- Home
- A-Z Publications
- Annual Review of Analytical Chemistry
- Previous Issues
- Volume 11, 2018
Annual Review of Analytical Chemistry - Volume 11, 2018
Volume 11, 2018
-
-
Mass Spectrometry for Synthesis and Analysis
R. Graham Cooks, and Xin YanVol. 11 (2018), pp. 1–28More LessMass spectrometry is the science and technology of ions. As such, it is concerned with generating ions, measuring their properties, following their reactions, isolating them, and using them to build and transform materials. Instrumentation is an essential element of these activities, and analytical applications are one driving force. Work from the Aston Laboratories at Purdue University's Department of Chemistry is described here, with an emphasis on accelerated reactions of ions in solution and small-scale synthesis; ion/surface collision processes, including surface-induced dissociation (SID) and ion soft landing; and applications to tissue imaging. Our special interest in chirality and the chemistry behind the origins of life is also featured together with the exciting area of tissue diagnostics.
-
-
-
Gas Cluster Ion Beams for Secondary Ion Mass Spectrometry
Vol. 11 (2018), pp. 29–48More LessGas cluster ion beams (GCIBs) provide new opportunities for bioimaging and molecular depth profiling with secondary ion mass spectrometry (SIMS). These beams, consisting of clusters containing thousands of particles, initiate desorption of target molecules with high yield and minimal fragmentation. This review emphasizes the unique opportunities for implementing these sources, especially for bioimaging applications. Theoretical aspects of the cluster ion/solid interaction are developed to maximize conditions for successful mass spectrometry. In addition, the history of how GCIBs have become practical laboratory tools is reviewed. Special emphasis is placed on the versatility of these sources, as size, kinetic energy, and chemical composition can be varied easily to maximize lateral resolution, hopefully to less than 1 micron, and to maximize ionization efficiency. Recent examples of bioimaging applications are also presented.
-
-
-
Relative and Absolute Quantitation in Mass Spectrometry–Based Proteomics
Vol. 11 (2018), pp. 49–77More LessMass spectrometry–based quantitative proteomics is a powerful tool for gaining insights into function and dynamics of biological systems. However, peptides with different sequences have different ionization efficiencies, and their intensities in a mass spectrum are not correlated with their abundances. Therefore, various label-free or stable isotope label–based quantitation methods have emerged to assist mass spectrometry to perform comparative proteomic experiments, thus enabling nonbiased identification of thousands of proteins differentially expressed in healthy versus diseased cells. Here, we discuss the most widely used label-free and metabolic-, enzymatic-, and chemical labeling–based proteomic strategies for relative and absolute quantitation. We summarize the specific strengths and weaknesses of each technique in terms of quantification accuracy, proteome coverage, multiplexing capability, and robustness. Applications of each strategy for solving specific biological complexities are also presented.
-
-
-
Technologies for Measuring Pharmacokinetic Profiles
Vol. 11 (2018), pp. 79–100More LessThe creation of a pharmacokinetic (PK) curve, which follows the plasma concentration of an administered drug as a function of time, is a critical aspect of the drug development process and includes such information as the drug's bioavailability, clearance, and elimination half-life. Prior to a drug of interest gaining clearance for use in human clinical trials, research is performed during the preclinical stages to establish drug safety and dosing metrics from data obtained from the PK studies. Both in vivo animal models and in vitro platforms have limitations in predicting human reaction to a drug due to differences in species and associated simplifications, respectively. As a result, in silico experiments using computer simulation have been implemented to accurately predict PK parameters in human studies. This review assesses these three approaches (in vitro, in vivo, and in silico) when establishing PK parameters and evaluates the potential for in silico studies to be the future gold standard of PK preclinical studies.
-
-
-
Interfacing Cells with Vertical Nanoscale Devices: Applications and Characterization
Vol. 11 (2018), pp. 101–126More LessMeasurements of the intracellular state of mammalian cells often require probes or molecules to breach the tightly regulated cell membrane. Mammalian cells have been shown to grow well on vertical nanoscale structures in vitro, going out of their way to reach and tightly wrap the structures. A great deal of research has taken advantage of this interaction to bring probes close to the interface or deliver molecules with increased efficiency or ease. In turn, techniques have been developed to characterize this interface. Here, we endeavor to survey this research with an emphasis on the interface as driven by cellular mechanisms.
-
-
-
Wearable and Implantable Sensors for Biomedical Applications
Vol. 11 (2018), pp. 127–146More LessMobile health technologies offer great promise for reducing healthcare costs and improving patient care. Wearable and implantable technologies are contributing to a transformation in the mobile health era in terms of improving healthcare and health outcomes and providing real-time guidance on improved health management and tracking. In this article, we review the biomedical applications of wearable and implantable medical devices and sensors, ranging from monitoring to prevention of diseases, as well as the materials used in the fabrication of these devices and the standards for wireless medical devices and mobile applications. We conclude by discussing some of the technical challenges in wearable and implantable technology and possible solutions for overcoming these difficulties.
-
-
-
SERS Sensors: Recent Developments and a Generalized Classification Scheme Based on the Signal Origin
Vol. 11 (2018), pp. 147–169More LessOwing to its extreme sensitivity and easy execution, surface-enhanced Raman spectroscopy (SERS) now finds application for a wide variety of problems requiring sensitive and targeted analyte detection. This widespread application has prompted a proliferation of different SERS-based sensors, suggesting the need for a framework to classify existing methods and guide the development of new techniques. After a brief discussion of the general SERS modalities, we classify SERS-based sensors according the origin of the signal. Three major categories emerge from this analysis: surface-affinity strategy, SERS-tag strategy, and probe-mediated strategy. For each case, we describe the mechanism of action, give selected examples, and point out general misconceptions to aid the construction of new devices. We hope this review serves as a useful tutorial guide and helps readers to better classify and design practical and effective SERS-based sensors.
-
-
-
DNA Nanotechnology-Enabled Interfacial Engineering for Biosensor Development
Dekai Ye, Xiaolei Zuo, and Chunhai FanVol. 11 (2018), pp. 171–195More LessBiosensors represent biomimetic analytical tools for addressing increasing needs in medical diagnosis, environmental monitoring, security, and biodefense. Nevertheless, widespread real-world applications of biosensors remain challenging due to limitations of performance, including sensitivity, specificity, speed, and reproducibility. In this review, we present a DNA nanotechnology-enabled interfacial engineering approach for improving the performance of biosensors. We first introduce the main challenges of the biosensing interfaces, especially under the context of controlling the DNA interfacial assembly. We then summarize recent progress in DNA nanotechnology and efforts to harness DNA nanostructures to engineer various biological interfaces, with a particular focus on the use of framework nucleic acids. We also discuss the implementation of biosensors to detect physiologically relevant nucleic acids, proteins, small molecules, ions, and other biomarkers. This review highlights promising applications of DNA nanotechnology in interfacial engineering for biosensors and related areas.
-
-
-
DNA Electrochemistry and Electrochemical Sensors for Nucleic Acids
Vol. 11 (2018), pp. 197–218More LessSensitive, specific, and fast analysis of nucleic acids (NAs) is strongly needed in medicine, environmental science, biodefence, and agriculture for the study of bacterial contamination of food and beverages and genetically modified organisms. Electrochemistry offers accurate, simple, inexpensive, and robust tools for the development of such analytical platforms that can successfully compete with other approaches for NA detection. Here, electrode reactions of DNA, basic principles of electrochemical NA analysis, and their relevance for practical applications are reviewed and critically discussed.
-
-
-
Improving Lateral Flow Assay Performance Using Computational Modeling
Vol. 11 (2018), pp. 219–244More LessThe performance, field utility, and low cost of lateral flow assays (LFAs) have driven a tremendous shift in global health care practices by enabling diagnostic testing in previously unserved settings. This success has motivated the continued improvement of LFAs through increasingly sophisticated materials and reagents. However, our mechanistic understanding of the underlying processes that drive the informed design of these systems has not received commensurate attention. Here, we review the principles underpinning LFAs and the historical evolution of theory to predict their performance. As this theory is integrated into computational models and becomes testable, the criteria for quantifying performance and validating predictive power are critical. The integration of computational design with LFA development offers a promising and coherent framework to choose from an increasing number of novel materials, techniques, and reagents to deliver the low-cost, high-fidelity assays of the future.
-
-
-
Recent Advances and Trends in Microfluidic Platforms for C. elegans Biological Assays
Farhan Kamili, and Hang LuVol. 11 (2018), pp. 245–264More LessMicrofluidics has proven to be a key tool in quantitative biological research. The C. elegans research community in particular has developed a variety of microfluidic platforms to investigate sensory systems, development, aging, and physiology of the nematode. Critical for the growth of this field, however, has been the implementation of concurrent advanced microscopy, hardware, and software technologies that enable the discovery of novel biology. In this review, we highlight recent innovations in microfluidic platforms used for assaying C. elegans and discuss the novel technological approaches and analytic strategies required for these systems. We conclude that platforms that provide analytical frameworks for assaying specific biological mechanisms and those that take full advantage of integrated technologies to extract high-value quantitative information from worm assays are most likely to move the field forward.
-
-
-
Fabrication and Use of Nanopipettes in Chemical Analysis
Vol. 11 (2018), pp. 265–286More LessThis review summarizes progress in the fabrication, modification, characterization, and applications of nanopipettes since 2010. A brief history of nanopipettes is introduced, and the details of fabrication, modification, and characterization of nanopipettes are provided. Applications of nanopipettes in chemical analysis are the focus in several cases, including recent progress in imaging; in the study of single molecules, single nanoparticles, and single cells; in fundamental investigations of charge transfer (ion and electron) reactions at liquid/liquid interfaces; and as hyphenated techniques combined with other methods to study the mechanisms of complicated electrochemical reactions and to conduct bioanalysis.
-
-
-
3D Printed Organ Models for Surgical Applications
Vol. 11 (2018), pp. 287–306More LessMedical errors are a major concern in clinical practice, suggesting the need for advanced surgical aids for preoperative planning and rehearsal. Conventionally, CT and MRI scans, as well as 3D visualization techniques, have been utilized as the primary tools for surgical planning. While effective, it would be useful if additional aids could be developed and utilized in particularly complex procedures involving unusual anatomical abnormalities that could benefit from tangible objects providing spatial sense, anatomical accuracy, and tactile feedback. Recent advancements in 3D printing technologies have facilitated the creation of patient-specific organ models with the purpose of providing an effective solution for preoperative planning, rehearsal, and spatiotemporal mapping. Here, we review the state-of-the-art in 3D printed, patient-specific organ models with an emphasis on 3D printing material systems, integrated functionalities, and their corresponding surgical applications and implications. Prior limitations, current progress, and future perspectives in this important area are also broadly discussed.
-
-
-
Analytical Chemistry in the Regulatory Science of Medical Devices
Vol. 11 (2018), pp. 307–327More LessIn the United States, regulatory science is the science of developing new tools, standards, and approaches to assess the safety, efficacy, quality, and performance of all Food and Drug Administration–regulated products. Good regulatory science facilitates consumer access to innovative medical devices that are safe and effective throughout the Total Product Life Cycle (TPLC). Because the need to measure things is fundamental to the regulatory science of medical devices, analytical chemistry plays an important role, contributing to medical device technology in two ways: It can be an integral part of an innovative medical device (e.g., diagnostic devices), and it can be used to support medical device development throughout the TPLC. In this review, we focus on analytical chemistry as a tool for the regulatory science of medical devices. We highlight recent progress in companion diagnostics, medical devices on chips for preclinical testing, mass spectrometry for postmarket monitoring, and detection/characterization of bacterial biofilm to prevent infections.
-
-
-
(Multi)functional Atomic Force Microscopy Imaging
Vol. 11 (2018), pp. 329–350More LessIncorporating functionality to atomic force microscopy (AFM) to obtain physical and chemical information has always been a strong focus in AFM research. Modifying AFM probes with specific molecules permits accessibility of chemical information via specific reactions and interactions. Fundamental understanding of molecular processes at the solid/liquid interface with high spatial resolution is essential to many emerging research areas. Nanoscale electrochemical imaging has emerged as a complementary technique to advanced AFM techniques, providing information on electrochemical interfacial processes. While this review presents a brief introduction to advanced AFM imaging modes, such as multiparametric AFM and topography recognition imaging, the main focus herein is on electrochemical imaging via hybrid AFM-scanning electrochemical microscopy. Recent applications and the challenges associated with such nanoelectrochemical imaging strategies are presented.
-
-
-
Nano-Enabled Approaches to Chemical Imaging in Biosystems
Vol. 11 (2018), pp. 351–373More LessUnderstanding and predicting how biosystems function require knowledge about the dynamic physicochemical environments with which they interact and alter by their presence. Yet, identifying specific components, tracking the dynamics of the system, and monitoring local environmental conditions without disrupting biosystem function present significant challenges for analytical measurements. Nanomaterials, by their very size and nature, can act as probes and interfaces to biosystems and offer solutions to some of these challenges. At the nanoscale, material properties emerge that can be exploited for localizing biomolecules and making chemical measurements at cellular and subcellular scales. Here, we review advances in chemical imaging enabled by nanoscale structures, in the use of nanoparticles as chemical and environmental probes, and in the development of micro- and nanoscale fluidic devices to define and manipulate local environments and facilitate chemical measurements of complex biosystems. Integration of these nano-enabled methods will lead to an unprecedented understanding of biosystem function.
-
-
-
Single-Molecule Force Spectroscopy of Transmembrane β-Barrel Proteins
Vol. 11 (2018), pp. 375–395More LessSingle-molecule force spectroscopy (SMFS) has been widely applied to study the mechanical unfolding and folding of transmembrane proteins. Here, we review the recent progress in characterizing bacterial and human transmembrane β-barrel proteins by SMFS. First, we describe the mechanical unfolding of transmembrane β-barrels, which follows a general mechanism dictated by the sequential unfolding and extraction of individual β-strands and β-hairpins from membranes. Upon force relaxation, the unfolded polypeptide can insert stepwise into the membrane as single β-strands or β-hairpins to fold as the native β-barrel. The refolding can be followed at a high spatial and temporal resolution, showing that small β-barrels are able to fold without assistance, whereas large and complex β-barrels require chaperone cofactors. Applied in the dynamic mode, SMFS can quantify the kinetic and mechanical properties of single β-hairpins and reveal complementary insight into the membrane protein structure and function relationship. We further outline the challenges that SMFS experiments must overcome for a comprehensive understanding of the folding and function of transmembrane β-barrel proteins.
-
-
-
Voltammetric Perspectives on the Acidity Scale and H+/H2 Process in Ionic Liquid Media
Vol. 11 (2018), pp. 397–419More LessNonhaloaluminate ionic liquids (ILs) have received considerable attention as alternatives to molecular solvents in diverse applications spanning the fields of physical, chemical, and biological science. One important and often overlooked aspect of the implementation of these designer solvents is how the properties of the IL formulation affect (electro)chemical reactivity. This aspect is emphasized herein, where recent (voltammetric) studies on the energetics of proton (H+) transfer and electrode reaction mechanisms of the H+/H2 process in IL media are highlighted and discussed. The energetics of proton transfer, quantified using the pKa (minus logarithm of acidity equilibrium constant, Ka) formalism, is strongly governed by the constituent IL anion, and to a lesser extent, the IL cation. The H+/H2 process, a model inner-sphere reaction, also displays electrochemical characteristics that are strongly IL-dependent. Overall, these studies highlight the need to carry out systematic investigations to resolve IL structure and function relationships in order to realize the potential of these diverse and versatile solvents.
-
-
-
Nanoscale Electrochemical Sensing and Processing in Microreactors
Vol. 11 (2018), pp. 421–440More LessIn this review, we summarize recent advances in nanoscale electrochemistry, including the use of nanoparticles, carbon nanomaterials, and nanowires. Exciting developments are reported for nanoscale redox cycling devices, which can chemically amplify signal readout. We also discuss promising high-frequency techniques such as nanocapacitive CMOS sensor arrays or heterodyning. In addition, we review electrochemical microreactors for use in (drug) synthesis, biocatalysis, water treatment, or to electrochemically degrade urea for use in a portable artificial kidney. Electrochemical microreactors are also used in combination with mass spectrometry, e.g., to study the mimicry of drug metabolism or to allow electrochemical protein digestion. The review concludes with an outlook on future perspectives in both nanoscale electrochemical sensing and electrochemical microreactors. For sensors, we see a future in wearables and the Internet of Things. In microreactors, a future goal is to monitor the electrochemical conversions more precisely or ultimately in situ by combining other spectroscopic techniques.
-
-
-
Electrochemical Probes of Microbial Community Behavior
Vol. 11 (2018), pp. 441–461More LessAdvances in next-generation sequencing technology along with decreasing costs now allow the microbial population, or microbiome, of a location to be determined relatively quickly. This research reveals that microbial communities are more diverse and complex than ever imagined. New and specialized instrumentation is required to investigate, with high spatial and temporal resolution, the dynamic biochemical environment that is created by microbes, which allows them to exist in every corner of the Earth. This review describes how electrochemical probes and techniques are being used and optimized to learn about microbial communities. Described approaches include voltammetry, electrochemical impedance spectroscopy, scanning electrochemical microscopy, separation techniques coupled with electrochemical detection, and arrays of complementary metal-oxide-semiconductor circuits. Microbial communities also interact with and influence their surroundings; therefore, the review also includes a discussion of how electrochemical probes optimized for microbial analysis are utilized in healthcare diagnostics and environmental monitoring applications.
-