snyder SH. 24.  1986. The odorant-sensitive adenylate cyclase of olfactory receptor cells. Differential stimulation by distinct classes of odorants. J. Biol. Chem. 261:15538–43 [Google Scholar]
  25. Anholt RR, Mumby SM, Stoffers DA, Girard PR, Kuo JF, Snyder SH. 25.  1987. Transduction proteins of olfactory receptor cells: identification of guanine nucleotide binding proteins and protein kinase C. Biochemistry 26:788–95 [Google Scholar]
  26. Nakamura T, Gold GH. 26.  1987. A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature 325:442–44 [Google Scholar]
  27. Jones DT, Reed RR. 27.  1989. Golf: an olfactory neuron specific-G protein involved in odorant signal transduction. Science 244:790–95 [Google Scholar]
  28. Bakalyar HA, Reed RR. 28.  1990. Identification of a specialized adenylyl cyclase that may mediate odorant detection. Science 250:1403–6 [Google Scholar]
  29. Dhallan RS, Yau KW, Schrader KA, Reed RR. 29.  1990. Primary structure and functional expression of a cyclic nucleotide-activated channel from olfactory neurons. Nature 347:184–87 [Google Scholar]
  30. Bradley J, Li J, Davidson N, Lester HA, Zinn K. 30.  1994. Heteromeric olfactory cyclic nucleotide-gated channels: a subunit that confers increased sensitivity to cAMP. Proc. Natl. Acad. Sci. USA 91:8890–94 [Google Scholar]
  31. Liman ER, Buck LB. 31.  1994. A second subunit of the olfactory cyclic nucleotide-gated channel confers high sensitivity to cAMP. Neuron 13:611–21 [Google Scholar]
  32. Bonigk W, Bradley J, Muller F, Sesti F, Boekhoff I. 32.  et al. 1999. The native rat olfactory cyclic nucleotide-gated channel is composed of three distinct subunits. J. Neurosci. 19:5332–47 [Google Scholar]
  33. Kleene SJ, Gesteland RC. 33.  1991. Calcium-activated chloride conductance in frog olfactory cilia. J. Neurosci. 11:3624–29 [Google Scholar]
  34. Kurahashi T, Yau KW. 34.  1993. Co-existence of cationic and chloride components in odorant-induced current of vertebrate olfactory receptor cells. Nature 363:71–74 [Google Scholar]
  35. Lowe G, Gold GH. 35.  1993. Nonlinear amplification by calcium-dependent chloride channels in olfactory receptor cells. Nature 366:283–86 [Google Scholar]
  36. Pifferi S, Pascarella G, Boccaccio A, Mazzatenta A, Gustincich S. 36.  et al. 2006. Bestrophin-2 is a candidate calcium-activated chloride channel involved in olfactory transduction. Proc. Natl. Acad. Sci. USA 103:12929–34 [Google Scholar]
  37. Von Dannecker LE, Mercadante AF, Malnic B. 37.  2005. Ric-8B, an olfactory putative GTP exchange factor, amplifies signal transduction through the olfactory-specific G-protein Gαolf. J. Neurosci. 25:3793–800 [Google Scholar]
  38. Kerr DS, Von Dannecker LE, Davalos M, Michaloski JS, Malnic B. 38.  2008. Ric-8B interacts with Gaolf and Gg13 and colocalizes with Gaolf, Gb1 and G13 in the cilia of olfactory sensory neurons. Mol. Cell. Neurosci. 38:341–48 [Google Scholar]
  39. Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K, Beavo JA. 39.  1995. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 92:9677–81 [Google Scholar]
  40. Cherry JA, Davis RL. 40.  1995. A mouse homolog of dunce, a gene important for learning and memory in Drosophila, is preferentially expressed in olfactory receptor neurons. J. Neurobiol. 28:102–13 [Google Scholar]
  41. Keller A, Margolis FL. 41.  1976. Isolation and characterization of rat olfactory marker protein. J. Biol. Chem. 251:6232–37 [Google Scholar]
  42. Buiakova OI, Baker H, Scott JW, Farbman A, Kream R. 42.  et al. 1996. Olfactory marker protein (OMP) gene deletion causes altered physiological activity of olfactory sensory neurons. Proc. Natl. Acad. Sci. USA 93:9858–63 [Google Scholar]
  43. Krautwurst D, Yau KW, Reed RR. 43.  1998. Identification of ligands for olfactory receptors by functional expression of a receptor library. Cell 95:917–26 [Google Scholar]
  44. Zhao H, Ivic L, Otaki JM, Hashimoto M, Mikoshiba K, Firestein S. 44.  1998. Functional expression of a mammalian odorant receptor. Science 279:237–42 [Google Scholar]
  45. Malnic B, Hirono J, Sato T, Buck LB. 45.  1999. Combinatorial receptor codes for odors. Cell 96:713–23 [Google Scholar]
  46. Wachowiak M, Shipley MT. 46.  2006. Coding and synaptic processing of sensory information in the glomerular layer of the olfactory bulb. Semin. Cell Dev. Biol. 17:411–23 [Google Scholar]
  47. Kajiya K, Inaki K, Tanaka M, Haga T, Kataoka H, Touhara K. 47.  2001. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21:6018–25 [Google Scholar]
  48. Abaffy T, Matsunami H, Luetje CW. 48.  2006. Functional analysis of a mammalian odorant receptor subfamily. J. Neurochem. 97:1506–18 [Google Scholar]
  49. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH. 49.  et al. 2003. Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299:2054–58 [Google Scholar]
  50. Shirokova E, Schmiedeberg K, Bedner P, Niessen H, Willecke K. 50.  et al. 2005. Identification of specific ligands for orphan olfactory receptors. G protein-dependent agonism and antagonism of odorants. J. Biol. Chem. 280:11807–15 [Google Scholar]
  51. Spehr M, Schwane K, Heilmann S, Gisselmann G, Hummel T, Hatt H. 51.  2004. Dual capacity of a human olfactory receptor. Curr. Biol. 14:R832–83 [Google Scholar]
  52. Oka Y, Nakamura A, Watanabe H, Touhara K. 52.  2004. An odorant derivative as an antagonist for an olfactory receptor. Chem. Senses 29:815–22 [Google Scholar]
  53. Wysocki CJ, Beauchamp GK. 53.  1984. Ability to smell androstenone is genetically determined. Proc. Natl. Acad. Sci. USA 81:4899–902 [Google Scholar]
  54. Keller A, Zhuang H, Chi Q, Vosshall LB, Matsunami H. 54.  2007. Genetic variation in a human odorant receptor alters odour perception. Nature 449:468–72 [Google Scholar]
  55. Menashe I, Man O, Lancet D, Gilad Y. 55.  2003. Different noses for different people. Nat. Genet. 34:143–44 [Google Scholar]
  56. Menashe I, Abaffy T, Hasin Y, Goshen S, Yahalom V. 56.  et al. 2007. Genetic elucidation of human hyperosmia to isovaleric acid. PLoS Biol. 5:e284 [Google Scholar]
  57. Bozza T, Feinstein P, Zheng C, Mombaerts P. 57.  2002. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22:3033–43 [Google Scholar]
  58. Katada S, Hirokawa T, Oka Y, Suwa M, Touhara K. 58.  2005. Structural basis for a broad but selective ligand spectrum of a mouse olfactory receptor: mapping the odorant-binding site. J. Neurosci. 25:1806–15 [Google Scholar]
  59. Lagerstrom MC, Schioth HB. 59.  2008. Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat. Rev. Drug Discov. 7:339–57 [Google Scholar]
  60. Saito H, Kubota M, Roberts RW, Chi Q, Matsunami H. 60.  2004. RTP family members induce functional expression of mammalian odorant receptors. Cell 119:679–91 [Google Scholar]
  61. Belluscio L, Gold GH, Nemes A, Axel R. 61.  1998. Mice deficient in Golf are anosmic. Neuron 20:69–81 [Google Scholar]
  62. Jones DT, Reed RR. 62.  1987. Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. Biol. Chem. 262:14241–49 [Google Scholar]
  63. Wong ST, Trinh K, Hacker B, Chan GC, Lowe G. 63.  et al. 2000. Disruption of the type III adenylyl cyclase gene leads to peripheral and behavioral anosmia in transgenic mice. Neuron 27:487–97 [Google Scholar]
  64. Kaupp UB, Seifert R. 64.  2002. Cyclic nucleotide-gated ion channels. Physiol. Rev. 82:769–824 [Google Scholar]
  65. Brunet LJ, Gold GH, Ngai J. 65.  1996. General anosmia caused by a targeted disruption of the mouse olfactory cyclic nucleotide-gated cation channel. Neuron 17:681–93 [Google Scholar]
  66. Lin W, Arellano J, Slotnick B, Restrepo D. 66.  2004. Odors detected by mice deficient in cyclic nucleotide-gated channel subunit A2 stimulate the main olfactory system. J. Neurosci. 24:3703–10 [Google Scholar]
  67. Munger SD, Lane AP, Zhong H, Leinders-Zufall T, Yau KW. 67.  et al. 2001. Central role of the CNGA4 channel subunit in Ca2+-calmodulin-dependent odor adaptation. Science 294:2172–75 [Google Scholar]
  68. Michalakis S, Reisert J, Geiger H, Wetzel C, Zong X. 68.  et al. 2006. Loss of CNGB1 protein leads to olfactory dysfunction and subciliary cyclic nucleotide-gated channel trapping. J. Biol. Chem. 281:35156–66 [Google Scholar]
  69. Kelliher KR, Ziesmann J, Munger SD, Reed RR, Zufall F. 69.  2003. Importance of the CNGA4 channel gene for odor discrimination and adaptation in behaving mice. Proc. Natl. Acad. Sci. USA 100:4299–304 [Google Scholar]
  70. Kurahashi T, Menini A. 70.  1997. Mechanism of odorant adaptation in the olfactory receptor cell. Nature 385:725–29 [Google Scholar]
  71. Song Y, Cygnar KD, Sagdullaev B, Valley M, Hirsh S. 71.  et al. 2008. Olfactory CNG channel desensitization by Ca2+/CaM via the B1b subunit affects response termination but not sensitivity to recurring stimulation. Neuron 58:374–86 [Google Scholar]
  72. Spehr M, Kelliher KR, Li XH, Boehm T, Leinders-Zufall T, Zufall F. 72.  2006. Essential role of the main olfactory system in social recognition of major histocompatibility complex peptide ligands. J. Neurosci. 26:1961–70 [Google Scholar]
  73. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R. 73.  et al. 2001. Trace amines: identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. USA 98:8966–71 [Google Scholar]
  74. Liberles SD, Buck LB. 74.  2006. A second class of chemosensory receptors in the olfactory epithelium. Nature 442:645–50 [Google Scholar]
  75. Gloriam DE, Bjarnadottir TK, Yan YL, Postlethwait JH, Schioth HB, Fredriksson R. 75.  2005. The repertoire of trace amine G-protein-coupled receptors: large expansion in zebrafish. Mol. Phylogenet. Evol. 35:470–82 [Google Scholar]
  76. Mueller JC, Steiger S, Fidler AE, Kempenaers B. 76.  2008. Biogenic trace amine-associated receptors (TAARS) are encoded in avian genomes: evidence and possible implications. J. Hered. 99:174–76 [Google Scholar]
  77. Gibson AD, Garbers DL. 77.  2000. Guanylyl cyclases as a family of putative odorant receptors. Annu. Rev. Neurosci. 23:417–39 [Google Scholar]
  78. Walz A, Feinstein P, Khan M, Mombaerts P. 78.  2007. Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F. Development 134:4063–72 [Google Scholar]
  79. Ma M, Grosmaitre X, Iwema CL, Baker H, Greer CA, Shepherd GM. 79.  2003. Olfactory signal transduction in the mouse septal organ. J. Neurosci. 23:317–24 [Google Scholar]
  80. Shinoda K, Shiotani Y, Osawa Y. 80.  1989. “Necklace olfactory glomeruli” form unique components of the rat primary olfactory system. J. Comp. Neurol. 284:362–73 [Google Scholar]
  81. Hu J, Zhong C, Ding C, Chi Q, Walz A. 81.  et al. 2007. Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse. Science 317:953–57 [Google Scholar]
  82. Forte LR Jr. 82.  2004. Uroguanylin and guanylin peptides: pharmacology and experimental therapeutics. Pharmacol. Ther. 104:137–62 [Google Scholar]
  83. Baker H, Cummings DM, Munger SD, Margolis JW, Franzen L. 83.  et al. 1999. Targeted deletion of a cyclic nucleotide-gated channel subunit (OCNC1): biochemical and morphological consequences in adult mice. J. Neurosci. 19:9313–21 [Google Scholar]
  84. Young JM, Waters H, Dong C, Fulle HJ, Liman ER. 84.  2007. Degeneration of the olfactory guanylyl cyclase D gene during primate evolution. PLoS ONE 2:e884 [Google Scholar]
  85. Fain GL. 85.  2003. Sensory Transduction Sunderland, MA: Sinauer Assoc. [Google Scholar]
  86. Duda T, Sharma RK. 86.  2008. ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer. Biochem. Biophys. Res. Commun. 367:440–45 [Google Scholar]
  87. Venkatachalam K, Montell C. 87.  2007. TRP channels. Annu. Rev. Biochem. 76:387–417 [Google Scholar]
  88. Liman ER, Corey DP, Dulac C. 88.  1999. TRP2: a candidate transduction channel for mammalian pheromone sensory signaling. Proc. Natl. Acad. Sci. USA 96:5791–96 [Google Scholar]
  89. Elsaesser R, Montani G, Tirindelli R, Paysan J. 89.  2005. Phosphatidyl-inositide signaling proteins in a novel class of sensory cells in the mammalian olfactory epithelium. Eur. J. Neurosci. 21:2692–700 [Google Scholar]
  90. Hansel DE, Eipper BA, Ronnett GV. 90.  2001. Neuropeptide Y functions as a neuroproliferative factor. Nature 410:940–44 [Google Scholar]
  91. Montani G, Tonelli S, Elsaesser R, Paysan J, Tirindelli R. 91.  2006. Neuropeptide Y in the olfactory microvillar cells. Eur. J. Neurosci. 24:20–24 [Google Scholar]
  92. Lin W, Ogura T, Margolskee RF, Finger TE, Restrepo D. 92.  2008. TRPM5-expressing solitary chemosensory cells respond to odorous irritants. J. Neurophysiol. 99:1451–60 [Google Scholar]
  93. Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. 93.  2007. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc. Natl. Acad. Sci. USA 104:2471–76 [Google Scholar]
  94. Boekhoff I, Tareilus E, Strotmann J, Breer H. 94.  1990. Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J. 9:2453–58 [Google Scholar]
  95. Dulac C, Torello AT. 95.  2003. Molecular detection of pheromone signals in mammals: from genes to behavior. Nat. Rev. Neurosci. 4:551–62 [Google Scholar]
  96. Halpern M, Martinez-Marcos A. 96.  2003. Structure and function of the vomeronasal system: an update. Prog. Neurobiol. 70:245–318 [Google Scholar]
  97. Bigiani A, Mucignat-Caretta C, Montani G, Tirindelli R. 97.  2005. Pheromone reception in mammals. Rev. Physiol. Biochem. Pharmacol. 154:1–35 [Google Scholar]
  98. Zufall F, Leinders-Zufall T, Puche A. 98.  2008. Accessory olfactory system. The Senses: A Comprehensive Reference AI Basbaum, A Kaneko, GM Shepherd, G Westheimer 783–814 San Diego: Academic [Google Scholar]
  99. Luo M, Katz LC. 99.  2004. Encoding pheromonal signals in the mammalian vomeronasal system. Curr. Opin. Neurobiol. 14:428–34 [Google Scholar]
  100. Broad KD, Keverne EB. 100.  2008. More to pheromones than meets the nose. Nat. Neurosci. 11:128–29 [Google Scholar]
  101. Berghard A, Buck LB, Liman ER. 101.  1996. Evidence for distinct signaling mechanisms in two mammalian olfactory sense organs. Proc. Natl. Acad. Sci. USA 93:2365–69 [Google Scholar]
  102. Jia C, Halpern M. 102.  1996. Subclasses of vomeronasal receptor neurons: differential expression of G proteins (Giα 2 and G) and segregated projections to the accessory olfactory bulb. Brain Res. 719:117–28 [Google Scholar]
  103. Mohedano-Moriano A, Pro-Sistiaga P, Ubeda-Banon I, Crespo C, Insausti R, Martinez-Marcos A. 103.  2007. Segregated pathways to the vomeronasal amygdala: differential projections from the anterior and posterior divisions of the accessory olfactory bulb. Eur. J. Neurosci. 25:2065–80 [Google Scholar]
  104. Dulac C, Axel R. 104.  1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:195–206 [Google Scholar]
  105. Zhang X, Firestein S. 105.  2007. Comparative genomics of odorant and pheromone receptor genes in rodents. Genomics 89:441–50 [Google Scholar]
  106. Rodriguez I, Mombaerts P. 106.  2002. Novel human vomeronasal receptor-like genes reveal species-specific families. Curr. Biol. 12:R409–11 [Google Scholar]
  107. Rodriguez I, Feinstein P, Mombaerts P. 107.  1999. Variable patterns of axonal projections of sensory neurons in the mouse vomeronasal system. Cell 97:199–208 [Google Scholar]
  108. Grus WE, Shi P, Zhang J. 108.  2007. Largest vertebrate vomeronasal type 1 receptor gene repertoire in the semiaquatic platypus. Mol. Biol. Evol. 24:2153–57 [Google Scholar]
  109. Belluscio L, Koentges G, Axel R, Dulac C. 109.  1999. A map of pheromone receptor activation in the mammalian brain. Cell 97:209–20 [Google Scholar]
  110. Wagner S, Gresser AL, Torello AT, Dulac C. 110.  2006. A multireceptor genetic approach uncovers an ordered integration of VNO sensory inputs in the accessory olfactory bulb. Neuron 50:697–709 [Google Scholar]
  111. Leinders-Zufall T, Lane AP, Puche AC, Ma W, Novotny MV. 111.  et al. 2000. Ultrasensitive pheromone detection by mammalian vomeronasal neurons. Nature 405:792–96 [Google Scholar]
  112. Leinders-Zufall T, Brennan P, Widmayer P, Chandramani SP, Maul-Pavicic A. 112.  et al. 2004. MHC class I peptides as chemosensory signals in the vomeronasal organ. Science 306:1033–37 [Google Scholar]
  113. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ. 113.  et al. 2002. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:70–74 [Google Scholar]
  114. Boschat C, Pelofi C, Randin O, Roppolo D, Luscher C. 114.  et al. 2002. Pheromone detection mediated by a V1r vomeronasal receptor. Nat. Neurosci. 5:1261–62 [Google Scholar]
  115. He J, Ma L, Kim S, Nakai J, Yu CR. 115.  2008. Encoding gender and individual information in the mouse vomeronasal organ. Science 320:535–38 [Google Scholar]
  116. Holekamp TF, Turaga D, Holy TE. 116.  2008. Fast three-dimensional fluorescence imaging of activity in neural populations by objective-coupled planar illumination microscopy. Neuron 57:661–72 [Google Scholar]
  117. Chamero P, Marton TF, Logan DW, Flanagan K, Cruz JR. 117.  et al. 2007. Identification of protein pheromones that promote aggressive behavior. Nature 450:899–902 [Google Scholar]
  118. Ukhanov K, Leinders-Zufall T, Zufall F. 118.  2007. Patch-clamp analysis of gene-targeted vomeronasal neurons expressing a defined V1r or V2r receptor: ionic mechanisms underlying persistent firing. J. Neurophysiol. 98:2357–69 [Google Scholar]
  119. Zufall F, Ukhanov K, Lucas P, Liman ER, Leinders-Zufall T. 119.  2005. Neurobiology of TRPC2: from gene to behavior. Pflüg. Arch. 451:61–71 [Google Scholar]
  120. Lucas P, Ukhanov K, Leinders-Zufall T, Zufall F. 120.  2003. A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40:551–61 [Google Scholar]
  121. Leypold BG, Yu CR, Leinders-Zufall T, Kim MM, Zufall F, Axel R. 121.  2002. Altered sexual and social behaviors in trp2 mutant mice. Proc. Natl. Acad. Sci. USA 99:6376–81 [Google Scholar]
  122. Minke B. 122.  2006. TRP channels and Ca2+ signaling. Cell Calcium 40:261–75 [Google Scholar]
  123. Holy TE, Dulac C, Meister M. 123.  2000. Responses of vomeronasal neurons to natural stimuli. Science 289:1569–72 [Google Scholar]
  124. Yang H, Shi P, Zhang YP, Zhang J. 124.  2005. Composition and evolution of the V2r vomeronasal receptor gene repertoire in mice and rats. Genomics 86:306–15 [Google Scholar]
  125. Young JM, Trask BJ. 125.  2007. V2R gene families degenerated in primates, dog and cow, but expanded in opossum. Trends Genet. 23:212–15 [Google Scholar]
  126. Silvotti L, Moiani A, Gatti R, Tirindelli R. 126.  2007. Combinatorial coexpression of pheromone receptors, V2Rs. J. Neurochem. 103:1753–63 [Google Scholar]
  127. Ishii T, Hirota J, Mombaerts P. 127.  2003. Combinatorial coexpression of neural and immune multigene families in mouse vomeronasal sensory neurons. Curr. Biol. 13:394–400 [Google Scholar]
  128. Loconto J, Papes F, Chang E, Stowers L, Jones EP. 128.  et al. 2003. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and M1 families of MHC class Ib molecules. Cell 112:607–18 [Google Scholar]
  129. Olson R, Huey-Tubman KE, Dulac C, Bjorkman PJ. 129.  2005. Structure of a pheromone receptor-associated MHC molecule with an open and empty groove. PLoS Biol. 3:e257 [Google Scholar]
  130. Olson R, Dulac C, Bjorkman PJ. 130.  2006. MHC homologs in the nervous system—They haven't lost their groove. Curr. Opin. Neurobiol. 16:351–57 [Google Scholar]
  131. Ishii T, Mombaerts P. 131.  2008. Expression of nonclassical class I major histocompatibility genes defines a tripartite organization of the mouse vomeronasal system. J. Neurosci. 28:2332–41 [Google Scholar]
  132. Kimoto H, Haga S, Sato K, Touhara K. 132.  2005. Sex-specific peptides from exocrine glands stimulate mouse vomeronasal sensory neurons. Nature 437:898–901 [Google Scholar]
  133. Boehm T, Zufall F. 133.  2006. MHC peptides and the sensory evaluation of genotype. Trends Neurosci. 29:100–7 [Google Scholar]
  134. Villinger J, Waldman B. 134.  2008. Self-referent MHC type matching in frog tadpoles. Proc. Biol. Sci. 275:1225–30 [Google Scholar]
  135. Kimoto H, Sato K, Nodari F, Haga S, Holy TE, Touhara K. 135.  2007. Sex- and strain-specific expression and vomeronasal activity of mouse ESP family peptides. Curr. Biol. 17:1879–84 [Google Scholar]
  136. Touhara K. 136.  2007. Molecular biology of peptide pheromone production and reception in mice. Adv. Genet. 59:147–71 [Google Scholar]
  137. Cheetham SA, Thom MD, Jury F, Ollier WE, Beynon RJ, Hurst JL. 137.  2007. The genetic basis of individual-recognition signals in the mouse. Curr. Biol. 17:1771–77 [Google Scholar]
  138. More L. 138.  2006. Mouse major urinary proteins trigger ovulation via the vomeronasal organ. Chem. Senses 31:393–401 [Google Scholar]
  139. Stowers L, Holy TE, Meister M, Dulac C, Koentges G. 139.  2002. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:1493–500 [Google Scholar]
  140. Kimchi T, Xu J, Dulac C. 140.  2007. A functional circuit underlying male sexual behavior in the female mouse brain. Nature 448:1009–14 [Google Scholar]
  141. Kelliher KR, Spehr M, Li XH, Zufall F, Leinders-Zufall T. 141.  2006. Pheromonal recognition memory induced by TRPC2-independent vomeronasal sensing. Eur. J. Neurosci. 23:3385–90 [Google Scholar]
  142. Levai O, Feistel T, Breer H, Strotmann J. 142.  2006. Cells in the vomeronasal organ express odorant receptors but project to the accessory olfactory bulb. J. Comp. Neurol. 498:476–90 [Google Scholar]
  143. Müller W. 143.  1971. Vergleichende elektrophysiologische Untersuchungen an den Sinnesepithelien des Jacobsonschen Organs und der Nase von Amphibien (Rana), Reptilien (Lacerta) und Säugetieren (Mus). Z. Vergl. Physiol. 72:370–85 [Google Scholar]
  144. Tucker D. 144.  1971. Nonolfactory responses from the nasal cavity: Jacobson's organ and the trigeminal system. Handbook of Sensory Physiology H Autrum, R Jung, WR Loewenstein, DM MacKay, HL Teuber 152–81 Berlin/Heidelberg/New York: Springer-Verlag [Google Scholar]
  145. Sam M, Vora S, Malnic B, Ma W, Novotny MV, Buck LB. 145.  2001. Odorants may arouse instinctive behaviors. Nature 412:142 [Google Scholar]
  146. Trinh K, Storm DR. 146.  2003. Vomeronasal organ detects odorants in absence of signaling through main olfactory epithelium. Nat. Neurosci. 6:519–25 [Google Scholar]
  147. Xu F, Schaefer M, Kida I, Schafer J, Liu N. 147.  et al. 2005. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J. Comp. Neurol. 489:491–500 [Google Scholar]
  148. Weiler E, Farbman AI. 148.  2003. The septal organ of the rat during postnatal development. Chem. Senses 28:581–93 [Google Scholar]
  149. Kaluza JF, Gussing F, Bohm S, Breer H, Strotmann J. 149.  2004. Olfactory receptors in the mouse septal organ. J. Neurosci. Res. 76:442–52 [Google Scholar]
  150. Tian H, Ma M. 150.  2004. Molecular organization of the olfactory septal organ. J. Neurosci. 24:8383–90 [Google Scholar]
  151. Levai O, Strotmann J. 151.  2003. Projection pattern of nerve fibers from the septal organ: DiI-tracing studies with transgenic OMP mice. Histochem. Cell Biol. 120:483–92 [Google Scholar]
  152. Marshall DA, Maruniak JA. 152.  1986. Masera's organ responds to odorants. Brain Res. 366:329–32 [Google Scholar]
  153. Grosmaitre X, Santarelli LC, Tan J, Luo M, Ma M. 153.  2007. Dual functions of mammalian olfactory sensory neurons as odor detectors and mechanical sensors. Nat. Neurosci. 10:348–54 [Google Scholar]
  154. Grüneberg H. 154.  1973. A ganglion probably belonging to the N. terminalis system in the nasal mucosa of the mouse. Z Anat. Entwickl. 140:39–52 [Google Scholar]
  155. Fuss SH, Omura M, Mombaerts P. 155.  2005. The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb. Eur. J. Neurosci. 22:2649–54 [Google Scholar]
  156. Koos DS, Fraser SE. 156.  2005. The Grueneberg ganglion projects to the olfactory bulb. Neuroreport 16:1929–32 [Google Scholar]
  157. Fleischer J, Hass N, Schwarzenbacher K, Besser S, Breer H. 157.  2006. A novel population of neuronal cells expressing the olfactory marker protein (OMP) in the anterior/dorsal region of the nasal cavity. Histochem. Cell Biol. 125:337–49 [Google Scholar]
  158. Roppolo D, Ribaud V, Jungo VP, Luscher C, Rodriguez I. 158.  2006. Projection of the Gruneberg ganglion to the mouse olfactory bulb. Eur. J. Neurosci. 23:2887–94 [Google Scholar]
  159. Storan MJ, Key B. 159.  2006. Septal organ of Grüneberg is part of the olfactory system. J. Comp. Neurol. 494:834–44 [Google Scholar]
  160. Fleischer J, Schwarzenbacher K, Besser S, Hass N, Breer H. 160.  2006. Olfactory receptors and signaling elements in the Grueneberg ganglion. J. Neurochem. 98:543–54 [Google Scholar]
  161. Fleischer J, Schwarzenbacher K, Breer H. 161.  2007. Expression of trace amine-associated receptors in the Grueneberg ganglion. Chem. Senses 32:623–31 [Google Scholar]
  162. Bryant BP. 162.  2000. Chemesthesis: the common chemical sense. The Neurobiology of Taste and Smell TE Finger, WL Silver, D Restrepo 73–100 New York: Wiley [Google Scholar]
  163. Finger TE, Bottger B, Hansen A, Anderson KT, Alimohammadi H, Silver WL. 163.  2003. Solitary chemoreceptor cells in the nasal cavity serve as sentinels of respiration. Proc. Natl. Acad. Sci. USA 100:8981–86 [Google Scholar]
  164. Kaske S, Krasteva G, Konig P, Kummer W, Hofmann T. 164.  et al. 2007. TRPM5, a taste-signaling transient receptor potential ion-channel, is a ubiquitous signaling component in chemosensory cells. BMC Neurosci. 8:49 [Google Scholar]
  165. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T. 165.  et al. 2007. Innate versus learned odour processing in the mouse olfactory bulb. Nature 450:503–8 [Google Scholar]
  166. Mousley A, Polese G, Marks NJ, Eisthen HL. 166.  2006. Terminal nerve-derived neuropeptide Y modulates physiological responses in the olfactory epithelium of hungry axolotls (Ambystoma mexicanum). J. Neurosci. 26:7707–17 [Google Scholar]
  167. Von Bartheld CS. 167.  2004. The terminal nerve and its relation with extrabulbar “olfactory” projections: lessons from lampreys and lungfishes. Microsc. Res. Tech. 65:13–24 [Google Scholar]
  168. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A. 168.  et al. 1996. Visualizing an olfactory sensory map. Cell 87:675–86 [Google Scholar]
/content/journals/10.1146/annurev.physiol.70.113006.100608
Loading
/content/journals/10.1146/annurev.physiol.70.113006.100608
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error