Annual Review of Genomics and Human Genetics - Volume 23, 2022
Volume 23, 2022
-
-
Five Priorities of African Genomics Research: The Next Frontier
Vol. 23 (2022), pp. 499–521More LessTo embrace the prospects of accurately diagnosing thousands of monogenic conditions, predicting disease risks for complex traits or diseases, tailoring treatment to individuals’ pharmacogenetic profiles, and potentially curing some diseases, research into African genomic variation is a scientific imperative. African genomes harbor millions of uncaptured variants accumulated over 300,000 years of modern humans’ evolutionary history, with successive waves of admixture, migration, and natural selection combining with extensive ecological diversity to create a broad and exceptional genomic complexity. Harnessing African genomic complexity, therefore, will require sustained commitment and equitable collaboration from the scientific community and funding agencies. African governments must support academic public research and industrial partnerships that build the necessary genetic medicine workforce, utilize the emerging genomic big data to develop expertise in computer science and bioinformatics, and evolve national and globalgovernance frameworks that recognize the ethical implications of data-driven genomic research and empower its application in African social, cultural, economic, and religious contexts.
-
-
-
Mapping Human Reproduction with Single-Cell Genomics
Vol. 23 (2022), pp. 523–547More LessThe trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems.
-
-
-
Population Screening in Health Systems
Vol. 23 (2022), pp. 549–567More LessApplications of genomics to population screening are expanding in the United States and internationally. Many of these programs are being implemented in the context of healthcare systems, mostly in a clinical research setting, but there are some emerging examples of clinical models. This review examines these genomic population screening programs to identify common features and differences in screened conditions, genomic technology employed, approach to results disclosure, health outcomes, financial models, and sustainability. The diversity of approaches provides opportunities to learn and better understand the optimal approach to implementation based on the contextual setting.
-
-
-
The UK Biobank: A Shining Example of Genome-Wide Association Study Science with the Power to Detect the Murky Complications of Real-World Epidemiology
Vol. 23 (2022), pp. 569–589More LessGenome-wide association studies (GWASs) have successfully identified thousands of genetic variants that are reliably associated with human traits. Although GWASs are restricted to certain variant frequencies, they have improved our understanding of the genetic architecture of complex traits and diseases. The UK Biobank (UKBB) has brought substantial analytical opportunity and performance to association studies. The dramatic expansion of many GWAS sample sizes afforded by the inclusion of UKBB data has improved the power of estimation of effect sizes but, critically, has done so in a context where phenotypic depth and precision enable outcome dissection and the application of epidemiological approaches. However, at the same time, the availability of such a large, well-curated, and deeply measured population-based collection has the capacity to increase our exposure to the many complications and inferential complexities associated with GWASs and other analyses. In this review, we discuss the impact that UKBB has had in the GWAS era, some of the opportunities that it brings, and exemplar challenges that illustrate the reality of using data from this world-leading resource.
-
-
-
Predicting Archaic Hominin Phenotypes from Genomic Data
Vol. 23 (2022), pp. 591–612More LessAncient DNA provides a powerful window into the biology of extant and extinct species, including humans’ closest relatives: Denisovans and Neanderthals. Here, we review what is known about archaic hominin phenotypes from genomic data and how those inferences have been made. We contend that understanding the influence of variants on lower-level molecular phenotypes—such as gene expression and protein function—is a promising approach to using ancient DNA to learn about archaic hominin traits. Molecular phenotypes have simpler genetic architectures than organism-level complex phenotypes, and this approach enables moving beyond association studies by proposing hypotheses about the effects of archaic variants that are testable in model systems. The major challenge to understanding archaic hominin phenotypes is broadening our ability to accurately map genotypes to phenotypes, but ongoing advances ensure that there will be much more to learn about archaic hominin phenotypes from their genomes.
-
-
-
Equity in Genomic Medicine
Vol. 23 (2022), pp. 613–625More LessSince the completion of the Human Genome Project, considerable progress has been made in translating knowledge about the genetic basis of disease risk and treatment response into clinical services and public health interventions that have greater precision. It is anticipated that more precision approaches to early detection, prevention, and treatment will be developed and will enhance equity in healthcare and outcomes among disparity populations. Reduced access to genomic medicine research, clinical services, and public health interventions has the potential to exacerbate disparities in genomic medicine. The purpose of this article is to describe these challenges to equity in genomic medicine and identify opportunities and future directions for addressing these issues. Efforts are needed to enhance access to genomic medicine research, clinical services, and public health interventions, and additional research that examines the clinical utility of precision medicine among disparity populations should be prioritized to ensure equity in genomic medicine.
-
-
-
Ethical Guidance in Human Paleogenomics: New and Ongoing Perspectives
Vol. 23 (2022), pp. 627–652More LessOver the past two decades, the study of ancient genomes from Ancestral humans, or human paleogenomic research, has expanded rapidly in both scale and scope. Ethical discourse has subsequently emerged to address issues of social responsibility and scientific robusticity in conducting research. Here, we highlight and contextualize the primary sources of professional ethical guidance aimed at paleogenomic researchers. We describe the tension among existing guidelines, while addressing core issues such as consent, destructive research methods, and data access and management. Currently, there is a dissonance between guidelines that focus on scientific outcomes and those that hold scientists accountable to stakeholder communities,such as descendants. Thus, we provide additional tools to navigate the complexities of ancient DNA research while centering engagement with stakeholder communities in the scientific process.
-
-
-
Regulation of Molecular Diagnostics
Vol. 23 (2022), pp. 653–673More LessMolecular diagnostic tests enable rapid analysis of genomic and proteomic markers. These tests are subject to diverging premarket access and postmarket surveillance requirements and mechanisms in the United States and the European Union. Each of these jurisdictions has its own challenges in keeping the regulations up to date with technological developments. A specific area of attention is that of laboratory-developed tests in the United States and health institution in-house-produced tests in the European Union, for which the United States and the European Union have markedly different regulatory approaches. Both jurisdictions have specific but differing requirements for the use of test samples and test-related data under their rules regarding the protection of (personal) health data, which can cause complexity when moving samples or sample-related data from one jurisdiction to the other.
-
Previous Volumes
-
Volume 25 (2024)
-
Volume 24 (2023)
-
Volume 23 (2022)
-
Volume 22 (2021)
-
Volume 21 (2020)
-
Volume 20 (2019)
-
Volume 19 (2018)
-
Volume 18 (2017)
-
Volume 17 (2016)
-
Volume 16 (2015)
-
Volume 15 (2014)
-
Volume 14 (2013)
-
Volume 13 (2012)
-
Volume 12 (2011)
-
Volume 11 (2010)
-
Volume 10 (2009)
-
Volume 9 (2008)
-
Volume 8 (2007)
-
Volume 7 (2006)
-
Volume 6 (2005)
-
Volume 5 (2004)
-
Volume 4 (2003)
-
Volume 3 (2002)
-
Volume 2 (2001)
-
Volume 1 (2000)
-
Volume 0 (1932)