1932

Abstract

Enzymes catalyze a variety of biochemical reactions in the body and, in conjunction with transporters and receptors, control virtually all physiological processes. There is great value in measuring enzyme activity ex vivo and in vivo. Spatial and temporal differences or changes in enzyme activity can be related to a variety of natural and pathological processes. Several analytical approaches have been developed to meet this need. They can be classified broadly as methods either based on artificial substrates, with the goal of creating images of diseased tissue, or based on natural substrates, with the goal of understanding natural processes. This review covers a selection of these methods, including optical, magnetic resonance, mass spectrometry, and physical sampling approaches, with a focus on creative chemistry and method development that make ex vivo and in vivo measurements of enzyme activity possible.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-anchem-061417-125619
2018-06-12
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/11/1/annurev-anchem-061417-125619.html?itemId=/content/journals/10.1146/annurev-anchem-061417-125619&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Van Noorden CJF 2010. Imaging enzymes at work: metabolic mapping by enzyme histochemistry. J. Histochem. Cytochem. 58:481–97
    [Google Scholar]
  2. 2.  Li Z, Qiao H, Lebherz C, Choi SR, Zhou X et al. 2005. Creatine kinase, a magnetic resonance-detectable marker gene for quantification of liver-directed gene transfer. Hum. Gene Ther. 16:1429–38
    [Google Scholar]
  3. 3.  Sandeep TC, Andrew R, Homer NZM, Andrews RC, Smith K, Walker BR 2005. Increased in vivo regeneration of cortisol in adipose tissue in human obesity and effects of the 11β-hydroxysteroid dehydrogenase type 1 inhibitor carbenoxolone. Diabetes 54:872–79
    [Google Scholar]
  4. 4.  Meas T, Carreira E, Wang Y, Rauh M, Poitou C et al. 2010. 11β-Hydroxysteroid dehydrogenase type 1 of the subcutaneous adipose tissue is dysregulated but not associated with metabolic disorders in adults born small for gestational age. J. Clin. Endocrinol. Metab. 95:3949–54
    [Google Scholar]
  5. 5.  Dube S, Norby BJ, Pattan V, Carter RE, Basu A, Basu R 2015. 11β-Hydroxysteroid dehydrogenase types 1 and 2 activity in subcutaneous adipose tissue in humans: implications in obesity and diabetes. J. Clin. Endocrinol. Metab. 100:E70–76
    [Google Scholar]
  6. 6.  Rupert AE, Ou Y, Sandberg M, Weber SG 2013. Electroosmotic push–pull perfusion: description and application to qualitative analysis of the hydrolysis of exogenous galanin in organotypic hippocampal slice cultures. ACS Chem. Neurosci. 4:838–48
    [Google Scholar]
  7. 7.  Bivehed E, Stroemvall R, Bergquist J, Bakalkin G, Andersson M 2017. Region-specific bioconversion of dynorphin neuropeptide detected by in situ histochemistry and MALDI imaging mass spectrometry. Peptides 87:20–27
    [Google Scholar]
  8. 8.  Brooks AF, Shao X, Quesada CA, Sherman P, Scott PJH, Kilbourn MR 2015. In vivo metabolic trapping radiotracers for imaging monoamine oxidase-A and -B enzymatic activity. ACS Chem. Neurosci. 6:1965–71
    [Google Scholar]
  9. 9.  Cumming P, Vasdev N 2012. The assay of enzyme activity by positron emission tomography. Neuromethods 71:111–35
    [Google Scholar]
  10. 10.  Razgulin A, Ma N, Rao J 2011. Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem. Soc. Rev. 40:4186–216
    [Google Scholar]
  11. 11.  Frommer WB, Davidson MW, Campbell RE 2009. Genetically encoded biosensors based on engineered fluorescent proteins. Chem. Soc. Rev. 38:2833–41
    [Google Scholar]
  12. 12.  Johansson MK, Cook RM 2003. Intramolecular dimers: a new design strategy for fluorescence-quenched probes. Chemistry 9:3466–71
    [Google Scholar]
  13. 13.  Josephson L, Perez JM, Weissleder R 2001. Magnetic nanosensors for the detection of oligonucleotide sequences. Angew. Chem. Int. Ed. 40:3204–6
    [Google Scholar]
  14. 14.  Perez JM, Josephson L, O'Loughlin T, Hoegemann D, Weissleder R 2002. Magnetic relaxation switches capable of sensing molecular interactions. Nat. Biotechnol. 20:816–20
    [Google Scholar]
  15. 15.  Mizukami S, Takikawa R, Sugihara F, Hori Y, Tochio H et al. 2008. Paramagnetic relaxation-based 19F MRI probe to detect protease activity. J. Am. Chem. Soc. 130:794–95
    [Google Scholar]
  16. 16.  Prost M, Hasserodt J 2014. “Double gating”—a concept for enzyme-responsive imaging probes aiming at high tissue specificity. Chem. Commun. 50:14896–99
    [Google Scholar]
  17. 17.  Ye D, Shuhendler AJ, Cui L, Tong L, Tee SS et al. 2014. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6:519–26
    [Google Scholar]
  18. 18.  Kwan DH, Chen H-M, Ratananikom K, Hancock SM, Watanabe Y et al. 2011. Self-immobilizing fluorogenic imaging agents of enzyme activity. Angew. Chem. Int. Ed. 50:300–3
    [Google Scholar]
  19. 19.  Doura T, Kamiya M, Obata F, Yamaguchi Y, Hiyama TY et al. 2016. Detection of LacZ-positive cells in living tissue with single-cell resolution. Angew. Chem. Int. Ed. 55:9620–24
    [Google Scholar]
  20. 20.  Ward KM, Aletras AH, Balaban RS 2000. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J. Magn. Reson. 143:79–87
    [Google Scholar]
  21. 21.  Sinharay S, Pagel MD 2016. Advances in magnetic resonance imaging contrast agents for biomarker detection. Annu. Rev. Anal. Chem. 9:95–115
    [Google Scholar]
  22. 22.  Yoo B, Pagel MD 2006. A PARACEST MRI contrast agent to detect enzyme activity. J. Am. Chem. Soc. 128:14032–33
    [Google Scholar]
  23. 23.  Yoo B, Raam MS, Rosenblum RM, Pagel MD 2007. Enzyme-responsive PARACEST MRI contrast agents: a new biomedical imaging approach for studies of the proteasome. Contrast Media Mol. Imaging 2:189–98
    [Google Scholar]
  24. 24.  Sinharay S, Randtke EA, Jones KM, Howison CM, Chambers SK et al. 2017. Noninvasive detection of enzyme activity in tumor models of human ovarian cancer using catalyCEST MRI. Magn. Reson. Med. 77:2005–14
    [Google Scholar]
  25. 25.  Gu K, Xu Y, Li H, Guo Z, Zhu S et al. 2016. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc. 138:5334–40
    [Google Scholar]
  26. 26.  Wunder A, Tung C-H, Müller-Ladner U, Weissleder R, Mahmood U 2004. In vivo imaging of protease activity in arthritis: a novel approach for monitoring treatment response. Arthritis Rheum 50:2459–65
    [Google Scholar]
  27. 27.  Rosell A, Ortega-Aznar A, Alvarez-Sabín J, Fernández-Cadenas I, Ribó M et al. 2006. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 37:1399–406
    [Google Scholar]
  28. 28.  Breckwoldt MO, Chen JW, Stangenberg L, Aikawa E, Rodriguez E et al. 2008. Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. PNAS 105:18584–89
    [Google Scholar]
  29. 29.  Klohs J, Baeva N, Steinbrink J, Bourayou R, Boettcher C et al. 2009. In vivo near-infrared fluorescence imaging of matrix metalloproteinase activity after cerebral ischemia. J. Cereb. Blood Flow Metab. 29:1284–92
    [Google Scholar]
  30. 30.  Röhnert P, Schmidt W, Emmerlich P, Goihl A, Wrenger S et al. 2012. Dipeptidyl peptidase IV, aminopeptidase N and DPIV/APN-like proteases in cerebral ischemia. J. Neuroinflamm. 9:44
    [Google Scholar]
  31. 31.  Asanuma D, Sakabe M, Kamiya M, Yamamoto K, Hiratake J et al. 2015. Sensitive β-galactosidase-targeting fluorescence probe for visualizing small peritoneal metastatic tumours in vivo. . Nat. Comm. 6:6463
    [Google Scholar]
  32. 32.  Weissleder R, Tung C-H, Mahmood U, Bogdanov A Jr 1999. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17:375–78
    [Google Scholar]
  33. 33.  Galis ZS, Sukhova GK, Lark MW, Libby P 1994. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J. Clin. Investig. 94:2493
    [Google Scholar]
  34. 34.  Galis ZS, Sukhova GK, Libby P 1995. Microscopic localization of active proteases by in situ zymography: detection of matrix metalloproteinase activity in vascular tissue. FASEB J 9:974–80
    [Google Scholar]
  35. 35.  Vandooren J, Geurts N, Martens E, Van den Steen PE, Opdenakker G 2013. Zymography methods for visualizing hydrolytic enzymes. Nat. Methods 10:211–20
    [Google Scholar]
  36. 36.  Gawlak M, Górkiewicz T, Gorlewicz A, Konopacki FA, Kaczmarek L, Wilczynski GM 2009. High resolution in situ zymography reveals matrix metalloproteinase activity at glutamatergic synapses. Neuroscience 158:167–76
    [Google Scholar]
  37. 37.  Gillespie JW, Best CJM, Bichsel VE, Cole KA, Greenhut SF et al. 2002. Evaluation of non-formalin tissue fixation for molecular profiling studies. Am. J. Pathol. 160:449–57
    [Google Scholar]
  38. 38.  Hadler-Olsen E, Kanapathippillai P, Berg E, Svineng G, Winberg J-O, Uhlin-Hansen L 2010. Gelatin in situ zymography on fixed, paraffin-embedded tissue: zinc and ethanol fixation preserve enzyme activity. J. Histochem. Cytochem. 58:29–39
    [Google Scholar]
  39. 39.  Wiera G, Nowak D, Van Hove I, Dziegiel P, Moons L, Mozrzymas JW 2017. Mechanisms of NMDA receptor- and voltage-gated L-type calcium channel-dependent hippocampal LTP critically rely on proteolysis that is mediated by distinct metalloproteinases. J. Neurosci. 37:1240–56
    [Google Scholar]
  40. 40.  Bremer C, Tung C-H, Weissleder R 2001. In vivo molecular target assessment of matrix metalloproteinase inhibition. Nat. Med. 7:743
    [Google Scholar]
  41. 41.  Tung C-H, Mahmood U, Bredow S, Weissleder R 2000. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res 60:4953–58
    [Google Scholar]
  42. 42.  Kircher MF, Weissleder R, Josephson L 2004. A dual fluorochrome probe for imaging proteases. Bioconjugate Chem 15:242–48
    [Google Scholar]
  43. 43.  Keow JY, Herrmann KM, Crawford BD 2011. Differential in vivo zymography: a method for observing matrix metalloproteinase activity in the zebrafish embryo. Matrix Biol 30:169–77
    [Google Scholar]
  44. 44.  Jessen JR 2015. Recent advances in the study of zebrafish extracellular matrix proteins. Dev. Biol. 401:110–21
    [Google Scholar]
  45. 45.  Lee J, Bogyo M 2010. Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol. 5:233–43
    [Google Scholar]
  46. 46.  Alger JR, Shulman RG 1984. NMR studies of enzymatic rates in vitro and in vivo by magnetization transfer. Q. Rev. Biophys. 17:83–124
    [Google Scholar]
  47. 47.  Brindle KM 1988. NMR methods for measuring enzyme kinetics in vivo. . Prog. Nuclear Magn. Resonan. Spectrosc. 20:257–93
    [Google Scholar]
  48. 48.  Rackayova V, Cudalbu C, Pouwels PJW, Braissant O 2017. Creatine in the central nervous system: from magnetic resonance spectroscopy to creatine deficiencies. Anal. Biochem. 529:144–57
    [Google Scholar]
  49. 49.  Campbell-Burk SL, Jones KA, Shulman RG 1987. 31P NMR saturation-transfer measurements in Saccharomycescerevisiae: characterization of phosphate exchange reactions by iodoacetate and antimycin A inhibition. Biochemistry 26:7483–92
    [Google Scholar]
  50. 50.  Kanamori K 2017. In vivo N-15 MRS study of glutamate metabolism in the rat brain. Anal. Biochem. 529:179–92
    [Google Scholar]
  51. 51.  Kanamori K, Ross BD 2005. Suppression of glial glutamine release to the extracellular fluid studied in vivo by NMR and microdialysis in hyperammonemic rat brain. J. Neurochem. 94:74–85
    [Google Scholar]
  52. 52.  Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D et al. 2016. A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput. Struct. Biotechnol. J. 14:135–53
    [Google Scholar]
  53. 53.  Moats RA, Fraser SE, Meade TJ 1997. A “smart” magnetic resonance imaging agent that reports on specific enzymatic activity. Angew. Chem. Int. Ed. 36:726–28
    [Google Scholar]
  54. 54.  Louie AY, Huber MM, Ahrens ET, Rothbacher U, Moats R et al. 2000. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol. 18:321–25
    [Google Scholar]
  55. 55.  Zhao M, Josephson L, Tang Y, Weissleder R 2003. Magnetic sensors for protease assays. Angew. Chem. Int. Ed. 42:1375–78
    [Google Scholar]
  56. 56.  Liu L, Kodibagkar VD, Yu J-X, Mason RP 2007. 19F-NMR detection of lacZ gene expression via the enzymic hydrolysis of 2-fluoro-4-nitrophenyl β-d-galactopyranoside in vivo in PC3 prostate tumor xenografts in the mouse. FASEB J 21:2014–19
    [Google Scholar]
  57. 57.  De Leon-Rodriguez LM, Lubag AJM, Malloy CR, Martinez GV, Gillies RJ, Sherry AD 2009. Responsive MRI agents for sensing metabolism in vivo. . Acc. Chem. Res. 42:948–57
    [Google Scholar]
  58. 58.  Terreno E, Delli Castelli D, Viale A, Aime S 2010. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110:3019–42
    [Google Scholar]
  59. 59.  Matsumoto Y, Jasanoff A 2013. Metalloprotein-based MRI probes. FEBS Lett 587:1021–29
    [Google Scholar]
  60. 60.  Vinogradov E, Sherry AD, Lenkinski RE 2013. CEST: from basic principles to applications, challenges and opportunities. J. Magn. Reson. 229:155–72
    [Google Scholar]
  61. 61.  Hingorani DV, Yoo B, Bernstein AS, Pagel MD 2014. Detecting enzyme activities with exogenous MRI contrast agents. Chemistry 20:9840–50
    [Google Scholar]
  62. 62.  Karas M, Bachmann D, Bahr U, Hillenkamp F 1987. Matrix-assisted ultraviolet laser desorption of non-volatile compounds. Int. J. Mass Spectrom. Ion Process. 78:53–68
    [Google Scholar]
  63. 63.  Greis KD 2007. Mass spectrometry for enzyme assays and inhibitor screening: an emerging application in pharmaceutical research. Mass Spectrom. Rev. 26:324–39
    [Google Scholar]
  64. 64.  de Rond T, Danielewicz M, Northen T 2015. High throughput screening of enzyme activity with mass spectrometry imaging. Curr. Opin. Biotechnol. 31:1–9
    [Google Scholar]
  65. 65.  OuYang C, Chen B, Li L 2015. High throughput in situ DDA analysis of neuropeptides by coupling novel multiplex mass spectrometric imaging (MSI) with gas-phase fractionation. J. Am. Soc. Mass Spectrom. 26:1992–2001
    [Google Scholar]
  66. 66.  Grobe N, Elased KM, Cool DR, Morris M 2012. Mass spectrometry for the molecular imaging of angiotensin metabolism in kidney. Am. J. Physiol. 302:E1016–24
    [Google Scholar]
  67. 67.  Javelot H, Messaoudi M, Garnier S, Rougeot C 2010. Human opiorphin is a naturally occurring antidepressant acting selectively on enkephalin-dependent δ-opioid pathways. J. Physiol. Pharmacol. 61:355–62
    [Google Scholar]
  68. 68.  Yang J, Chaurand P, Norris JL, Porter NA, Caprioli RM 2012. Activity-based probes linked with laser-cleavable mass tags for signal amplification in imaging mass spectrometry: analysis of serine hydrolase enzymes in mammalian tissue. Anal. Chem. 4:3689–95
    [Google Scholar]
  69. 69.  Koehbach J, Gruber CW, Becker C, Kreil DP, Jilek A 2016. MALDI TOF/TOF-based approach for the identification of d-amino acids in biologically active peptides and proteins. J. Proteome Res. 15:1487–96
    [Google Scholar]
  70. 70.  Livnat I, Tai HC, Jansson ET, Bai L, Romanova EV et al. 2016. A d-amino acid-containing neuropeptide discovery funnel. Anal. Chem. 88:11868–76
    [Google Scholar]
  71. 71.  Marfey P 1984. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49:591–96
    [Google Scholar]
  72. 72.  Bhushan R, Bruckner H 2004. Marfey's reagent for chiral amino acid analysis: a review. Amino Acids 27:231–47
    [Google Scholar]
  73. 73.  Ungerstedt U 1984. Measurement of neurotransmitter release by intercranial dialysis. Measurement of Neurotransmitter Release In Vivo CA Marsden 81–105 New York: Wiley
    [Google Scholar]
  74. 74.  Lee WH, Ngernsutivorakul T, Mabrouk OS, Wong JMT, Dugan CE et al. 2016. Microfabrication and in vivo performance of a microdialysis probe with embedded membrane. Anal. Chem. 88:1230–37
    [Google Scholar]
  75. 75.  Newcomb R, Pierce AR, Kano T, Meng W, Bosque-Hamilton P et al. 1998. Characterization of mitochondrial glutaminase and amino acids at prolonged times after experimental focal cerebral ischemia. Brain Res 813:103–11
    [Google Scholar]
  76. 76.  Sato T, Obata T, Yamanaka Y, Arita M 1998. Effects of lysophosphatidylcholine on the production of interstitial adenosine via protein kinase C-mediated activation of ecto-5′-nucleotidase. Br. J. Pharmacol. 125:493–98
    [Google Scholar]
  77. 77.  Obata T 2002. Adenosine production and its interaction with protection of ischemic and reperfusion injury of the myocardium. Life Sci 71:2083–103
    [Google Scholar]
  78. 78.  Wang Y, Zagorevski DV, Lennartz MR, Loegering DJ, Stenken JA 2009. Detection of in vivo matrix metalloproteinase activity using microdialysis sampling and liquid chromatography/mass spectrometry. Anal. Chem. 81:9961–71
    [Google Scholar]
  79. 79.  Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT 2015. Brain tissue responses to neural implants impact signal sensitivity and intervention strategies. ACS Chem. Neurosci. 6:48–67
    [Google Scholar]
  80. 80.  Jaquins-Gerstl A, Shu Z, Zhang J, Liu Y, Weber SG, Michael AC 2011. Effect of dexamethasone on gliosis, ischemia, and dopamine extraction during microdialysis sampling in brain tissue. Anal. Chem. 83:7662–67
    [Google Scholar]
  81. 81.  Nesbitt KM, Jaquins-Gerstl A, Skoda EM, Wipf P, Michael AC 2013. Pharmacological mitigation of tissue damage during brain microdialysis. Anal. Chem. 85:8173–79
    [Google Scholar]
  82. 82.  Nesbitt KM, Varner EL, Jaquins-Gerstl A, Michael AC 2014. Microdialysis in the rat striatum: effects of 24 h dexamethasone retrodialysis on evoked dopamine release and penetration injury. ACS Chem. Neurosci. 6:163–73
    [Google Scholar]
  83. 83.  Kozai TDY, Jaquins-Gerstl AS, Vazquez AL, Michael AC, Cui XT 2016. Dexamethasone retrodialysis attenuates microglial response to implanted probes in vivo. Biomaterials 87:157–69
    [Google Scholar]
  84. 84.  Varner EL, Leong CL, Jaquins-Gerstl A, Nesbitt KM, Boutelle MG, Michael AC 2017. Enhancing continuous online microdialysis using dexamethasone: measurement of dynamic neurometabolic changes during spreading depolarization. ACS Chem. Neurosci. 8:1779–88
    [Google Scholar]
  85. 85.  Albiston AL, Mustafa T, McDowall SG, Mendelsohn FAO, Lee J, Chai SY 2003. AT4 receptor is insulin-regulated membrane aminopeptidase: potential mechanisms of memory enhancement. Trends Endocrinol. Metab. 14:72–77
    [Google Scholar]
  86. 86.  Fernando RN, Albiston AL, Chai SY 2008. The insulin-regulated aminopeptidase IRAP is colocalised with GLUT4 in the mouse hippocampus—potential role in modulation of glucose uptake in neurones?. Eur. J. Neurosci. 28:588–98
    [Google Scholar]
  87. 87.  De Bundel D, Smolders I, Yang R, Albiston AL, Michotte Y, Chai SY 2009. Angiotensin IV and LVV-haemorphin 7 enhance spatial working memory in rats: effects on hippocampal glucose levels and blood flow. Neurobiol. Learn. Mem. 92:19–26
    [Google Scholar]
  88. 88.  De Bundel D, Demaegdt H, Lahoutte T, Caveliers V, Kersemans K et al. 2010. Involvement of the AT1 receptor subtype in the effects of angiotensin IV and LVV-haemorphin 7 on hippocampal neurotransmitter levels and spatial working memory. J. Neurochem. 112:1223–34
    [Google Scholar]
  89. 89.  Fletcher HJ, Stenken JA 2008. An in vitro comparison of microdialysis relative recovery of Met- and Leu-enkephalin using cyclodextrins and antibodies as affinity agents. Anal. Chim. Acta 620:170–75
    [Google Scholar]
  90. 90.  Duo J, Stenken JA 2011. In vitro and in vivo affinity microdialysis sampling of cytokines using heparin-immobilized microspheres. Anal. Bioanal. Chem. 399:783–93
    [Google Scholar]
  91. 91.  Schmerberg CM, Li L 2013. Mass spectrometric detection of neuropeptides using affinity-enhanced microdialysis with antibody-coated magnetic nanoparticles. Anal. Chem. 85:915–22
    [Google Scholar]
  92. 92.  Wilson RE, Jaquins-Gerstl A, Weber SG 2018. On-column dimethylation with capillary liquid chromatography-tandem mass spectrometry for online determination of neuropeptides in rat brain microdialysate. Anal. Chem. 90:4561–68
    [Google Scholar]
  93. 93.  Freed AL, Cooper JD, Davies MI, Lunte SM 2001. Investigation of the metabolism of substance P in rat striatum by microdialysis sampling and capillary electrophoresis with laser-induced fluorescence detection. J. Neurosci. Methods 109:23–29
    [Google Scholar]
  94. 94.  Reed B, Bidlack JM, Chait BT, Kreek MJ 2008. Extracellular biotransformation of β-endorphin in rat striatum and cerebrospinal fluid. J. Neuroendocrinol. 20:606–16
    [Google Scholar]
  95. 95.  Reed B, Zhang Y, Chait BT, Kreek MJ 2003. Dynorphin A(1–17) biotransformation in striatum of freely moving rats using microdialysis and matrix-assisted laser desorption/ionization mass spectrometry. J. Neurochem. 86:815–23
    [Google Scholar]
  96. 96.  Klintenberg R, Andrén PE 2005. Altered extracellular striatal in vivo biotransformation of the opioid neuropeptide dynorphin A(1–17) in the unilateral 6-OHDA rat model of Parkinson's disease. J. Mass Spectrom. 40:261–70
    [Google Scholar]
  97. 97.  Stragier B, Sarre S, Vanderheyden P, Vauquelin G, Fournie-Zaluski MC et al. 2004. Metabolism of angiotensin II is required for its in vivo effect on dopamine release in the striatum of the rat. J. Neurochem. 90:1251–57
    [Google Scholar]
  98. 98.  Zhang H, Stoeckli M, Andrén PE, Caprioli RM 1999. Combining solid-phase preconcentration, capillary electrophoresis and off-line matrix-assisted laser desorption/ionization mass spectrometry: intracerebral metabolic processing of peptide E in vivo. . J. Mass Spectrom. 34:377–83
    [Google Scholar]
  99. 99.  Ou Y, Wu J, Sandberg M, Weber SG 2014. Electroosmotic perfusion of tissue: sampling the extracellular space and quantitative assessment of membrane-bound enzyme activity in organotypic hippocampal slice cultures. Anal. Bioanal. Chem. 406:6455–68
    [Google Scholar]
  100. 100.  Hamsher AE, Xu H, Guy Y, Sandberg M, Weber SG 2010. Minimizing tissue damage in electroosmotic sampling. Anal. Chem. 82:6370–76
    [Google Scholar]
  101. 101.  Gogolla N, Galimberti I, DePaola V, Caroni P 2006. Preparation of organotypic hippocampal slice cultures for long-term live imaging. Nat. Protoc. 1:1165–71
    [Google Scholar]
  102. 102.  Mentlein R, Gallwitz B, Schmidt W 1993. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-l(7–36)amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur. J. Biochem. 214:829–35
    [Google Scholar]
  103. 103.  Roques BP, Nobel F, Daugé V, Fournié-Zaluski MC, Beaumont A 1993. Neutral endopeptidase 24.11: structure, inhibition, and experimental and clinical pharmacology. Pharmacol. Rev. 45:87–146
    [Google Scholar]
  104. 104.  Thielitz A, Ansorge S, Bank U, Tager M, Wrenger S et al. 2008. The ectopeptidases dipeptidyl peptidase IV (DP IV) and aminopeptidase N (APN) and their related enzymes as possible targets in the treatment of skin diseases. Front. Biosci. 13:2364–75
    [Google Scholar]
  105. 105.  Wu J, Sandberg M, Weber SG 2013. Integrated electroosmotic perfusion of tissue with online microfluidic analysis to track the metabolism of cystamine, pantethine, and coenzyme A. Anal. Chem. 85:12020–27
    [Google Scholar]
  106. 106.  Wu J, Xu K, Landers JP, Weber SG 2013. An in situ measurement of extracellular cysteamine, homocysteine, and cysteine concentrations in organotypic hippocampal slice cultures by integration of electroosmotic sampling and microfluidic analysis. Anal. Chem. 85:3095–103
    [Google Scholar]
  107. 107.  Wu J, Ferrance JP, Landers JP, Weber SG 2010. Integration of a precolumn fluorogenic reaction, separation, and detection of reduced glutathione. Anal. Chem. 82:7267–73
    [Google Scholar]
  108. 108.  Xu H, Guy Y, Hamsher A, Shi G, Sandberg M, Weber SG 2010. Electroosmotic sampling. Application to determination of ectopeptidase activity in organotypic hippocampal slice cultures. Anal. Chem. 82:6377–83
    [Google Scholar]
  109. 109.  Ou Y, Weber SG 2017. Numerical modeling of electroosmotic push–pull perfusion and assessment of its application to quantitative determination of enzymatic activity in the extracellular space of mammalian tissue. Anal. Chem. 89:5864–73
    [Google Scholar]
  110. 110.  Zini S, Roisin M-P, Armengaud C, Ben-Ari Y 1993. Effect of potassium channel modulators on the release of glutamate induced by ischaemic-like conditions in rat hippocampal slices. Neurosci. Lett. 153:202–5
    [Google Scholar]
  111. 111.  Elliott-Hunt CR, Marsh B, Bacon A, Pope R, Vanderplank P, Wynick D 2004. Galanin acts as a neuroprotective factor to the hippocampus. PNAS 101:5105–10
    [Google Scholar]
  112. 112.  Beal SL 1982. On the solution to the Michaelis-Menten equation. J. Pharmacokinet. Biopharm. 10:109–19
    [Google Scholar]
  113. 113.  Golicnik M 2011. Explicit analytic approximations for time-dependent solutions of the generalized integrated Michaelis-Menten equation. Anal. Biochem. 411:303–5
    [Google Scholar]
  114. 114.  Ou Y, Weber SG 2018. Higher aminopeptidase activity determined by electroosmotic push–pull perfusion contributes to selective vulnerability of the hippocampal CA1 region to oxygen glucose deprivation. ACS Chem. Neurosci. 9:535–44
    [Google Scholar]
  115. 115.  Rupert AE, Ou Y, Sandberg M, Weber SG 2013. Assessment of tissue viability following electroosmotic push–pull perfusion from organotypic hippocampal slice cultures. ACS Chem. Neurosci. 4:849–57
    [Google Scholar]
  116. 116.  Jaquins-Gerstl A, Michael AC 2015. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 140:3696–708
    [Google Scholar]
/content/journals/10.1146/annurev-anchem-061417-125619
Loading
/content/journals/10.1146/annurev-anchem-061417-125619
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error