- Home
- A-Z Publications
- Annual Review of Immunology
- Previous Issues
- Volume 43, 2025
Annual Review of Immunology - Volume 43, 2025
Volume 43, 2025
-
-
From Cytokines to Tuberculosis and Back: My Journey to Understanding the Immune Response to Infection
Vol. 43 (2025), pp. 1–28More LessI felt honored by the invitation to write this autobiography, although it was an arduous task to describe my journey through science: first bacterial adhesion, then cytokine function, and then immune responses in tuberculosis. Since only seven women had been authors of autobiographies for the Annual Review of Immunology, I felt I couldn't refuse to contribute to Volume 43 of the journal. Moreover, this was a good occasion to record my appreciation to all the lab members and collaborators for their contributions over the last 40 years, to remember the exciting times, and to reflect on the obstacles we faced. I often reflect on this line that is commonly attributed to Winston Churchill: Success is not final; failure is not fatal: It is the courage to continue that counts. What kept me going was a burning desire to know how things work and find enjoyment in the discovery. This passion to understand immune responses to infection remains with me to this day. I thank all those I have interacted with for the support and friendship they provided.
-
-
-
SARS-CoV-2: The Interplay Between Evolution and Host Immunity
Vol. 43 (2025), pp. 29–55More LessThe persistence of SARS-CoV-2 infections at a global level reflects the repeated emergence of variant strains encoding unique constellations of mutations. These variants have been generated principally because of a dynamic host immune landscape, the countermeasures deployed to combat disease, and selection for enhanced infection of the upper airway and respiratory transmission. The resulting viral diversity creates a challenge for vaccination efforts to maintain efficacy, especially regarding humoral aspects of protection. Here, we review our understanding of how SARS-CoV-2 has evolved during the pandemic, the immune mechanisms that confer protection, and the impact viral evolution has had on transmissibility and adaptive immunity elicited by natural infection and/or vaccination. Evidence suggests that SARS-CoV-2 evolution initially selected variants with increased transmissibility but currently is driven by immune escape. The virus likely will continue to drift to maintain fitness until countermeasures capable of disrupting transmission cycles become widely available.
-
-
-
Tracing the Evolution of Human Immunity Through Ancient DNA
Vol. 43 (2025), pp. 57–82More LessInfections have imposed strong selection pressures throughout human evolution, making the study of natural selection's effects on immunity genes highly complementary to disease-focused research. This review discusses how ancient DNA studies, which have revolutionized evolutionary genetics, increase our understanding of the evolution of human immunity. These studies have shown that interbreeding between modern humans and Neanderthals or Denisovans has influenced present-day immune responses, particularly to viruses. Additionally, ancient genomics enables the tracking of how human immunity has evolved across cultural transitions, highlighting strong selection since the Bronze Age in Europe (<4,500 years) and potential genetic adaptations to epidemics raging during the Middle Ages and the European colonization of the Americas. Furthermore, ancient genomic studies suggest that the genetic risk for noninfectious immune disorders has gradually increased over millennia because alleles associated with increased risk for autoimmunity and inflammation once conferred resistance to infections. The challenge now is to extend these findings to diverse, non-European populations and to provide a more global understanding of the evolution of human immunity.
-
-
-
T Cell Development and Responses in Human Immune System Mice
Vol. 43 (2025), pp. 83–112More LessHuman Immune System (HIS) mice constructed with mature human immune cells or with human hematopoietic stem cells and thymic tissue have provided an important tool for human immunological research. In this article, we first review the different types of HIS mice based on human tissues transplanted and sources of the tissues. We then focus on knowledge of human T cell development and responses obtained using HIS mouse models. These areas include the development of human T cell subsets, with a focus on αβ conventional T cells and regulatory T cells, and human T cell responses in the settings of infection, transplantation rejection and tolerance, autoimmune disease, cancer immunotherapy, and regulatory T cell therapy. We also discuss the limitations and potential future applications of HIS mouse models.
-
-
-
TNF/TNFR Superfamily Members in Costimulation of T Cell Responses—Revisited
Vol. 43 (2025), pp. 113–142More LessProsurvival tumor necrosis factor receptor (TNFR) superfamily (TNFRSF) members on T cells, including 4-1BB, CD27, GITR, and OX40, support T cell accumulation during clonal expansion, contributing to T cell memory. During viral infection, tumor necrosis factor superfamily (TNFSF) members on inflammatory monocyte-derived antigen-presenting cells (APCs) provide a postpriming signal (signal 4) for T cell accumulation, particularly in the tissues. Patients with loss-of-function mutations in TNFR/TNFSF members reveal a critical role for 4-1BB and CD27 in CD8 T cell control of Epstein-Barr virus and other childhood infections and of OX40 in CD4 T cell responses. Here, on the 20th anniversary of a previous Annual Review of Immunology article about TNFRSF signaling in T cells, we discuss the effects of endogenous TNFRSF signals in T cells upon recognition of TNFSF members on APCs; the role of TNFRSF members, including TNFR2, on regulatory T cells; and recent advances in the incorporation of TNFRSF signaling in T cells into immunotherapeutic strategies for cancer.
-
-
-
Humanized Mouse Systems to Study Viral Infection: A New Era in Immunology Research
Vol. 43 (2025), pp. 143–167More LessFor decades, scientists have relied on traditional animal models to study viral infection and the immune response. However, these models have limitations, and the search for more accurate and reliable ways to study the human-pathogen interphase has led to the development of humanized mouse systems. These revolutionary models have transformed how we understand viral infection and the human immune system's interactions with viruses to control or exacerbate disease. They are also paving the way for new treatments and therapies. In this article, we explore the history and development of humanized mouse systems and their advantages, limitations, and applications in viral immunology research. We describe the different types of humanized mouse models, including their generation and utility for studying human pathogens, with an emphasis on human-specific viruses. In addition, we discuss areas for further refinement and future applications.
-
-
-
Immune Regulation of Goblet Cell and Mucus Functions in Health and Disease
Vol. 43 (2025), pp. 169–189More LessThe mucosal surfaces of the body are the most vulnerable points for infection because they are lined by single or multiple layers of very active epithelial cells. The main protector of these cells is the mucus system generated by the specialized goblet cell secreting its main components, the gel-forming mucins. The organization of the mucus varies from an attached mucus that is impenetrable to bacteria in the large intestine to a nonattached, more penetrable mucus in the small intestine. The respiratory tract mucus system clears particles and microorganisms from healthy lungs but causes disease if reorganized to an attached mucus that cannot be efficiently transported. Similarly, transformation of large intestine mucus from impenetrable to penetrable causes chronic inflammation directed toward the intestinal microbiota. Mucus-producing goblet cells are regulated by and responsive to signals from immune cells, and at the same time signal back to the immune system. In this review we focus on the relationship of immune cells with intestinal goblet cells and mucus, making parallels to the respiratory tract.
-
-
-
Using the Key Characteristics Framework to Unlock the Mysteries of Aryl Hydrocarbon Receptor–Mediated Effects on the Immune System
Vol. 43 (2025), pp. 191–218More LessInitially discovered for its role mediating the deleterious effects of environmental contaminants, the aryl hydrocarbon receptor (AHR) is now known to be a crucial regulator of the immune system. The expanding list of AHR ligands includes synthetic and naturally derived molecules spanning pollutants, phytochemicals, pharmaceuticals, and substances derived from amino acids and microorganisms. The consequences of engaging AHR vary, depending on factors such as the AHR ligand, cell type, immune challenge, developmental state, dose, and timing of exposure relative to the immune stimulus. This review frames this complexity using the recently identified key characteristics of agents that affect immune system function (altered cell signaling, proliferation, differentiation, effector function, communication, trafficking, death, antigen presentation and processing, and tolerance). The use of these key characteristics provides a scaffold for continued discovery of how AHR and its myriad ligands influence the immune system, which will help harness the power of this enigmatic receptor to prevent or treat disease.
-
-
-
Barrier Integrity and Immunity: Exploring the Cutaneous Front Line in Health and Disease
Vol. 43 (2025), pp. 219–252More LessImmune responses are influenced by not only immune cells but also the tissue microenvironment where these cells reside. Recent advancements in understanding the underlying molecular mechanisms and structures of the epidermal tight junctions (TJs) and stratum corneum (SC) have significantly enhanced our knowledge of skin barrier functions. TJs, located in the granular layer of the epidermis, are crucial boundary elements in the differentiation process, particularly in the transition from living cells to dead cells. The SC forms from dead keratinocytes via corneoptosis and features three distinct pH zones critical for barrier function and homeostasis. Additionally, the SC–skin microbiota interactions are crucial for modulating immune responses and protecting against pathogens. In this review, we explore how these components contribute both to healthy and disease states. By targeting the skin barrier in therapeutic strategies, we can enhance its integrity, modulate immune responses, and ultimately improve outcomes for patients with inflammatory skin conditions.
-
-
-
Development and Functions of MAIT Cells
Vol. 43 (2025), pp. 253–283More LessMucosal-associated invariant T (MAIT) cells are evolutionarily conserved T cells that recognize microbial metabolites. They are abundant in humans and conserved during mammalian evolution, which suggests that they have important nonredundant functions. In this article, we discuss the evolutionary conservation of MAIT cells and describe their original developmental process. MAIT cells exert a wide variety of effector functions, from killing infected cells and promoting inflammation to repairing tissues. We provide insights into these functions and discuss how they result from the context of stimulation encountered by MAIT cells in different tissues and pathological settings. We describe how MAIT cell numbers and features are modified in disease states, focusing mainly on in vivo models. Lastly, we discuss emerging strategies to manipulate MAIT cells for therapeutic purposes.
-
-
-
Decoding Immunobiology Through Genetic Errors of Immunity
Vol. 43 (2025), pp. 285–311More LessThroughout biology, the pursuit of genotype-phenotype relationships has provided foundational knowledge upon which new concepts and hypotheses are built. Genetic perturbation, whether occurring naturally or in experimental settings, is the mainstay of mechanistic dissection in biological systems. The unbiased discovery of causal genetic lesions via forward genetics in patients who have a rare disease elucidates a particularly impactful set of genotype-phenotype relationships. Here, we review the field of genetic errors of immunity, often termed inborn errors of immunity (IEIs), in a framework aimed at highlighting the powerful real-world immunology insights provided collectively and individually by these (approximately) 500 disorders. By conceptualizing essential immune functions in a model of the adaptive arsenal of rapid defenses, we organize IEIs based on immune circuits in which sensors, relays, and executioners cooperate to carry out pathogen clearance functions in an effective yet regulated manner. We review and discuss findings from IEIs that not only reinforce known immunology concepts but also offer surprising phenotypes, prompting an opportunity to refine our understanding of immune system function.
-
-
-
Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases
Vol. 43 (2025), pp. 313–342More LessMetazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death–induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses—inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death–induced inflammation in humans—and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
-
-
-
Protein Synthesis and Metabolism in T Cells
Vol. 43 (2025), pp. 343–366More LessT lymphocytes are essential for immune responses to pathogens and tumors. Their ability to rapidly clonally expand and differentiate to effector cells following infection, and then to curb effector function following infection clearance, is fundamental for adaptive immunity. Proteome remodeling in response to immune activation is a fundamental mechanism that allows T cells to swiftly reprogram for acquisition of effector function and is possible only because antigen receptor– and cytokine-driven signal transduction pathways can trigger massive increases in protein synthesis. Equally, the ability to repress protein synthesis supports a return to quiescence once pathogens are cleared to avoid autoimmunity and to generate memory T cell populations. This review discusses what is known about T cell proteomes and the regulatory mechanisms that control protein synthesis in T cells. The focus is on how this fundamental process is dynamically controlled to ensure immune homeostasis.
-
-
-
Neuroimmune Circuits in Allergic Diseases
Vol. 43 (2025), pp. 367–394More LessCommunication between the nervous and immune systems is evolutionarily conserved. From primitive eukaryotes to higher mammals, neuroimmune communication utilizes multiple complex and complementary mechanisms to trigger effective but balanced responses to environmental dangers such as allergens and tissue damage. These responses result from a tight integration of the nervous and immune systems, and accumulating evidence suggests that this bidirectional communication is crucial in modulating the initiation and development of allergic inflammation. In this review, we discuss the basic mechanisms of neuroimmune communication, with a focus on the recent advances underlying the importance of such communication in the allergic immune response. We examine neuronal sensing of allergens, how neuropeptides and neurotransmitters regulate allergic immune cell functions, and how inflammatory factors derived from immune cells coordinate complex peripheral and central nervous system responses. Furthermore, we highlight how fundamental aspects of host biology, from aging to circadian rhythm, might affect these pathways. Appreciating neuroimmune communications as an evolutionarily conserved and functionally integrated system that is fundamentally involved in type 2 immunity will provide new insights into allergic inflammation and reveal exciting opportunities for the management of acute and chronic allergic diseases.
-
-
-
The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair
Vol. 43 (2025), pp. 395–422More LessAs the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
-
-
-
Macrophage Differentiation and Metabolic Adaptation in Mycobacterial Infections
Vol. 43 (2025), pp. 423–450More LessThe adaptation of macrophages—the most common tissue-resident immune cells—to metabolic and microbial cues with high local variability is essential for the maintenance of organ integrity. In homeostasis, macrophages show largely predictable tissue-specific differentiation, as recently revealed by multidimensional methods. However, chronic infections with human-adapted pathogens substantially contribute to the differentiation complexity of tissue macrophages, which has been only partially resolved. Specifically, the response to mycobacterial species—which range from Mycobacterium tuberculosis (with highest specificity for humans, broad organ tropism, yet tissue-specific disease phenotypes) to environmental mycobacteria with humans as accidental hosts—may serve as a paradigm of tissue macrophage adaptation mechanisms. While mycobacterial species-specific tissue preferences are partially related to the mode of acquisition and pathogen characteristics, evolutionary convergence with macrophages driven by metabolic features of the target organ likely contributes to infection resistance and immunopathology. In this review, we unravel the mechanisms of tissue-specific macrophage differentiation and its limitations in mycobacterial infections.
-
-
-
Engineering Mice to Study Human Immunity
Vol. 43 (2025), pp. 451–487More LessHumanized mice, which carry a human hematopoietic and immune system, have greatly advanced our understanding of human immune responses and immunological diseases. These mice are created via the transplantation of human hematopoietic stem and progenitor cells into immunocompromised murine hosts further engineered to support human hematopoiesis and immune cell growth. This article explores genetic modifications in mice that enhance xeno-tolerance, promote human hematopoiesis and immunity, and enable xenotransplantation of human tissues with resident immune cells. We also discuss genetic editing of the human immune system, provide examples of how humanized mice with humanized organs model diseases for mechanistic studies, and highlight the roles of these models in advancing knowledge of organ biology, immune responses to pathogens, and preclinical drugs tested for cancer treatment. The integration of multi-omics and state-of-the art approaches with humanized mouse models is crucial for bridging existing human data with causality and promises to significantly advance mechanistic studies.
-
-
-
Bidirectional Communication Between the Innate and Adaptive Immune Systems
Vol. 43 (2025), pp. 489–514More LessEffective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell–mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell–driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
-
-
-
Molecular Mechanisms Governing CD8 T Cell Differentiation and Checkpoint Inhibitor Response in Cancer
Lisa Rausch, and Axel KalliesVol. 43 (2025), pp. 515–543More LessCD8 T cells play a critical role in antitumor immunity. However, over time, they often become dysfunctional or exhausted and ultimately fail to control tumor growth. To effectively harness CD8 T cells for cancer immunotherapy, a detailed understanding of the mechanisms that govern their differentiation and function is crucial. This review summarizes our current knowledge of the molecular pathways that regulate CD8 T cell heterogeneity and function in chronic infection and cancer and outlines how T cells respond to therapeutic checkpoint blockade. We explore how T cell–intrinsic and –extrinsic factors influence CD8 T cell differentiation, fate choices, and functional states and ultimately dictate their response to therapy. Identifying cells that orchestrate long-term antitumor immunity and understanding the mechanisms that govern their development and persistence are critical steps toward improving cancer immunotherapy.
-
-
-
The Integrated Pulmonary Immune Response to Pneumonia
Vol. 43 (2025), pp. 545–569More LessPneumonia is an acute respiratory infection of the lower respiratory tract. The effectiveness of the host immune response determines the severity of infection, or whether pneumonia occurs at all. The lungs house both innate and adaptive immune systems, which integrate their activities to provide host defense that eliminates microbes and prevents lower respiratory infection from becoming severe. Professional immune cells in the lung, like macrophages and lymphocytes, work with lung constituents, like epithelial cells and fibroblasts, to optimize antimicrobial defense. The dynamics of the immune response during infection and the immune components contributing to defense are influenced by prior experiences with respiratory pathogens, remodeling lung immunity in ways that improve responses against subsequent infections. This review covers how innate and adaptive immune activities coordinate inside the lung to provide integrated and effective immune resistance against respiratory pathogens.
-
Previous Volumes
-
Volume 43 (2025)
-
Volume 42 (2024)
-
Volume 41 (2023)
-
Volume 40 (2022)
-
Volume 39 (2021)
-
Volume 38 (2020)
-
Volume 37 (2019)
-
Volume 36 (2018)
-
Volume 35 (2017)
-
Volume 34 (2016)
-
Volume 33 (2015)
-
Volume 32 (2014)
-
Volume 31 (2013)
-
Volume 30 (2012)
-
Volume 29 (2011)
-
Volume 28 (2010)
-
Volume 27 (2009)
-
Volume 26 (2008)
-
Volume 25 (2007)
-
Volume 24 (2006)
-
Volume 23 (2005)
-
Volume 22 (2004)
-
Volume 21 (2003)
-
Volume 20 (2002)
-
Volume 19 (2001)
-
Volume 18 (2000)
-
Volume 17 (1999)
-
Volume 16 (1998)
-
Volume 15 (1997)
-
Volume 14 (1996)
-
Volume 13 (1995)
-
Volume 12 (1994)
-
Volume 11 (1993)
-
Volume 10 (1992)
-
Volume 9 (1991)
-
Volume 8 (1990)
-
Volume 7 (1989)
-
Volume 6 (1988)
-
Volume 5 (1987)
-
Volume 4 (1986)
-
Volume 3 (1985)
-
Volume 2 (1984)
-
Volume 1 (1983)
-
Volume 0 (1932)