- Home
- A-Z Publications
- Annual Review of Pathology: Mechanisms of Disease
- Previous Issues
- Volume 20, 2025
Annual Review of Pathology: Mechanisms of Disease - Volume 20, 2025
Volume 20, 2025
-
-
Reflections on a Career in Pediatric Neuropathology, with a Note of Gratitude
Vol. 20 (2025), pp. 1–11More LessI am honored to be asked by the journal to write this personal essay about my career in pediatric neuropathology—a life of immense satisfaction, meaning, and fulfillment. My motivation to enter this discipline is highlighted, as is my decision to perform brain research in the sudden infant death syndrome, the leading cause of postneonatal infant mortality in the United States today. I also touch upon collaborations, mentoring, and experiences along the way—especially with the light microscope. I close with thoughts about the future of the discipline from my perspective as a lifelong devotee.
-
-
-
Somatic Mosaicism in Brain Disorders
Vol. 20 (2025), pp. 13–32More LessResearch efforts over the past decade have defined the genetic landscape of somatic variation in the brain. Neurons accumulate somatic mutations from development through aging with potentially profound functional consequences. Recent studies have revealed the contribution of somatic mosaicism to various brain disorders including focal epilepsy, neuropsychiatric disease, and neurodegeneration. One notable finding is that the effect of somatic mosaicism on clinical outcomes can vary depending on contextual factors, such as the developmental origin of a variant or the number and type of cells affected. In this review, we highlight current knowledge regarding the role of somatic mosaicism in brain disorders and how biological context can mediate phenotypes. First, we identify the origins of brain somatic variation throughout the lifespan of an individual. Second, we explore recent discoveries that suggest somatic mosaicism contributes to various brain disorders. Finally, we discuss neuropathological associations of brain mosaicism in different biological contexts and potential clinical utility.
-
-
-
B Cell Responses to the Placenta and Fetus
Vol. 20 (2025), pp. 33–58More LessPregnancy has fascinated immunologists ever since Peter Medawar's observation that reproduction runs contrary to the founding tenets of immunology. During healthy pregnancy, maternal B cells interact with antigens of the foreign conceptus (placenta and fetus) yet do not elicit rejection. Instead, robust and redundant fetomaternal tolerance pathways generally prevent maternal B cells and antibodies from harming the placenta and fetus. Fetomaternal tolerance is not absolute, and unfortunately there exist several pregnancy complications that arise from breaks therein. Here, important historic and recent developments in the field of fetomaternal tolerance pertaining to maternal B cells and antibodies are reviewed. General rules from which to conceptualize humoral tolerance to the placenta and fetus are proposed. Significant but underexplored ideas are highlighted and topics for future research are suggested, findings from which are predicted to provide insight into the fundamental nature of tolerance and bolster efforts to combat immune-mediated pregnancy complications.
-
-
-
Wnt/β-Catenin Signaling in Liver Pathobiology
Vol. 20 (2025), pp. 59–86More LessThe liver has a critical role in regulating host metabolism, immunity, detoxification, and homeostasis. Proper liver function is essential for host health, and dysregulation of hepatic signaling pathways can lead to the onset of disease. The Wnt/β-catenin signaling pathway is an important regulator of liver homeostasis and function. Throughout life, hepatic Wnt/β-catenin signaling contributes to liver development and growth, metabolic zonation, and regeneration. Extensive research has demonstrated that aberrant Wnt/β-catenin signaling drives liver pathologies, including cancers, steatohepatitis, and cholestasis. In this review, we discuss the Wnt/β-catenin pathway as it pertains to liver function and how disruptions in this pathway contribute to the onset and progression of liver diseases. Further, we discuss ongoing research that targets the Wnt/β-catenin pathway for the treatment of liver pathologies.
-
-
-
Inherited Predispositions to Myeloid Neoplasms: Pathogenesis and Clinical Implications
Vol. 20 (2025), pp. 87–114More LessMyeloid neoplasms with and without preexisting platelet disorders frequently develop in association with an underlying germline predisposition. Germline alterations affecting ANKRD26, CEBPA, DDX41, ETV6, and RUNX1 are associated with nonsyndromic predisposition to the development of myeloid neoplasms including acute myeloid leukemia and myelodysplastic syndrome. However, germline predisposition to myeloid neoplasms is also associated with a wide range of other syndromes, including SAMD9/9L associated predisposition, GATA2 deficiency, RASopathies, ribosomopathies, telomere biology disorders, Fanconi anemia, severe congenital neutropenia, Down syndrome, and others. In the fifth edition of the World Health Organization (WHO) series on the classification of tumors of hematopoietic and lymphoid tissues, myeloid neoplasms associated with germline predisposition have been recognized as a separate entity. Here, we review several disorders from this WHO entity as well as other related conditions with an emphasis on the molecular pathogenesis of disease and accompanying somatic alterations. Finally, we provide an overview of establishing the molecular diagnosis of these germline genetic conditions and general recommendations for screening and management of the associated hematologic conditions.
-
-
-
Cysteinyl Leukotrienes in Allergic Inflammation
Vol. 20 (2025), pp. 115–141More LessThe cysteinyl leukotrienes (CysLTs), LTC4, LTD4, and LTE4, are potent lipid mediators derived from arachidonic acid through the 5-lipoxygenase pathway. These mediators produce both inflammation and bronchoconstriction through three distinct G protein–coupled receptors (GPCRs)—CysLT1, CysLT2, and OXGR1 (also known as CysLT3 or GPR99). While CysLT-mediated functions in the effector phase of allergic inflammation and asthma have been established for some time, recent work has demonstrated novel roles for these mediators and their receptors in the induction and amplification of type 2 inflammation. Additionally, in vitro studies and murine models have uncovered diverse regulatory mechanisms that restrain or amplify CysLT receptor activation and CysLT receptor function. This review provides an overview of CysLT biosynthesis and its regulation, the molecular and functional pharmacology of CysLT receptors, and an overview of the established and emerging roles of CysLTs in asthma, aspirin-exacerbated respiratory disease, and type 2 inflammation.
-
-
-
Contributions of Inflammation to Cardiometabolic Heart Failure with Preserved Ejection Fraction
Vol. 20 (2025), pp. 143–167More LessThe most common form of heart failure is heart failure with preserved ejection fraction (HFpEF). While heterogeneous in origin, the most common form of HFpEF is the cardiometabolic manifestation. Obesity and aging promote systemic inflammation that appears integral to cardiometabolic HFpEF pathophysiology. Accumulation of immune cells within the heart, fueled by an altered metabolome, contribute to cardiac inflammation and fibrosis. In spite of this, broad anti-inflammatory therapy has not shown significant benefit in patient outcomes. Thus, understanding of the nuances to metabolic and age-related inflammation during HFpEF is paramount for more targeted interventions. Here, we review clinical evidence of inflammation in the context of HFpEF and summarize our mechanistic understanding of immunometabolic inflammation, highlighting pathways of therapeutic potential along the way.
-
-
-
Roles of Cellular Neighborhoods in Hepatocellular Carcinoma Pathogenesis
Vol. 20 (2025), pp. 169–192More LessThe development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis. In this review, we highlight the current research landscape on cellular neighborhoods in chronic liver disease and HCC, as well as the emerging computational approaches applicable to delineate disease-associated cellular neighborhoods, which may offer insights into the molecular mechanisms underlying HCC pathogenesis and pave the way for effective disease interventions.
-
-
-
Choroid Plexus Pathophysiology
Vol. 20 (2025), pp. 193–220More LessThis review examines the roles of the choroid plexus (ChP) in central nervous system (CNS) pathology, emphasizing its involvement in disease mechanisms and therapeutic potential. Structural changes in the human ChP have been reported across various diseases in case reports and descriptive work, but studies have yet to pin down the physiological relevance of these changes. We highlight primary pathologies of the ChP, as well as their significance in neurologic disorders, including stroke, hydrocephalus, infectious diseases, and neurodegeneration. Synthesizing recent research, this review positions the ChP as a critical player in CNS homeostasis and pathology, advocating for enhanced focus on its mechanisms to unlock new diagnostic and treatment strategies and ultimately improve patient outcomes in CNS diseases. Whether acting as a principal driver of disease, a gateway for pathogens into the CNS, or an orchestrator of neuroimmune processes, the ChP holds tremendous promise as a therapeutic target to attenuate a multitude of CNS conditions.
-
-
-
Pathogenesis of Germinal Matrix Hemorrhage: Insights from Single-Cell Transcriptomics
Vol. 20 (2025), pp. 221–243More LessThe germinal matrix harbors neurogenic niches in the subpallium of the prenatal human brain that produce abundant GABAergic neurons. In preterm infants, the germinal matrix is particularly vulnerable to developing hemorrhage, which disrupts neurogenesis and causes severe neurodevelopmental sequelae. However, the disease mechanisms that promote germinal matrix hemorrhage remain unclear. Here, we review recent advances using single-cell transcriptomics to uncover novel mechanisms that govern neurogenesis and angiogenesis in the germinal matrix of the prenatal human brain. These approaches also reveal the critical role of immune–vascular interaction that promotes vascular morphogenesis in the germinal matrix and how proinflammatory factors from activated neutrophils and monocytes can disrupt this process, leading to hemorrhage. Collectively, these results reveal fundamental disease mechanisms and therapeutic interventions for germinal matrix hemorrhage.
-
-
-
Multiple System Atrophy: Pathology, Pathogenesis, and Path Forward
Vol. 20 (2025), pp. 245–273More LessMultiple system atrophy (MSA) is a fatal neurodegenerative disease characterized by autonomic failure and motor impairment. The hallmark pathologic finding in MSA is widespread oligodendroglial cytoplasmic inclusions rich in aggregated α-synuclein (αSyn). MSA is widely held to be an oligodendroglial synucleinopathy, and we outline lines of evidence to support this assertion, including the presence of early myelin loss. However, we also consider emerging data that support the possibility of neuronal or immune dysfunction as a primary driver of MSA. These hypotheses are placed in the context of a major recent discovery that αSyn is conformationally distinct in MSA versus other synucleinopathies such as Parkinson's disease. We outline emerging techniques in epidemiology, genetics, and molecular pathology that will shed more light on this mysterious disease. We anticipate a future in which cutting-edge developments in personalized disease modeling, including with pluripotent stem cells, bridge mechanistic developments at the bench and real benefits at the bedside.
-
-
-
Targeting Protein–Protein Interactions in Hematologic Malignancies
Vol. 20 (2025), pp. 275–301More LessOver the last two decades, there have been extensive efforts to develop small-molecule inhibitors of protein–protein interactions (PPIs) as novel therapeutics for cancer, including hematologic malignancies. Despite the numerous challenges associated with developing PPI inhibitors, a significant number of them have advanced to clinical studies in hematologic patients in recent years. The US Food and Drug Administration approval of the very first PPI inhibitor, venetoclax, demonstrated the real clinical value of blocking protein–protein interfaces. In this review, we discuss the most successful examples of PPI inhibitors that have reached clinical studies in patients with hematologic malignancies. We also describe the challenges of blocking PPIs with small molecules, clinical resistance to such compounds, and the lessons learned from the development of successful PPI inhibitors. Overall, this review highlights the remarkable success and substantial promise of blocking PPIs in hematologic malignancies.
-
-
-
Apoptosis in Cancer Biology and Therapy
Vol. 20 (2025), pp. 303–328More LessSince its inception, the study of apoptosis has been intricately linked to the field of cancer. The term apoptosis was coined more than five decades ago following its identification in both healthy tissues and malignant neoplasms. The subsequent elucidation of its molecular mechanisms has significantly enhanced our understanding of how cancer cells hijack physiological processes to evade cell death. Moreover, it has shed light on the pathways through which most anticancer therapeutics induce tumor cell death, including targeted therapy and immunotherapy. These mechanistic studies have paved the way for the development of therapeutics directly targeting either pro- or antiapoptotic proteins. Notably, the US Food and Drug Administration (FDA) approved the BCL-2 inhibitor venetoclax in 2016, with additional agents currently undergoing clinical trials. Recent research has brought to the forefront both the anti- and proinflammatory effects of individual apoptotic pathways. This underscores the ongoing imperative to deepen our comprehension of apoptosis, particularly as we navigate the evolving landscape of immunotherapy.
-
-
-
Pathogenesis of Focal Segmental Glomerulosclerosis and Related Disorders
Vol. 20 (2025), pp. 329–353More LessFocal segmental glomerulosclerosis (FSGS) is the morphologic manifestation of a spectrum of kidney diseases that primarily impact podocytes, cells that create the filtration barrier of the glomerulus. As its name implies, only parts of the kidney and glomeruli are affected, and only a portion of the affected glomerulus may be sclerosed. Although the diagnosis is based primarily on microscopic features, patient stratification relies on clinical data such as proteinuria and etiological criteria. FSGS affects both children and adults and has an elevated risk of progression to end-stage renal disease. The prevalence of FSGS is rising among various populations, and the efficacy of various therapies is limited. Therefore, understanding the pathophysiology of FSGS and developing targeted therapies to address the complex needs of FSGS patients are topics of great interest that are currently being studied across various clinical trials. We discuss the etiology of FSGS, describe the major contributing pathophysiological pathways, and outline emerging therapeutic strategies along with their pitfalls.
-
-
-
Circadian Clocks, Daily Stress, and Neurodegenerative Disease
Vol. 20 (2025), pp. 355–374More LessDisrupted circadian or 24-h rhythms are among the most common early findings in a wide range of neurodegenerative disorders. Once thought to be a mere consequence of the disease process, increasing evidence points toward a causal or contributory role of the circadian clock in neurodegenerative disease. Circadian clocks control many aspects of cellular biochemistry, including stress pathways implicated in neuronal survival and death. Given the dearth of disease-modifying therapies for these increasingly prevalent disorders, this understanding may lead to breakthroughs in the development of new treatments. In this review, we provide a background on circadian clocks and focus on some potential mechanisms that may be pivotal in neurodegeneration.
-
-
-
Unraveling Mechanisms of Genetic Risks in Metabolic Dysfunction–Associated Steatotic Liver Diseases: A Pathway to Precision Medicine
Vol. 20 (2025), pp. 375–403More LessMetabolic dysfunction–associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly. In this review, we summarize evidence regarding genetic predisposition to MASLD drawn from family and twin studies. Significantly, we delve into detailed genetic variations associated with diverse pathogenic mechanisms driving MASLD. We highlight the interplay between these genetic variants and their connections with metabolic factors, the gut microbiome, and metabolites, which collectively influence MASLD progression. These discoveries are paving the way for precise medicine, including noninvasive diagnostics and therapies. The promising landscape of novel genetically informed drug targets such as RNA interference is explored. Many of these therapies are currently under clinical validation, raising hopes for more effective MASLD treatment.
-
-
-
Challenges and Opportunities in the Clinical Translation of High-Resolution Spatial Transcriptomics
Vol. 20 (2025), pp. 405–432More LessPathology has always been fueled by technological advances. Histology powered the study of tissue architecture at single-cell resolution and remains a cornerstone of clinical pathology today. In the last decade, next-generation sequencing has become informative for the targeted treatment of many diseases, demonstrating the importance of genome-scale molecular information for personalized medicine. Today, revolutionary developments in spatial transcriptomics technologies digitalize gene expression at subcellular resolution in intact tissue sections, enabling the computational analysis of cell types, cellular phenotypes, and cell–cell communication in routinely collected and archival clinical samples. Here we review how such molecular microscopes work, highlight their potential to identify disease mechanisms and guide personalized therapies, and provide guidance for clinical study design. Finally, we discuss remaining challenges to the swift translation of high-resolution spatial transcriptomics technologies and how integration of multimodal readouts and deep learning approaches is bringing us closer to a holistic understanding of tissue biology and pathology.
-
-
-
RNA Damage Responses in Cellular Homeostasis, Genome Stability, and Disease
Vol. 20 (2025), pp. 433–457More LessAll cells are exposed to chemicals that can damage their nucleic acids. Cells must protect these polymers because they code for key factors or complexes essential for life. Much of the work on nucleic acid damage has naturally focused on DNA, partly due to the connection between mutagenesis and human disease, especially cancer. Recent work has shed light on the importance of RNA damage, which triggers a host of conserved RNA quality control mechanisms. Because many RNA species are transient, and because of their ability to be retranscribed, RNA damage has largely been ignored. Yet, because of the connection between damaged RNA and DNA during transcription, and the association between essential complexes that process or decode RNAs, notably spliceosomes and ribosomes, the appropriate handling of damaged RNAs is critical for maintaining cellular homeostasis. This notion is bolstered by disease states, including neurodevelopmental and neurodegenerative diseases, that may arise upon loss or misregulation of RNA quality control mechanisms.
-
-
-
Role of Fungi in Tumorigenesis: Promises and Challenges
Vol. 20 (2025), pp. 459–482More LessThe mycobiome plays a key role in the host immune responses in homeostasis and inflammation. Recent studies suggest that an imbalance in the gut's fungi contributes to chronic, noninfectious diseases such as obesity, metabolic disorders, and cancers. Pathogenic fungi can colonize specific organs, and the gut mycobiome has been linked to the development and progression of various cancers, including colorectal, breast, head and neck, and pancreatic cancers. Some fungal species can promote tumorigenesis by triggering the complement system. However, in immunocompromised patients, fungi can also inhibit this activation and establish life-threatening infections. Interestingly, the interaction of the fungi and bacteria can also induce unique host immune responses. Recent breakthroughs and advancements in high-throughput sequencing of the gut and tumor mycobiomes are highlighting novel diagnostic and therapeutic opportunities for cancer. We discuss the latest developments in the field of cancer and the mycobiome and the potential benefits and challenges of antifungal therapies.
-
-
-
Immune Dysregulation in Obesity
Vol. 20 (2025), pp. 483–509More LessThe immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity—a state characterized by chronic inflammation and systemic dyshomeostasis—there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state. We summarize key seminal and recent findings that elucidate how obesity influences immune function, spanning its classical role in microbial defense, its contribution to maladaptive inflammatory diseases such as asthma, and its impact on antitumor immunity. We also explore how obesity modulates immune function within tissue parenchyma, with a particular focus on the role of T cells in adipose tissue. Finally, we consider areas for future research, including investigation of the durable aspects of obesity on immunological function even after weight loss, such as those observed with glucagon-like peptide-1 (GLP-1) receptor agonist treatment. Altogether, this review emphasizes the critical role of systemic metabolism in shaping immune cell functions, with profound implications for tissue homeostasis across various physiological contexts.
-
Previous Volumes
-
Volume 20 (2025)
-
Volume 19 (2024)
-
Volume 18 (2023)
-
Volume 17 (2022)
-
Volume 16 (2021)
-
Volume 15 (2020)
-
Volume 14 (2019)
-
Volume 13 (2018)
-
Volume 12 (2017)
-
Volume 11 (2016)
-
Volume 10 (2015)
-
Volume 9 (2014)
-
Volume 8 (2013)
-
Volume 7 (2012)
-
Volume 6 (2011)
-
Volume 5 (2010)
-
Volume 4 (2009)
-
Volume 3 (2008)
-
Volume 2 (2007)
-
Volume 1 (2006)
-
Volume 0 (1932)