- Home
- A-Z Publications
- Annual Review of Entomology
- Previous Issues
- Volume 57, 2012
Annual Review of Entomology - Volume 57, 2012
Volume 57, 2012
- Preface
-
-
-
Insect Responses to Major Landscape-Level Disturbance
Vol. 57 (2012), pp. 1–20More LessDisturbances are abrupt events that dramatically alter habitat conditions and resource distribution for populations and communities. Terrestrial landscapes are subject to various disturbance events that create a matrix of patches with different histories of disturbance and recovery. Species tolerances to extreme conditions during disturbance or to altered habitat or resource conditions following disturbances determine responses to disturbance. Intolerant populations may become locally extinct, whereas other species respond positively to the creation of new habitat or resource conditions. Local extinction represents a challenge for conservation biologists. On the other hand, outbreaks of herbivorous species often are triggered by abundant or stressed hosts and relaxation of predation following disturbances. These insect responses can cause further changes in ecosystem conditions and predispose communities to future disturbances. Improved understanding of insect responses to disturbance will improve prediction of population and community dynamics, as well as ecosystem and global changes.
-
-
-
Sound Strategies: The 65-Million-Year-Old Battle Between Bats and Insects
Vol. 57 (2012), pp. 21–39More LessThe intimate details regarding the coevolution of bats and moths have been elucidated over the past 50 years. The bat-moth story began with the evolution of bat sonar, an exquisite ultrasonic system for tracking prey through the night sky. Moths countered with ears tuned to the high frequencies of bat echolocation and with evasive action through directed turns, loops, spirals, drops, and power dives. Some bat species responded by moving the frequency and intensity of their echolocation cries away from the peak sensitivity of moth ears, and the arms race was on. Tiger moths countered by producing anti-bat sounds. Do the sounds advertise moth toxicity, similar to the bright coloration of butterflies; do they startle the bat, giving the moth a momentary advantage in their aerobatic battle; or do they jam the sonar of the bat? The answer is yes. They do all and more in different situations and in different species. Any insect that flies at night must deal with bat predation. Beetles, mantids, true crickets, mole crickets, katydids, green lacewings, and locusts have anti-bat strategies, and we have just scratched the surface. In an exciting new twist, researchers are taking the technologies developed in the laboratory back into the field, where they are poised to appreciate the full richness of this remarkable predator-prey interaction.
-
-
-
Approaches and Incentives to Implement Integrated Pest Management that Addresses Regional and Environmental Issues
Vol. 57 (2012), pp. 41–59More LessAgricultural, environmental, and social and policy interests have influenced integrated pest management (IPM) from its inception. The first 50 years of IPM paid special attention to field-based management and market-driven decision making. Concurrently, IPM strategies became available that were best applied both within and beyond the bounds of individual fields and that also provided environmental benefits. This generated an incentives dilemma for farmers: selecting IPM activities for individual fields on the basis of market-based economics versus selecting IPM activities best applied regionally that have longer-term benefits, including environmental benefits, that accrue to the broader community as well as the farmer. Over the past several decades, public-supported incentives, such as financial incentives available to farmers from conservation programs for farms, have begun to be employed to encourage use of conservation techniques, including strategies with IPM relevance. Combining private investments with public support may effectively address the incentives dilemma when advanced IPM strategies are used regionally and provide public goods such as those benefiting resource conservation. This review focuses on adaptation of IPM to these broader issues, on transitions of IPM from primarily individual field-based decision making to coordinated community decision making, and on the form of partnerships needed to gain long-lasting regional and environmental benefits.
-
-
-
Transmission of Flea-Borne Zoonotic Agents*
Vol. 57 (2012), pp. 61–82More LessFlea-borne zoonoses such as plague (Yersinia pestis) and murine typhus (Rickettsia typhi) caused significant numbers of human cases in the past and remain a public health concern. Other flea-borne human pathogens have emerged recently (e.g., Bartonella henselae, Rickettsia felis), and their mechanisms of transmission and impact on human health are not fully understood. Our review focuses on the ecology and epidemiology of the flea-borne bacterial zoonoses mentioned above with an emphasis on recent advancements in our understanding of how these organisms are transmitted by fleas, maintained in zoonotic cycles, and transmitted to humans. Emphasis is given to plague because of the considerable number of studies generated during the first decade of the twenty-first century that arose, in part, because of renewed interest in potential agents of bioterrorism, including Y. pestis.
-
-
-
Insect Nuclear Receptors
Vol. 57 (2012), pp. 83–106More LessThe nuclear receptors (NRs) of metazoans are an ancient family of transcription factors defined by conserved DNA- and ligand-binding domains (DBDs and LBDs, respectively). The Drosophila melanogaster genome project revealed 18 canonical NRs (with DBDs and LBDs both present) and 3 receptors with the DBD only. Annotation of subsequently sequenced insect genomes revealed only minor deviations from this pattern. A renewed focus on functional analysis of the isoforms of insect NRs is therefore required to understand the diverse roles of these transcription factors in embryogenesis, metamorphosis, reproduction, and homeostasis. One insect NR, ecdysone receptor (EcR), functions as a receptor for the ecdysteroid molting hormones of insects. Researchers have developed nonsteroidal ecdysteroid agonists for EcR that disrupt molting and can be used as safe pesticides. An exciting new technology allows EcR to be used in chimeric, ligand-inducible gene-switch systems with applications in pest management and medicine.
-
-
-
Plasmodium knowlesi: A Malaria Parasite of Monkeys and Humans*
Vol. 57 (2012), pp. 107–121More LessPlasmodium knowlesi is a malaria parasite of monkeys of Southeast Asia that is transmitted by mosquitoes of the Anopheles leucosphyrus group. Humans are frequently infected with this parasite and misdiagnosed as being infected with Plasmodium malariae. The parasite was a major monkey animal model for developing antimalarial vaccines and investigations of the biology of parasite invasion. P. knowlesi is the first monkey malaria parasite genome to be sequenced and annotated.
-
-
-
Group Size and Its Effects on Collective Organization
Vol. 57 (2012), pp. 123–141More LessMany insects and arthropods live in colonies or aggregations of varying size. Group size may affect collective organization either because the same individual behavior has different consequences when displayed in a larger group or because larger groups are subject to different constraints and selection pressures than smaller groups. In eusocial colonies, group size may have similar effects on colony traits as body size has on organismal traits. Social insects may, therefore, be useful to test theories about general principles of scaling, as they constitute a distinct level of organization. However, there is a surprising lack of data on group sizes in social insects and other group-living arthropods, and multiple confounding factors have to be controlled to detect effects of group size. If such rigorous studies are performed, group size may become as important to understanding collective organization as is body size in explaining behavior and life history of individual organisms.
-
-
-
Mosquito Genomics: Progress and Challenges
Vol. 57 (2012), pp. 143–166More LessThe whole-genome sequencing of mosquitoes has facilitated our understanding of fundamental biological processes at their basic molecular levels and holds potential for application to mosquito control and prevention of mosquito-borne disease transmission. Draft genome sequences are available for Anopheles gambiae, Aedes aegypti, and Culex quinquefasciatus. Collectively, these represent the major vectors of African malaria, dengue fever and yellow fever viruses, and lymphatic filariasis, respectively. Rapid advances in genome technologies have revealed detailed information on genome architecture as well as phenotype-specific transcriptomics and proteomics. These resources allow for detailed comparative analyses within and across populations as well as species. Next-generation sequencing technologies will likely promote a proliferation of genome sequences for additional mosquito species as well as for individual insects. Here we review the current status of genome research in mosquitoes and identify potential areas for further investigations.
-
-
-
Reevaluating the Arthropod Tree of Life
Vol. 57 (2012), pp. 167–186More LessArthropods are the most diverse group of animals and have been so since the Cambrian radiation. They belong to the protostome clade Ecdysozoa, with Onychophora (velvet worms) as their most likely sister group and tardigrades (water bears) the next closest relative. The arthropod tree of life can be interpreted as a five-taxon network, containing Pycnogonida, Euchelicerata, Myriapoda, Crustacea, and Hexapoda, the last two forming the clade Tetraconata or Pancrustacea. The unrooted relationship of Tetraconata to the three other lineages is well established, but of three possible rooting positions the Mandibulata hypothesis receives the most support. Novel approaches to studying anatomy with noninvasive three-dimensional reconstruction techniques, the application of these techniques to new and old fossils, and the so-called next-generation sequencing techniques are at the forefront of understanding arthropod relationships. Cambrian fossils assigned to the arthropod stem group inform on the origin of arthropod characters from a lobopodian ancestry. Monophyly of Pycnogonida, Euchelicerata, Myriapoda, Tetraconata, and Hexapoda is well supported, but the interrelationships of arachnid orders and the details of crustacean paraphyly with respect to Hexapoda remain the major unsolved phylogenetic problems.
-
-
-
Morphology and Diversity of Exocrine Glands in Lepidopteran Larvae
Vol. 57 (2012), pp. 187–204More LessThe morphology of 21 exocrine glands and 13 supposedly exocrine structures recorded for lepidopteran larvae is reviewed. The epitracheal glands, for which a double role (exocrine and endocrine) has been demonstrated, are examined as well. Function is well known for at least 8 glands but completely unknown for 6 glands, for 10 putative glandular structures, and for the exocrine component of the epitracheal glands. Functional studies on the remaining structures are insufficient; in some cases (mandibular gland and adenosma) homologous glands may play a different role depending on the species, and only a few taxa have been examined. The secretions of 13 glandular types have been analyzed chemically. The histology of 11 glands is known at the ultrastructural level, whereas that of 6 glands and 7 putative glandular structures is completely unknown. Comparative anatomical studies of the osmeterium, adenosma, and Verson's glands may yield useful information for phylogenetic reconstructions.
-
-
-
Insects as Weapons of War, Terror, and Torture
Vol. 57 (2012), pp. 205–227More LessFor thousands of years insects have been incorporated into human conflict, with the goals of inflicting pain, destroying food, and transmitting pathogens. Early methods used insects as “found” weapons, functioning as tactical arms (e.g., hurled nests) or in strategic habitats (e.g., mosquito-infested swamps). In the twentieth century the relationship between insects and disease was exploited; vectors were mass-produced to efficiently deliver pathogens to an enemy. The two most sophisticated programs were those of the Japanese in World War II with plague-infected fleas and cholera-coated flies and of the Americans during the Cold War with yellow fever–infected mosquitoes. With continued advances, defenses in the form of insecticides and vaccines meant that insects were no longer considered as battlefield weapons. However, in recent times sociopolitical changes have put insects back into the realm of human conflict through asymmetrical conflicts pitting combatants from nonindustrialized regions against forces from militarily and economically superior nations.
-
-
-
Mites (Acari) as a Factor in Greenhouse Management
Vol. 57 (2012), pp. 229–247More LessThis review discusses the economically important pest mites (Acari) of greenhouses, aspects of their biology, and the acarine predators that attack them as well as various insect pests. Greenhouse factors affect pest mites as well as their natural enemy populations and their interactions. Conversely, pest mites affect greenhouse management in terms of the chemical and biological methods required to control their populations. Structure affects heating, cooling, and light, which can be manipulated with suitable screens. Crops often select for pests and their mite enemies. Both groups may be affected in greenhouses by adding pollen and by a CO2-enriched atmosphere. These factors impact pest mite populations, the damage they cause, and the methods used to control them. The possibility of incipient evolution occurring in greenhouses, along with the benefits and consequences for pest control, is discussed.
-
-
-
Evolutionary Ecology of Odonata: A Complex Life Cycle Perspective
Vol. 57 (2012), pp. 249–265More LessMost insects have a complex life cycle with ecologically different larval and adult stages. We present an ontogenetic perspective to analyze and summarize the complex life cycle of Odonata within an evolutionary ecology framework. Morphological, physiological, and behavioral pathways that generate carry-over effects across the aquatic egg and larval stages and the terrestrial adult stage are identified. We also highlight several mechanisms that can decouple life stages including compensatory mechanisms at the larval and adult stages, stressful and stochastic events during metamorphosis, and stressful environmental conditions at the adult stage that may overrule effects of environmental conditions in the preceding stage. We consider the implications of these findings for the evolution, selection, and fitness of odonates; underline the role of the identified numerical and carry-over effects in shaping population and metapopulation dynamics and the community structure across habitat boundaries; and discuss implications for applied conservation issues.
-
-
-
Insect Transgenesis: Current Applications and Future Prospects
Vol. 57 (2012), pp. 267–289More LessThe ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
-
-
-
The Ecology of Nest Movement in Social Insects
Vol. 57 (2012), pp. 291–308More LessSocial insect colonies are typically mobile entities, moving nests from one location to another throughout the life of a colony. The majority of social insect species—ants, bees, wasps, and termites—have likely adopted the habit of relocating nests periodically. The syndromes of nest relocation include legionary nomadism, unstable nesting, intrinsic nest relocation, and adventitious nest relocation. The emergence of nest movement is a functional response to a broad range of potential selective forces, including colony growth, competition, foraging efficiency, microclimate, nest deterioration, nest quality, parasitism, predation, and seasonality. Considering the great taxonomic and geographic distribution of nest movements, assumptions regarding the nesting biology of social insects should be reevaluated, including our understanding of population genetics, life-history evolution, and the role of competition in structuring communities.
-
-
-
Molecular Bases of Plant Resistance to Arthropods
Vol. 57 (2012), pp. 309–328More LessArthropod-resistant crops provide significant ecological and economic benefits to global agriculture. Incompatible interactions involving resistant plants and avirulent pest arthropods are mediated by constitutively produced and arthropod-induced plant proteins and defense allelochemicals synthesized by resistance gene products. Cloning and molecular mapping have identified the Mi-1.2 and Vat arthropod resistance genes as CC-NBS-LRR (coiled coil–nucleotide binding site–leucine rich repeat) subfamily NBS-LRR resistance proteins, as well as several resistance gene analogs. Genetic linkage mapping has identified more than 100 plant resistance gene loci and linked molecular markers used in cultivar development. Rice and sorghum arthropod-resistant cultivars and, to a lesser extent, raspberry and wheat cultivars are components of integrated pest management (IPM) programs in Asia, Australia, Europe, and North America. Nevertheless, arthropod resistance in most food and fiber crops has not been integrated due primarily to the application of synthetic insecticides. Plant and arthropod genomics provide many opportunities to more efficiently develop arthropod-resistant plants, but integration of resistant cultivars into IPM programs will succeed only through interdisciplinary collaboration.
-
-
-
Prospects for Managing Turfgrass Pests with Reduced Chemical Inputs
Vol. 57 (2012), pp. 329–354More LessTurfgrass culture, a multibillion dollar industry in the United States, poses unique challenges for integrated pest management. Why insect control on lawns, golf courses, and sport fields remains insecticide-driven, and how entomological research and extension can best support nascent initiatives in environmental golf and sustainable lawn care are explored. High standards for aesthetics and playability, prevailing business models, risk management–driven control decisions, and difficulty in predicting pest outbreaks fuel present reliance on preventive insecticides. New insights into pest biology, sampling methodology, microbial insecticides, plant resistance, and conservation biological control are reviewed. Those gains, and innovations in reduced-risk insecticides, should make it possible to begin constructing holistic management plans for key turfgrass pests. Nurturing the public's interest in wildlife habitat preservation, including beneficial insects, may be one means to change aesthetic perceptions and gain leeway for implementing integrated pest management practices that lend stability to turfgrass settings.
-
-
-
Managing Social Insects of Urban Importance
Vol. 57 (2012), pp. 355–375More LessSocial insects have a tremendous economic and social impact on urban communities. The rapid urbanization of the world has dramatically increased the incidence of urban pests. Human commerce has resulted in the spread of urban invasive species worldwide such that various species are now common to many major urban centers. We aim to highlight those social behaviors that can be exploited to control these pests with the minimal use of pesticides. Their cryptic behavior often prohibits the direct treatment of colonies. However, foraging and recruitment are essential aspects of their social behavior and expose workers to traps, baits, and pesticide applications. The advent of new chemistries has revolutionized the pest management strategies used to control them. In recent years, there has been an increased environmental awareness, especially in the urban community. Advances in molecular and microbial agents promise additional tools in developing integrated pest management programs against social insects.
-
-
-
Systematics, Biodiversity, Biogeography, and Host Associations of the Miridae (Insecta: Hemiptera: Heteroptera: Cimicomorpha)
G. Cassis, and R.T. SchuhVol. 57 (2012), pp. 377–404More LessThe Miridae, a hyperdiverse family containing more than 11,020 valid described species, are discussed and the pertinent literature is reviewed. Diagnoses for the family and subfamilies are given. Color habitus photos are presented for representatives of most of the 35 currently recognized tribes. Key morphological character systems are discussed and illustrated, including pretarsal structures, femoral trichobothria, external efferent system of the metathoracic glands, male and female genitalia, and molecular markers. A historical comparison of tribal classifications and the most up-to-date classification are presented in tabular form. A brief history of the classification of each of the eight recognized subfamilies is presented. Distributional patterns and relative generic diversity across biogeographic regions are discussed; generic diversity by biogeographic region is presented in tabular form. Taxonomic accumulation graphs are presented by biogeographic region, indicating an ongoing need for taxonomic work in the Southern Hemisphere, and most particularly in Australia. Host plant associations are evaluated graphically, showing high specificity for many taxa and a preference among phytophagous taxa for the Asteridae and Rosidae.
-
Previous Volumes
-
Volume 70 (2025)
-
Volume 69 (2024)
-
Volume 68 (2023)
-
Volume 67 (2022)
-
Volume 66 (2021)
-
Volume 65 (2020)
-
Volume 64 (2019)
-
Volume 63 (2018)
-
Volume 62 (2017)
-
Volume 61 (2016)
-
Volume 60 (2015)
-
Volume 59 (2014)
-
Volume 58 (2013)
-
Volume 57 (2012)
-
Volume 56 (2011)
-
Volume 55 (2010)
-
Volume 54 (2009)
-
Volume 53 (2008)
-
Volume 52 (2007)
-
Volume 51 (2006)
-
Volume 50 (2005)
-
Volume 49 (2004)
-
Volume 48 (2003)
-
Volume 47 (2002)
-
Volume 46 (2001)
-
Volume 45 (2000)
-
Volume 44 (1999)
-
Volume 43 (1998)
-
Volume 42 (1997)
-
Volume 41 (1996)
-
Volume 40 (1995)
-
Volume 39 (1994)
-
Volume 38 (1993)
-
Volume 37 (1992)
-
Volume 36 (1991)
-
Volume 35 (1990)
-
Volume 34 (1989)
-
Volume 33 (1988)
-
Volume 32 (1987)
-
Volume 31 (1986)
-
Volume 30 (1985)
-
Volume 29 (1984)
-
Volume 28 (1983)
-
Volume 27 (1982)
-
Volume 26 (1981)
-
Volume 25 (1980)
-
Volume 24 (1979)
-
Volume 23 (1978)
-
Volume 22 (1977)
-
Volume 21 (1976)
-
Volume 20 (1975)
-
Volume 19 (1974)
-
Volume 18 (1973)
-
Volume 17 (1972)
-
Volume 16 (1971)
-
Volume 15 (1970)
-
Volume 14 (1969)
-
Volume 13 (1968)
-
Volume 12 (1967)
-
Volume 11 (1966)
-
Volume 10 (1965)
-
Volume 9 (1964)
-
Volume 8 (1963)
-
Volume 7 (1962)
-
Volume 6 (1961)
-
Volume 5 (1960)
-
Volume 4 (1959)
-
Volume 3 (1958)
-
Volume 2 (1957)
-
Volume 1 (1956)
-
Volume 0 (1932)