1932

Abstract

We perceive the shapes and material properties of objects quickly and reliably despite the complexity and objective ambiguities of natural images. Typical images are highly complex because they consist of many objects embedded in background clutter. Moreover, the image features of an object are extremely variable and ambiguous owing to the effects of projection, occlusion, background clutter, and illumination. The very success of everyday vision implies neural mechanisms, yet to be understood, that discount irrelevant information and organize ambiguous or noisy local image features into objects and surfaces. Recent work in Bayesian theories of visual perception has shown how complexity may be managed and ambiguity resolved through the task-dependent, probabilistic integration of prior object knowledge with image features.

Loading

Article metrics loading...

/content/journals/10.1146/annurev.psych.55.090902.142005
2004-02-04
2025-05-20
Loading full text...

Full text loading...

/deliver/fulltext/ps/55/1/annurev.psych.55.090902.142005.html?itemId=/content/journals/10.1146/annurev.psych.55.090902.142005&mimeType=html&fmt=ahah

Literature Cited

  1. Albert MK. 2000. The generic viewpoint assumption and Bayesian inference. Perception 29:601–8 [Google Scholar]
  2. Albright TD, Stoner GR. 2002. Contextual influences on visual processing. Annu. Rev. Neurosci. 25:339–79 [Google Scholar]
  3. Atick JJ, Griffin PA, Redlich AN. 1996. Statistical approach to shape from shading: reconstruction of three-dimensional face surfaces from single two-dimensional images. Neural Comput. 8:1321–40 [Google Scholar]
  4. Barlow HB. 1962. A method of determining the overall quantum efficiency of visual discriminations. J. Physiol. 160:155–68 [Google Scholar]
  5. Berger J. 1985. Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag [Google Scholar]
  6. Bertamini M. 2001. The importance of being convex: an advantage for convexity when judging position. Perception 30:1295–310 [Google Scholar]
  7. Biederman I. 2000. Recognizing depth-rotated objects: a review of recent research and theory. Spat. Vis. 13:241–53 [Google Scholar]
  8. Blake A, Bülthoff HH. 1990. Does the brain know the physics of specular reflection?. Nature 343:165–69 [Google Scholar]
  9. Bloj MG, Kersten D, Hurlbert AC. 1999. Perception of three-dimensional shape influences colour perception through mutual illumination. Nature 402:877–79 [Google Scholar]
  10. Brady MJ, Kersten D. 2003. Bootstrapped learning of novel objects. J. Vis. 3:413–22 [Google Scholar]
  11. Brainard DH, Freeman WT. 1997. Bayesian color constancy. J. Opt. Soc. Am. A 14:1393–411 [Google Scholar]
  12. Buckley D, Frisby JP, Freeman J. 1994. Lightness perception can be affected by surface curvature from stereopsis. Perception 23:869–81 [Google Scholar]
  13. Bullier J. 2001. Integrated model of visual processing. Brain Res. Brain Res. Rev. 36:96–107 [Google Scholar]
  14. Bülthoff HH, Mallot HA. 1988. Integration of depth modules: stereo and shading. J. Opt. Soc. Am. A 5:1749–58 [Google Scholar]
  15. Bülthoff HH, Yuille A. 1991. Bayesian models for seeing surfaces and depth. Comments Theor. Biol. 2:283–314 [Google Scholar]
  16. Burgi PY, Yuille AL, Grzywacz NM. 2000. Probabilistic motion estimation based on temporal coherence. Neural Comput. 12:1839–67 [Google Scholar]
  17. Clark JJ, Yuille AL. 1990. Data Fusion for Sensory Information Processing Boston: Kluwer Acad [Google Scholar]
  18. Dana KJ, van Ginneken B, Nayar SK, Koenderink JJ. 1999. Reflectance and texture of real world surfaces. ACM Trans. Graph. 18:1–34 [Google Scholar]
  19. Dayan P, Hinton GE, Neal RM, Zemel RS. 1995. The Helmholtz machine. Neural Comput. 7:889–904 [Google Scholar]
  20. Debevec PE. 1998 Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography Presented at SIGGRAPH [Google Scholar]
  21. Dror RO, Leung TK, Adelson EH, Willsky AS. 2001 Statistics of real-world illumination Presented at Proc. CVPRHawaii [Google Scholar]
  22. Eckstein MP, Thomas JP, Palmer J, Shimozaki SS. 2000. A signal detection model predicts the effects of set size on visual search accuracy for feature, conjunction, triple conjunction, and disjunction displays. Percept. Psychophys. 62:425–51 [Google Scholar]
  23. Elder JH, Goldberg RM. 2002. Ecological statistics of gestalt laws for the perceptual organization of contours. J. Vis. 2:324–53 [Google Scholar]
  24. Ernst MO, Banks MS. 2002. Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415:429–33 [Google Scholar]
  25. Evgeniou T, Pontil M, Poggio T. 2000. Regularization networks and support vector machines. Adv. Comput. Math. 13:1–50 [Google Scholar]
  26. Feldman J. 2001. Bayesian contour integration. Percept. Psychophys. 63:1171–82 [Google Scholar]
  27. Field DJ. 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A 4:2379–94 [Google Scholar]
  28. Fine I, MacLeod DIA, Boynton GM. 2003. Visual segmentation based on the luminance and chromaticity statistics of natural scenes. Special issue on Bayesian and statistical approaches to vision. J. Opt. Soc. Am. A 20:1283–91 [Google Scholar]
  29. Fleming RW, Dror RO, Adelson EH. 2003. Real-world illumination and the perception of surface reflectance properties. J. Vis. 3:347–68 [Google Scholar]
  30. Freeman WT. 1994. The generic viewpoint assumption in a framework for visual perception. Nature 368:542–45 [Google Scholar]
  31. Freeman WT, Pasztor EC, Carmichael OT. 2000. Learning low-level vision. Int. J. Comput. Vis. 40:25–47 [Google Scholar]
  32. Freund Y, Schapire R. 1999. A short introduction to boosting. J. Jpn. Soc. Artif. Intell. 14:771–80 [Google Scholar]
  33. Geisler WS, Albrecht DG. 1995. Bayesian analysis of identification performance in monkey visual cortex: nonlinear mechanisms and stimulus certainty. Vis. Res. 35:2723–30 [Google Scholar]
  34. Geisler WS, Kersten D. 2002. Illusions, perception and Bayes. Nat. Neurosci. 5:508–10 [Google Scholar]
  35. Geisler WS, Perry JS, Super BJ, Gallogly DP. 2001. Edge co-occurrence in natural images predicts contour grouping performance. Vis. Res. 41:711–24 [Google Scholar]
  36. Gepshtein S, Banks MS. 2003. Viewing geometry determines how vision and haptics combine in size perception. Curr. Biol. 13:483–88 [Google Scholar]
  37. Gold JI, Shadlen MN. 2001. Neural computations that underlie decisions about sensory stimuli. Trends Cogn. Sci. 5:10–16 [Google Scholar]
  38. Green DM, Swets JA. 1974. Signal Detection Theory and Psychophysics Huntington, NY: Krieger [Google Scholar]
  39. Grenander U. 1996. Elements of Pattern Theory Baltimore, MD: Johns Hopkins Univ. Press [Google Scholar]
  40. Grill-Spector K. 2003. The neural basis of object perception. Curr. Opin. Neurobiol. 13:1–8 [Google Scholar]
  41. Grill-Spector K, Kourtzi Z, Kanwisher N. 2001. The lateral occipital complex and its role in object recognition. Vis. Res. 41:1409–22 [Google Scholar]
  42. Hastie T, Tibshirani R, Friedman J. 2001. The Elements of Statistical Learning New York: Springer [Google Scholar]
  43. Helmholtz H. 1867.Handbuch der Physiologischen Optik. Leipzig: Voss. (English tranl. 1924 JPC Southall as Treatise on Physiological Optics)
  44. Hill H, Bruce V. 1993. Independent effects of lighting, orientation, and stereopis on the hollow-face illusion. Perception 22:887–97 [Google Scholar]
  45. Hillis JM, Ernst MO, Banks MS, Landy MS. 2002. Combining sensory information: mandatory fusion within, but not between, senses. Science 298:1627–30 [Google Scholar]
  46. Hinton GE, Ghahramani Z. 1997. Generative models for discovering sparse distributed representations. Philos. Trans. R. Soc. London Ser. B 352:(1358)1177–90 [Google Scholar]
  47. Howe CQ, Purves D. 2002. Range image statistics can explain the anomalous perception of length. Proc. Natl. Acad. Sci. USA 99:13184–88 [Google Scholar]
  48. Humphrey GK, Goodale MA, Bowen CV, Gati JS, Vilis T. et al. 1997. Differences in perceived shape from shading correlate with activity in early visual areas. Curr. Biol. 7:144–47 [Google Scholar]
  49. Isard M, Blake A. 1998. Condensation—conditional density propagation for visual tracking. Int. J. Comput. Vis. 29:5–28 [Google Scholar]
  50. Jacobs RA. 2002. What determines visual cue reliability?. Trends Cogn. Sci. 6:345–50 [Google Scholar]
  51. Jensen HW, Marschner SR, Levoy M, Hanrahan P. 2001 A practical model for subsurface light transport Presented at Computer Graphics (SIGGRAPH) [Google Scholar]
  52. Kanizsa G, Gerbino W. 1976. Convexity and symmetry in figure-ground organisation. In Vision and Artifact ed. M Henle New York: Springer [Google Scholar]
  53. Kersten D. 1999. High-level vision as statistical inference. In The New Cognitive Neurosciences ed. MS Gazzaniga pp. 353–63 Cambridge, MA: MIT Press, 2nd ed.. [Google Scholar]
  54. Kersten D, Mamassian P, Knill DC. 1997. Moving cast shadows induce apparent motion in depth. Perception 26:171–92 [Google Scholar]
  55. Kersten D, Schrater PW. 2002. Pattern inference theory: a probabilistic approach to vision. In Perception and the Physical World ed. R Mausfeld, D Heyer Chichester: Wiley [Google Scholar]
  56. Kersten D, Yuille A. 2003. Bayesian models of object perception. Curr. Opin. Neurobiol. 13:1–9 [Google Scholar]
  57. Knill DC. 1998. Discrimination of planar surface slant from texture: human and ideal observers compared. Vis. Res. 38:1683–711 [Google Scholar]
  58. Knill DC, Field D, Kersten D. 1990. Human discrimination of fractal images. J. Opt. Soc. Am. A 7:1113–23 [Google Scholar]
  59. Knill DC, Kersten D. 1991. Apparent surface curvature affects lightness perception. Nature 351:228–30 [Google Scholar]
  60. Knill DC, Kersten D, Yuille A. 1996. Introduction: a Bayesian formulation of visual perception. See Knill & Richards 1996 pp. 1–21 [Google Scholar]
  61. Knill DC, Richards W. 1996. Perception as Bayesian Inference Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  62. Koechlin E, Anton JL, Burnod Y. 1999. Bayesian inference in populations of cortical neurons: a model of motion integration and segmentation in area MT. Biol. Cybern. 80:25–44 [Google Scholar]
  63. Koenderink JJ, van Doorn AJ, Kappers AM, Todd JT. 2001. Ambiguity and the ‘mental eye’ in pictorial relief. Perception 30:431–48 [Google Scholar]
  64. Konishi SM, Yuille AL, Coughlan JM, Zhu SC. 2003. Statistical edge detection: learning and evaluating edge cues. Pattern Anal. Mach. Intell. 1:37–48 [Google Scholar]
  65. Lamme VA, Roelfsema PR. 2000. The distinct modes of vision offered by feedforward and recurrent processing. Trends Neurosci. 23:571–79 [Google Scholar]
  66. Land EH, McCann JJ. 1971. Lightness and the retinex theory. J. Opt. Soc. Am. 61:1–11 [Google Scholar]
  67. Landy MS, Kojima H. 2001. Ideal cue combination for localizing texture-defined edges. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18:2307–20 [Google Scholar]
  68. Landy MS, Maloney LT, Johnston EB, Young M. 1995. Measurement and modeling of depth cue combination: in defense of weak fusion. Vis. Res. 35:389–412 [Google Scholar]
  69. Langer MS, Bülthoff HH. 2001. A prior for global convexity in local shape-from-shading. Perception 30:403–10 [Google Scholar]
  70. Lee TS, Mumford D. 2003. Hierarchical Bayesian inference in the visual cortex. J. Opt. Soc. Am. A 20:1434–48 [Google Scholar]
  71. Lee TS, Yang CF, Romero RD, Mumford D. 2002. Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nat. Neurosci. 5:589–97 [Google Scholar]
  72. Legge GE, Hooven TA, Klitz TS, Mansfield JS, Tjan BS. 2002. Mr. Chips 2002: new insights from an ideal-observer model of reading. Vis. Res. 42:2219–34 [Google Scholar]
  73. Lennie P. 2003. The cost of cortical computation. Curr. Biol. 13:493–97 [Google Scholar]
  74. Leopold DA, O'Toole AJ, Vetter T, Blanz V. 2001. Prototype-referenced shape encoding revealed by high-level aftereffects. Nat. Neurosci. 4:89–94 [Google Scholar]
  75. Lerner Y, Hendler T, Ben-Bashat D, Harel M, Malach R. 2001. A hierarchical axis of object processing stages in the human visual cortex. Cereb. Cortex 11:287–97 [Google Scholar]
  76. Liu Z, Kersten D. 1998. 2D observers for human 3D object recognition?. Vis. Res. 38:2507–19 [Google Scholar]
  77. Liu Z, Kersten D. 2003. 3D symmetric shapes are discriminated more efficiently than asymmetric ones. J. Opt. Soc. Am. A 20:1331–40 [Google Scholar]
  78. Liu Z, Kersten D, Knill DC. 1999. Stimulus information or internal representation?—A case study in human object recognition.. Vis. Res. 39:603–12 [Google Scholar]
  79. Liu Z, Knill DC, Kersten D. 1995. Object classification for human and ideal observers. Vis. Res. 35:549–68 [Google Scholar]
  80. Lorenceau J, Shiffrar M. 1992. The influence of terminators on motion integration across space. Vis. Res. 32:263–73 [Google Scholar]
  81. MacKay DM. 1956. The epistemological problem for automata. In Automata Studies ed. CE Shannon, J McCarthy pp. 235–50. Princeton: Princeton Univ. Press [Google Scholar]
  82. Maloney LT. 2002. Statistical decision theory and biological vision. In Perception and the Physical World ed. D Heyer, R Mausfeld pp. 145–89. Chichester, UK: Wiley [Google Scholar]
  83. Mamassian P, Goutcher R. 2001. Prior knowledge on the illumination position. Cognition 81:B1–9 [Google Scholar]
  84. Mamassian P, Knill DC, Kersten D. 1998. The perception of cast shadows. Trends Cogn. Sci. 2:288–95 [Google Scholar]
  85. Mamassian P, Landy MS. 1998. Observer biases in the 3D interpretation of line drawings. Vis. Res. 38:2817–32 [Google Scholar]
  86. Mamassian P, Landy MS. 2001. Interaction of visual prior constraints. Vis. Res. 41:2653–68 [Google Scholar]
  87. Mamassian P, Landy MS, Maloney LT. 2002. Bayesian modelling of visual perception. See Rao et al. 2002 pp. 13–36 [Google Scholar]
  88. Marschner SR, Westin SH, Lafortune EPF, Torrance KE. 2000. Image-based measurement of the bidirectional reflectance distribution function. Appl. Opt. 39:2592–600 [Google Scholar]
  89. McDermott J, Weiss Y, Adelson EH. 2001. Beyond junctions: nonlocal form constraints on motion interpretation. Perception 30:905–23 [Google Scholar]
  90. Mumford D. 1992. On the computational architecture of the neocortex. II. The role of cortico-cortical loops. Biol. Cybern. 66:241–51 [Google Scholar]
  91. Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL. 2002. Shape perception reduces activity in human primary visual cortex. Proc. Natl. Acad. Sci. USA 99:15164–69 [Google Scholar]
  92. Nakayama K, Shimojo S. 1992. Experiencing and perceiving visual surfaces.. Science 257:1357–63 [Google Scholar]
  93. Oliva A, Schyns PG. 2000. Diagnostic colors mediate scene recognition. Cogn. Psychol. 41:176–210 [Google Scholar]
  94. Oliva A, Torralba A. 2001. Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42:145–75 [Google Scholar]
  95. Olshausen BA, Field DJ. 2000. Vision and the coding of natural images. Am. Sci. 88:238–45 [Google Scholar]
  96. Oram MW, Foldiak P, Perrett DI, Sengpiel F. 1998. The ‘ideal Homunculus’: decoding neural population signals. Trends Neurosci. 21:259–65 [Google Scholar]
  97. Parish DH, Sperling G. 1991. Object spatial frequencies, retinal spatial frequencies, noise, and the efficiency of letter discrimination. Vis. Res. 31:1399–415 [Google Scholar]
  98. Parraga CA, Troscianko T, Tolhurst DJ. 2000. The human visual system is optimised for processing the spatial information in natural visual images. Curr. Biol. 10:35–38 [Google Scholar]
  99. Pearl J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. San Mateo, CA: Morgan Kaufmann [Google Scholar]
  100. Pelli DG, Farell B, Moore DC. 2003. The remarkable inefficiency of word recognition. Nature 243:752–56 [Google Scholar]
  101. Pizlo Z. 1994. A theory of shape constancy based on perspective invariants. Vis. Res. 34:1637–58 [Google Scholar]
  102. Pizlo Z. 2001. Perception viewed as an inverse problem. Vis. Res. 41:3145–61 [Google Scholar]
  103. Platt ML, Glimcher PW. 1999. Neural correlates of decision variables in parietal cortex. Nature 400:233–38 [Google Scholar]
  104. Poggio T, Edelman S. 1990. A network that learns to recognize three-dimensional objects. Nature 343:263–66 [Google Scholar]
  105. Poggio T, Girosi F. 1990. Regularization algorithms for learning that are equivalent to multilayer networks. Science 247:978–82 [Google Scholar]
  106. Portilla J, Simoncelli EP. 2000. A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40:9–71 [Google Scholar]
  107. Pouget A, Dayan P, Zemel R. 2000. Information processing with population codes. Nat. Rev. Neurosci. 1:125–32 [Google Scholar]
  108. Ramachandran VS. 1985. The neurobiology of perception. Perception 14:97–103 [Google Scholar]
  109. Rao RP, Ballard DH. 1999. Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. Nat. Neurosci. 2:79–87 [Google Scholar]
  110. Rao RPN, Olshausen BA, Lewicki MS. eds 2002. Probabilistic Models of the Brain: Perception and Neural Function. Cambridge, MA: MIT Press [Google Scholar]
  111. Read JCA. 2002. A Bayesian model of stereopsis depth and motion direction discrimination. Biol. Cybern. 86:117–36 [Google Scholar]
  112. Riesenhuber M, Poggio T. 2002. Neural mechanisms of object recognition. Curr. Opin. Neurobiol. 12:162–68 [Google Scholar]
  113. Rock I. 1983. The Logic of Perception. Cambridge, MA: MIT Press [Google Scholar]
  114. Sanger TD. 1996. Probability density estimation for the interpretation of neural population codes. J. Neurophysiol. 76:2790–93 [Google Scholar]
  115. Saunders JA, Knill DC. 2001. Perception of 3D surface orientation from skew symmetry. Vis. Res. 41:3163–83 [Google Scholar]
  116. Schölkopf B, Smola AJ. 2002. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press [Google Scholar]
  117. Schrater PR, Kersten D. 2000. How optimal depth cue integration depends on the task. Int. J. Comput. Vis. 40:73–91 [Google Scholar]
  118. Schrater PR, Kersten D. 2002. Vision, psychophysics, and Bayes. See Rao et al. 2002b pp. 39–64 [Google Scholar]
  119. Schrater PR, Knill DC, Simoncelli EP. 2000. Mechanisms of visual motion detection. Nat. Neurosci. 1:64–68 [Google Scholar]
  120. Simoncelli EP, Olshausen BA. 2001. Natural image statistics and neural representation. Annu. Rev. Neurosci. 24:1193–216 [Google Scholar]
  121. Sinha P, Adelson E. 1993 Recovering reflectance and illumination in a world of painted polyhedra. Presented at Proc. Int. Conf. Comput. Vis., 4thBerlin [Google Scholar]
  122. Sun J, Perona P. 1998. Where is the sun?. Nat. Neurosci. 1:183–84 [Google Scholar]
  123. Tarr MJ, Bülthoff HH. 1995. Is human object recognition better described by geon structural descriptions or by multiple views? Comment on Biederman and Gerhardstein (1993). J. Exp. Psychol. Hum. Percept. Perform. 21:1494–505 [Google Scholar]
  124. Tenenbaum JB. 2000. Bayesian modeling of human concept learning. Advances in Neural Information Processing Systems ed. Solla S, Leen T, Muller KR 1259–65 Cambridge, MA: MIT Press [Google Scholar]
  125. Tenenbaum JB, Griffiths TL. 2001. Generalization, similarity, and Bayesian inference. Behav. Brain Sci. 24:629–40 discussion 652–791 [Google Scholar]
  126. Tenenbaum JB, Xu F. 2000 Word learning as Bayesian inference. Proc. Ann. Conf. Cogn. Sci. Soc., 22nd ed. Gleitman LR, Joshi AK Mahwah, NJLawerence Erlbaum Assoc [Google Scholar]
  127. Tjan BS, Braje WL, Legge GE, Kersten D. 1995. Human efficiency for recognizing 3-D objects in luminance noise. Vis. Res. 35:3053–69 [Google Scholar]
  128. Troje NF, Kersten D. 1999. Viewpoint dependent recognition of familiar faces. Perception 28:483–87 [Google Scholar]
  129. Tu Z, Chen A, Yuille AL, Zhu SC. 2003 Image parsing. Proc. Int. Conf. Comput. Vis.Cannes, France [Google Scholar]
  130. Tu Z, Zhu S-C. 2002. Image segmentation by data-driven Markov chain Monte Carlo. IEEE Trans. Pattern Anal. Mach. Intell. 24:657–73 [Google Scholar]
  131. Ullman S. 1996. High-Level Vision: Object Recognition and Visual Cognition. Cambridge, MA: MIT Press [Google Scholar]
  132. Ullman S, Basri R. 1991. Recognition by linear combination of models. IEEE Trans. Pattern Anal. Mach. Intell. 13:992–1006 [Google Scholar]
  133. VanRullen R, Thorpe SJ. 2001. Is it a bird? Is it a plane? Ultra-rapid visual categorisation of natural and artifactual objects. Perception 30:655–68 [Google Scholar]
  134. Vapnik VN. 1998. Statistical Learning Theory. New York: Wiley [Google Scholar]
  135. Vetter T, Troje NF. 1997. Separation of texture and shape in images of faces for image coding and synthesis. J. Opt. Soc. Am. A 14:2152–61 [Google Scholar]
  136. Viola P, Jones MJ. 2001 Robust real-time object detection. Proc. IEEE Workshop Stat. Comput. Theor. Vis.Vancouver, Can. [Google Scholar]
  137. Weber M, Welling M, Perona P. 2000. Unsupervised Learning of Models for Recognition. Presented at Proc. Eur. Conf. Comp. Vis., 6thDublin, Ireland [Google Scholar]
  138. Weiss Y, Simoncelli EP, Adelson EH. 2002. Motion illusions as optimal percepts. Nat. Neurosci. 5:598–604 [Google Scholar]
  139. Yonas A. ed 2003. Development of space perception. In Encyclopedia of Cognitive Science ed. R Anand pp. 96–100. London, UK: Macmillan [Google Scholar]
  140. Yu AJ, Dayan P. 2002. Acetylcholine in cortical inference. Neural Netw 15:719–30 [Google Scholar]
  141. Yuille AL, Bülthoff HH. 1996. Bayesian decision theory and psychophysics. See Knill & Richards 1996 pp. 123–61 [Google Scholar]
  142. Yuille AL, Coughlan JM, Konishi S. 2001 The KGBR viewpoint-lighting ambiguity and its resolution by generic constraints. Presented at Proc. Int. Conf. Comput. Vis., Vancouver, Canada [Google Scholar]
  143. Yuille A, Coughlan JM, Konishi S. 2003. The KGBR viewpoint-lighting ambiguity. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 20:24–31 [Google Scholar]
  144. Yuille A, Grzywacz N. 1988. A computational theory for the perception of coherent visual motion. Nature 333:71–74 [Google Scholar]
  145. Zhu SC. 1999. Embedding gestalt laws in Markov random fields. IEEE Trans. Pattern Anal. Mach. Intell. 21:1170–87 [Google Scholar]
  146. Zhu SC, Mumford D. 1997. Prior learning and Gibbs reaction-diffusion. IEEE Trans. PAMI 19:1236–50 [Google Scholar]
  147. Zhu SC, Wu Y, Mumford D. 1997. Minimax entropy principle and its applications to texture modeling. Neural Comput. 9:1627–60 [Google Scholar]
  148. Zipser K, Lamme VA, Schiller PH. 1996. Contextual modulation in primary visual cortex. J. Neurosci. 16:7376–89 [Google Scholar]
/content/journals/10.1146/annurev.psych.55.090902.142005
Loading
/content/journals/10.1146/annurev.psych.55.090902.142005
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error